
ReFrame Documentation
Release 2.19

CSCS

Aug 23, 2019

Table of Contents:

1 Use Cases 3

2 Latest Release 5

3 Publications 7
3.1 Getting Started . 7
3.2 Configuring ReFrame for Your Site . 9
3.3 The Regression Test Pipeline . 16
3.4 ReFrame Tutorial . 19
3.5 Customizing Further a Regression Test . 37
3.6 Understanding the Mechanism of Sanity Functions . 49
3.7 Running ReFrame . 56
3.8 Use Cases . 79
3.9 About ReFrame . 80
3.10 Reference Guide . 81
3.11 Sanity Functions Reference . 107

Python Module Index 115

Index 117

i

ii

ReFrame Documentation, Release 2.19

ReFrame is a new framework for writing regression tests for HPC systems. The goal of this framework is to abstract
away the complexity of the interactions with the system, separating the logic of a regression test from the low-level
details, which pertain to the system configuration and setup. This allows users to write easily portable regression tests,
focusing only on the functionality.

Regression tests in ReFrame are simple Python classes that specify the basic parameters of the test. The framework
will load the test and will send it down a well-defined pipeline that will take care of its execution. The stages of this
pipeline take care of all the system interaction details, such as programming environment switching, compilation, job
submission, job status query, sanity checking and performance assessment.

ReFrame also offers a high-level and flexible abstraction for writing sanity and performance checks for your regression
tests, without having to care about the details of parsing output files, searching for patterns and testing against reference
values for different systems.

Writing system regression tests in a high-level modern programming language, like Python, poses a great advantage
in organizing and maintaining the tests. Users can create their own test hierarchies or test factories for generating
multiple tests at the same time and they can also customize them in a simple and expressive way.

Table of Contents: 1

ReFrame Documentation, Release 2.19

2 Table of Contents:

CHAPTER 1

Use Cases

The ReFrame framework has been in production at CSCS since the upgrade of the Piz Daint system in early December
2016.

Read the full story. . .

3

http://www.cscs.ch
http://www.cscs.ch/computers/piz_daint/index.html
usecases.html

ReFrame Documentation, Release 2.19

4 Chapter 1. Use Cases

CHAPTER 2

Latest Release

ReFrame is being actively developed at CSCS. You can always find the latest release here.

5

http://www.cscs.ch/
https://github.com/eth-cscs/reframe/releases/latest

ReFrame Documentation, Release 2.19

6 Chapter 2. Latest Release

CHAPTER 3

Publications

• Slides [pdf] @ HPC Knowledge Meeting ‘19

• Slides [pdf] & Talk @ FOSDEM‘19

• Slides [pdf] @ 4th EasyBuild User Meeting

• Slides [pdf] @ SC18

• Slides [pdf] [pptx] @ CSCS User Lab Day 2018

• Slides [pdf] @ HPC Advisory Council 2018

• Slides [pdf] @ SC17

• Slides [pdf] @ CUG 2017

3.1 Getting Started

3.1.1 Requirements

• Python 3.5 or higher. Python 2 is not supported.

Note: Changed in version 2.8: A functional TCL modules system is no more required. ReFrame can now
operate without a modules system at all.

Optional

• For running the unit tests of the framework, the pytest unittesting framework is needed.

You are advised to run the unit tests of the framework after installing it on a new system to make sure that everything
works fine.

7

https://drive.google.com/open?id=1iwg1I48LVaWhhZCZIYPJSi3hdFLRcuhi
https://hpckp.org/
https://fosdem.org/2019/schedule/event/reframe/attachments/slides/3226/export/events/attachments/reframe/slides/3226/FOSDEM_2019.pdf
https://fosdem.org/2019/schedule/event/reframe/
https://fosdem.org/2019/
https://indico.cism.ucl.ac.be/event/4/contributions/24/attachments/30/62/ReFrame_EUM_2019.pdf
https://github.com/easybuilders/easybuild/wiki/4th-EasyBuild-User-Meeting
https://drive.google.com/open?id=1bSykDrl1e2gPflf4jFJ8kfe_SZAtrJ_Q
https://sc18.supercomputing.org/
https://github.com/eth-cscs/UserLabDay/blob/master/slides/ci_and_regression/ReFrame_CI.pdf
https://github.com/eth-cscs/UserLabDay/blob/master/slides/ci_and_regression/ReFrame_CI.pptx
https://github.com/eth-cscs/UserLabDay
https://drive.google.com/open?id=1sZhibvUlGlT670aOHPdMlWFffWptYzLX
http://www.hpcadvisorycouncil.com/events/2018/swiss-workshop/
https://drive.google.com/open?id=1EyJ-siupkgLeVT54A4WlFpQtrJaU0xOy
https://sc17.supercomputing.org/
https://drive.google.com/open?id=18VrCy0MTplGo67uxVbzYZicQChor9VSY
https://cug.org/cug-2017/
https://pytest.org/

ReFrame Documentation, Release 2.19

3.1.2 Getting the Framework

To get the latest stable version of the framework, you can just clone it from the github project page:

git clone https://github.com/eth-cscs/reframe.git

Alternatively, you can pick a previous stable version by downloading it from the previous releases section.

3.1.3 Running the Unit Tests

After you have downloaded the framework, it is important to run the unit tests of to make sure that everything is set
up correctly:

./test_reframe.py -v

The output should look like the following:

collected 442 items

unittests/test_argparser.py .. [
→˓0%]
unittests/test_cli.pys........... [
→˓4%]
unittests/test_config.py [
→˓7%]
unittests/test_deferrable.py .. [
→˓17%]
unittests/test_environments.py sss...s..... [
→˓20%]
unittests/test_exceptions.py [
→˓23%]
unittests/test_fields.py [
→˓28%]
unittests/test_launchers.py [
→˓31%]
unittests/test_loader.py [
→˓33%]
unittests/test_logging.py [
→˓38%]
unittests/test_modules.pyssssssssssssssss............................ [
→˓49%]
unittests/test_pipeline.pys..s......................... [
→˓57%]
unittests/test_policies.py [
→˓64%]
unittests/test_runtime.py . [
→˓64%]
unittests/test_sanity_functions.py ... [
→˓75%]
.............. [
→˓78%]
unittests/test_schedulers.pys.s......ss...................s.s......ss. [
→˓90%]
unittests/test_script_builders.py . [
→˓90%]
unittests/test_utility.py ... [
→˓99%]

(continues on next page)

8 Chapter 3. Publications

https://github.com/eth-cscs/reframe
https://github.com/eth-cscs/reframe/releases

ReFrame Documentation, Release 2.19

(continued from previous page)

unittests/test_versioning.py ..
→˓[100%]

======================== 411 passed, 31 skipped in 28.10 seconds
→˓=========================

You will notice in the output that all the job submission related tests have been skipped. The test suite detects if the
current system has a job submission system and is configured for ReFrame (see Configuring ReFrame for your site)
and it will skip all the unsupported unit tests. As soon as you configure ReFrame for your system, you can rerun
the test suite to check that job submission unit tests pass as well. Note here that some unit tests may still be skipped
depending on the configured job submission system.

3.1.4 Where to Go from Here

The next step from here is to setup and configure ReFrame for your site, so that ReFrame can automatically recognize
it and submit jobs. Please refer to the “Configuring ReFrame For Your Site” section on how to do that.

Before starting implementing a regression test, you should go through the “The Regression Test Pipeline” section, so
as to understand the mechanism that ReFrame uses to run the regression tests. This section will let you follow easily
the “ReFrame Tutorial” as well as understand the more advanced examples in the “Customizing Further A Regression
Test” section.

To learn how to invoke the ReFrame command-line interface for running your tests, please refer to the “Running
ReFrame” section.

3.2 Configuring ReFrame for Your Site

ReFrame provides an easy and flexible way to configure new systems and new programming environments. By default,
it ships with a generic local system configured. This should be enough to let you run ReFrame on a local computer as
soon as the basic software requirements are met.

As soon as a new system with its programming environments is configured, adapting an existing regression test could
be as easy as just adding the system’s name in the valid_systems list and its associated programming environ-
ments in the valid_prog_environs list.

3.2.1 The Configuration File

The configuration of systems and programming environments is performed by a special Python dictionary called
site_configuration defined inside the file <install-dir>/reframe/settings.py.

The site_configuration dictionary should define two entries, systems and environments. The former
defines the systems that ReFrame may recognize, whereas the latter defines the available programming environments.

The following example shows a minimal configuration for the Piz Daint supercomputer at CSCS:

site_configuration = {
'systems': {

'daint': {
'descr': 'Piz Daint',
'hostnames': ['daint'],
'modules_system': 'tmod',
'partitions': {

(continues on next page)

3.2. Configuring ReFrame for Your Site 9

configure.html
configure.html
pipeline.html
tutorial.html
advanced.html
advanced.html
running.html
running.html
started.html#requirements
https://www.cscs.ch/computers/piz-daint/

ReFrame Documentation, Release 2.19

(continued from previous page)

'login': {
'scheduler': 'local',
'modules': [],
'access': [],
'environs': ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr': 'Login nodes',
'max_jobs': 4

},

'gpu': {
'scheduler': 'nativeslurm',
'modules': ['daint-gpu'],
'access': ['--constraint=gpu'],
'environs': ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr': 'Hybrid nodes (Haswell/P100)',
'max_jobs': 100

},

'mc': {
'scheduler': 'nativeslurm',
'modules': ['daint-mc'],
'access': ['--constraint=mc'],
'environs': ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr': 'Multicore nodes (Broadwell)',
'max_jobs': 100

}
}

}
},

'environments': {
'*': {

'PrgEnv-cray': {
'type': 'ProgEnvironment',
'modules': ['PrgEnv-cray'],

},

'PrgEnv-gnu': {
'type': 'ProgEnvironment',
'modules': ['PrgEnv-gnu'],

},

'PrgEnv-intel': {
'type': 'ProgEnvironment',
'modules': ['PrgEnv-intel'],

},

'PrgEnv-pgi': {
'type': 'ProgEnvironment',
'modules': ['PrgEnv-pgi'],

}
}

}
}

10 Chapter 3. Publications

ReFrame Documentation, Release 2.19

3.2.2 System Configuration

The list of supported systems is defined as a set of key/value pairs under key systems. Each system is a key/value
pair, with the key being the name of the system and the value being another set of key/value pairs defining its attributes.
The valid attributes of a system are the following:

• descr: A detailed description of the system (default is the system name).

• hostnames: This is a list of hostname patterns that will be used by ReFrame when it tries to auto-detect the
current system (default []).

• modules_system: The modules system that should be used for loading environment modules on this system
(default None). Three types of modules systems are currently supported:

– tmod: The classic Tcl implementation of the environment modules (versions older than 3.2 are not sup-
ported).

– tmod4: The version 4 of the Tcl implementation of the environment modules (versions older than 4.1 are
not supported).

– lmod: The Lua implementation of the environment modules.

• modules: Modules to be loaded always when running on this system. These modules modify the ReFrame
environment. This is useful when for example a particular module is needed to submit jobs on a specific system.

• variables: Environment variables to be set always when running on this system.

• prefix: Default regression prefix for this system (default .).

• stagedir: Default stage directory for this system (default None).

• outputdir: Default output directory for this system (default None).

• perflogdir: Default directory prefix for storing performance logs for this system (default None).

• resourcesdir: Default directory for storing large resources (e.g., input data files, etc.) needed by regression
tests for this system (default .).

• partitions: A set of key/value pairs defining the partitions of this system and their properties (default {}).
Partition configuration is discussed in the next section.

For a more detailed description of the prefix, stagedir, outputdir and perflogdir directories, please
refer to the “Configuring ReFrame Directories” and “Performance Logging” sections.

Note: New in version 2.8: The modules_system key was introduced for specifying custom modules systems for
different systems.

Note: New in version 2.19: The modules and variables configuration parameters were introduced at the system
level.

Warning: Changed in version 2.18: The logdir key is no more supported; please use perflogdir instead.

3.2.3 Partition Configuration

From the ReFrame’s point of view, each system consists of a set of logical partitions. These partitions need not
necessarily correspond to real scheduler partitions. For example, Piz Daint on the above example is split in virtual

3.2. Configuring ReFrame for Your Site 11

https://sourceforge.net/projects/modules/files/Modules/modules-3.2.10/
http://modules.sourceforge.net/
https://lmod.readthedocs.io/en/latest/
running.html#configuring-reframe-directories
running.html#performance-logging

ReFrame Documentation, Release 2.19

partitions using Slurm constraints. Other systems may be indeed split into real scheduler partitions.

The partitions of a system are defined similarly to systems as a set of key/value pairs with the key being the partition
name and the value being another set of key/value pairs defining the partition’s attributes. The available partition
attributes are the following:

• descr: A detailed description of the partition (default is the partition name).

• scheduler: The job scheduler and parallel program launcher combination that is used on this partition to
launch jobs. The syntax of this attribute is <scheduler>+<launcher>. A list of the supported schedulers
and parallel launchers can be found at the end of this section.

• access: A list of scheduler options that will be passed to the generated job script for gaining access to that
logical partition (default []).

• environs: A list of environments, with which ReFrame will try to run any regression tests written for this
partition (default []). The environment names must be resolved inside the environments section of the
site_configuration dictionary (see Environments Configuration for more information).

• modules: A list of modules to be loaded before running a regression test on that partition (default []).

• variables: A set of environment variables to be set before running a regression test on that partition (default
{}). Environment variables can be set as follows (notice that both the variable name and its value are strings):

'variables': {
'MYVAR': '3',
'OTHER': 'foo'

}

• max_jobs: The maximum number of concurrent regression tests that may be active (not completed) on this
partition. This option is relevant only when ReFrame executes with the asynchronous execution policy.

• resources: A set of custom resource specifications and how these can be requested from the partition’s
scheduler (default {}).

This variable is a set of key/value pairs with the key being the resource name and the value being a list of
options to be passed to the partition’s job scheduler. The option strings can contain placeholders of the form
{placeholder_name}. These placeholders may be replaced with concrete values by a regression tests
through the extra_resources attribute.

For example, one could define a gpu resource for a multi-GPU system that uses Slurm as follows:

'resources': {
'gpu': ['--gres=gpu:{num_gpus_per_node}']

}

A regression test then may request this resource as follows:

self.extra_resources = {'gpu': {'num_gpus_per_node': '8'}}

And the generated job script will have the following line in its preamble:

#SBATCH --gres=gpu:8

A resource specification may also start with #PREFIX, in which case #PREFIX will replace the standard job
script prefix of the backend scheduler of this partition. This is useful in cases of job schedulers like Slurm,
that allow alternative prefixes for certain features. An example is the DataWarp functionality of Slurm which is
supported by the #DW prefix. One could then define DataWarp related resources as follows:

12 Chapter 3. Publications

running.html#asynchronous-execution-of-regression-checks
https://www.cray.com/datawarp

ReFrame Documentation, Release 2.19

'resources': {
'datawarp': [

'#DW jobdw capacity={capacity} access_mode={mode} type=scratch',
'#DW stage_out source={out_src} destination={out_dst} type={stage_

→˓filetype}'
]

}

A regression test that wants to make use of that resource, it can set its extra_resources as follows:

self.extra_resources = {
'datawarp': {

'capacity': '100GB',
'mode': 'striped',
'out_src': '$DW_JOB_STRIPED/name',
'out_dst': '/my/file',
'stage_filetype': 'file'

}
}

Note: For the PBS backend, options accepted in the access and resources attributes may either refer to actual
qsub options or be just resources specifications to be passed to the -l select option. The backend assumes a
qsub option, if the options passed in these attributes start with a -.

Note: Changed in version 2.8: A new syntax for the scheduler values was introduced as well as more parallel
program launchers. The old values for the scheduler key will continue to be supported.

Note: Changed in version 2.9: Better support for custom job resources.

Note: Changed in version 2.14: The modules and variables partition configuration parameters do not affect the
ReFrame environment anymore. They essentially define an environment to be always emitted when building and/or
running the test on this partition. If you want to modify the environment ReFrame runs in for a particular system,
define these parameters inside the system configuration.

Supported scheduler backends

ReFrame supports the following job schedulers:

• slurm: Jobs on the configured partition will be launched using Slurm. This scheduler relies on job accounting
(sacct command) in order to reliably query the job status.

• squeue: [new in 2.8.1] Jobs on the configured partition will be launched using Slurm, but no job accounting
is required. The job status is obtained using the squeue command. This scheduler is less reliable than the one
based on the sacct command, but the framework does its best to query the job state as reliably as possible.

• pbs: [new in 2.13] Jobs on the configured partition will be launched using a PBS-based scheduler.

• local: Jobs on the configured partition will be launched locally as OS processes.

3.2. Configuring ReFrame for Your Site 13

https://www.schedmd.com/
https://www.schedmd.com/
https://en.wikipedia.org/wiki/Portable_Batch_System

ReFrame Documentation, Release 2.19

Supported parallel launchers

ReFrame supports the following parallel job launchers:

• srun: Programs on the configured partition will be launched using a bare srun command without any job
allocation options passed to it. This launcher may only be used with the slurm scheduler.

• srunalloc: Programs on the configured partition will be launched using the srun command with job allo-
cation options passed automatically to it. This launcher may also be used with the local scheduler.

• alps: Programs on the configured partition will be launched using the aprun command.

• mpirun: Programs on the configured partition will be launched using the mpirun command.

• mpiexec: Programs on the configured partition will be launched using the mpiexec command.

• local: Programs on the configured partition will be launched as-is without using any parallel program
launcher.

There exist also the following aliases for specific combinations of job schedulers and parallel program launchers:

• nativeslurm: This is equivalent to slurm+srun.

• local: This is equivalent to local+local.

3.2.4 Environments Configuration

The environments available for testing in different systems are defined under the environments key of the top-level
site_configuration dictionary. The environments key is associated to a special dictionary that defines
scopes for looking up an environment. The * denotes the global scope and all environments defined there can be used
by any system. Instead of *, you can define scopes for specific systems or specific partitions by using the name of the
system or partition. For example, an entry daint will define a scope for a system called daint, whereas an entry
daint:gpu will define a scope for a virtual partition named gpu on the system daint. When an environment name
is used in the environs list of a system partition (see Partition Configuration), it is first looked up in the entry of
that partition, e.g., daint:gpu. If no such entry exists, it is looked up in the entry of the system, e.g., daint. If not
found there, it is looked up in the global scope denoted by the * key. If it cannot be found even there, an error will
be issued. This look up mechanism allows you to redefine an environment for a specific system or partition. In the
following example, we redefine PrgEnv-gnu for a system named foo, so that whenever PrgEnv-gnu is used on
that system, the module openmpi will also be loaded and the compiler variables should point to the MPI wrappers.

'foo': {
'PrgEnv-gnu': {

'type': 'ProgEnvironment',
'modules': ['PrgEnv-gnu', 'openmpi'],
'cc': 'mpicc',
'cxx': 'mpicxx',
'ftn': 'mpif90',

}
}

An environment is also defined as a set of key/value pairs with the key being its name and the value being a dictionary
of its attributes. The possible attributes of an environment are the following:

• type: The type of the environment to create. There are two available environment types (note that names are
case sensitive):

– 'Environment': A simple environment.

– 'ProgEnvironment': A programming environment.

14 Chapter 3. Publications

ReFrame Documentation, Release 2.19

• modules: A list of modules to be loaded when this environment is used (default [], valid for all environment
types)

• variables: A set of variables to be set when this environment is used (default {}, valid for all environment
types)

• cc: The C compiler (default 'cc', valid for 'ProgEnvironment' only).

• cxx: The C++ compiler (default 'CC', valid for 'ProgEnvironment' only).

• ftn: The Fortran compiler (default 'ftn', valid for 'ProgEnvironment' only).

• cppflags: The default preprocessor flags (default None, valid for 'ProgEnvironment' only).

• cflags: The default C compiler flags (default None, valid for 'ProgEnvironment' only).

• cxxflags: The default C++ compiler flags (default None, valid for 'ProgEnvironment' only).

• fflags: The default Fortran compiler flags (default None, valid for 'ProgEnvironment' only).

• ldflags: The default linker flags (default None, valid for 'ProgEnvironment' only).

Note: All flags for programming environments are now defined as list of strings instead of simple strings.

Changed in version 2.17.

3.2.5 System Auto-Detection

When ReFrame is launched, it tries to detect the current system and select the correct site configuration entry. The
auto-detection process is as follows:

ReFrame first tries to obtain the hostname from /etc/xthostname, which provides the unqualified machine name
in Cray systems. If this cannot be found the hostname will be obtained from the standard hostname command.
Having retrieved the hostname, ReFrame goes through all the systems in its configuration and tries to match the
hostname against any of the patterns in the hostnames attribute of system configuration. The detection process
stops at the first match found, and the system it belongs to is considered as the current system. If the system cannot
be auto-detected, ReFrame will issue a warning and fall back to a generic system configuration, which is equivalent to
the following:

site_configuration = {
'systems': {

'generic': {
'descr': 'Generic fallback system configuration',
'hostnames': ['localhost'],
'partitions': {

'login': {
'scheduler': 'local',
'environs': ['builtin-gcc'],
'descr': 'Login nodes'

}
}

}
},
'environments': {

'*': {
'builtin-gcc': {

'type': 'ProgEnvironment',
'cc': 'gcc',

(continues on next page)

3.2. Configuring ReFrame for Your Site 15

ReFrame Documentation, Release 2.19

(continued from previous page)

'cxx': 'g++',
'ftn': 'gfortran',

}
}

}
}

You can override completely the auto-detection process by specifying a system or a system partition with the
--system option (e.g., --system daint or --system daint:gpu).

Note: Instead of issuing an error, ReFrame falls back to a generic system configuration in case system auto-detection
fails.

Changed in version 2.19.

3.2.6 Viewing the current system configuration

New in version 2.16.

It is possible to ask ReFrame to print the configuration of the current system or the configuration of any programming
environment defined for the current system. There are two command-line options for performing these operations:

• --show-config: This option shows the current system’s configuration and exits. It can be combined with
the --system option in order to show the configuration of another system.

• --show-config-env ENV: This option shows the configuration of the programming environment ENV and
exits. The environment ENV must be defined for any of the partitions of the current system. This option can
also be combined with --system in order to show the configuration of a programming environment defined
for another system.

3.3 The Regression Test Pipeline

The backbone of the ReFrame regression framework is the regression test pipeline. This is a set of well defined phases
that each regression test goes through during its lifetime. The figure below depicts this pipeline in detail.

Fig. 1: The regression test pipeline

A regression test starts its life after it has been instantiated by the framework. This is where all the basic information
of the test is set. At this point, although it is initialized, the regression test is not yet live, meaning that it does not run
yet. The framework will then go over all the loaded and initialized checks (we will talk about the loading and selection
phases later), it will pick the next partition of the current system and the next programming environment for testing
and will try to run the test. If the test supports the current system partition and the current programming environment,
it will be run and it will go through all the following seven phases:

1. Setup

2. Compilation

3. Running

4. Sanity checking

5. Performance checking

16 Chapter 3. Publications

ReFrame Documentation, Release 2.19

6. Cleanup

A test may implement some of them as no-ops. As soon as the test is finished, its resources are cleaned up and the
framework’s environment is restored. ReFrame will try to repeat the same procedure on the same regression test using
the next programming environment and the next system partition until no further environments and partitions are left
to be tested. In the following we elaborate on each of the individual phases of the lifetime of a regression test.

3.3.1 0. The Initialization Phase

This phase is not part of the regression test pipeline as shown above, but it is quite important, since during this phase
the test is loaded into memory and initialized. As we shall see in the “Tutorial” and in the “Customizing Further A
ReFrame Regression Test” sections, this is the phase where the specification of a test is set. At this point the current
system is already known and the test may be set up accordingly. If no further differentiation is needed depending on
the system partition or the programming environment, the test could go through the whole pipeline performing all of
its work without the need to override any of the other pipeline stages. In fact, this is perhaps the most common case
for most of the regression tests.

3.3.2 1. The Setup Phase

A regression test is instantiated once by the framework and it is then copied each time a new system partition or
programming environment is tried. This first phase of the regression pipeline serves the purpose of preparing the
test to run on the specified partition and programming environment by performing a number of operations described
below:

Set up and load the test’s environment

At this point the environment of the current partition, the current programming environment and any test’s specific en-
vironment will be loaded. For example, if the current partition requires slurm, the current programming environment
is PrgEnv-gnu and the test requires also cudatoolkit, this phase will be equivalent to the following:

module load slurm
module unload PrgEnv-cray
module load PrgEnv-gnu
module load cudatoolkit

Note that the framework automatically detects conflicting modules and unloads them first. So the user need not to care
about the existing environment at all. She only needs to specify what is needed by her test.

Setup the test’s paths

Each regression test is associated with a stage directory and an output directory. The stage directory will be the
working directory of the test and all of its resources will be copied there before running. The output directory is the
directory where some important output files of the test will be kept. By default these are the generated job script file,
the standard output and standard error. The user can also specify additional files to be kept in the test’s specification.
At this phase, all these directories are created.

Prepare a job for the test

At this point a job descriptor will be created for the test. A job descriptor in ReFrame is an abstraction of the job
scheduler’s functionality relevant to the regression framework. It is responsible for submitting a job in a job queue and
waiting for its completion. ReFrame supports two job scheduler backends that can be combined with several different

3.3. The Regression Test Pipeline 17

tutorial.html
advanced.html
advanced.html

ReFrame Documentation, Release 2.19

parallel program launchers. For a complete list of the job scheduler/parallel launchers combinations, please refer to
“Partition Configuration”.

3.3.3 2. The Compilation Phase

At this phase the source code associated with test is compiled with the current programming environment. Before
compiling, all the resources of the test are copied to its stage directory and the compilation is performed from that
directory.

3.3.4 3. The Run Phase

This phase comprises two subphases:

• Job launch: At this subphase a job script file for the regression test is generated and submitted to the job
scheduler queue. If the job scheduler for the current partition is the local one, a simple wrapper shell script will
be generated and will be launched as a local OS process.

• Job wait: At this subphase the job (or local process) launched in the previous subphase is waited for. This phase
is pretty basic: it just checks that the launched job (or local process) has finished. No check is made of whether
the job or process has finished successfully or not. This is the responsibility of the next pipeline stage.

ReFrame currently supports two execution policies:

• serial: In the serial execution policy, these two subphases are performed back-to-back and the framework blocks
until the current regression test finishes.

• asynchronous: In the asynchronous execution policy, as soon as the job associated to the current test is
launched, ReFrame continues its execution by executing and launching the subsequent test cases.

3.3.5 4. The Sanity Checking Phase

At this phase it is determined whether the check has finished successfully or not. Although this decision is test-specific,
ReFrame provides a very flexible and expressive way for specifying complex patterns and operations to be performed
on the test’s output in order to determine the outcome of the test.

3.3.6 5. The Performance Checking Phase

At this phase the performance of the regression test is checked. ReFrame uses the same mechanism for analyzing the
output of the test as with sanity checking. The only difference is that the user can now specify reference values per
system or system partition, as well as acceptable performance thresholds

3.3.7 6. The Cleanup Phase

This is the final stage of the regression test pipeline and it is responsible for cleaning up the resources of the test. Three
steps are performed in this phase:

1. The interesting files of the test (job script, standard output and standard error and any additional files specified
by the user) are copied to its output directory for later inspection and bookkeeping,

2. the stage directory is removed and

3. the test’s environment is revoked.

18 Chapter 3. Publications

configure.html#partition-configuration

ReFrame Documentation, Release 2.19

At this point the ReFrame’s environment is clean and in its original state and the framework may continue by running
more test cases.

3.4 ReFrame Tutorial

This tutorial will guide you through writing your first regression tests with ReFrame. We will start with the most
common and simple case of a regression test that compiles a code, runs it and checks its output. We will then expand
this example gradually by adding functionality and more advanced sanity and performance checks. By the end of the
tutorial, you should be able to start writing your first regression tests with ReFrame.

If you just want to get a quick feeling of how it is like writing a regression test in ReFrame, you can start directly from
here. However, if you want to get a better understanding of what is happening behind the scenes, we recommend to
have a look also in “The Regression Test Pipeline” section.

All the tutorial examples can be found in <reframe-install-prefix>/tutorial/.

For the configuration of the system, we provide a minimal configuration file for Piz Daint, where we have tested all
the tutorial examples. The site configuration that we used for this tutorial is the following:

site_configuration = {
'systems': {

'daint': {
'descr': 'Piz Daint',
'hostnames': ['daint'],
'modules_system': 'tmod',
'partitions': {

'login': {
'scheduler': 'local',
'modules': [],
'access': [],
'environs': ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr': 'Login nodes',
'max_jobs': 4

},

'gpu': {
'scheduler': 'nativeslurm',
'modules': ['daint-gpu'],
'access': ['--constraint=gpu'],
'environs': ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr': 'Hybrid nodes (Haswell/P100)',
'max_jobs': 100

},

'mc': {
'scheduler': 'nativeslurm',
'modules': ['daint-mc'],
'access': ['--constraint=mc'],
'environs': ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr': 'Multicore nodes (Broadwell)',
'max_jobs': 100

}
}

(continues on next page)

3.4. ReFrame Tutorial 19

pipeline.html

ReFrame Documentation, Release 2.19

(continued from previous page)

}
},

'environments': {
'*': {

'PrgEnv-cray': {
'type': 'ProgEnvironment',
'modules': ['PrgEnv-cray'],

},
'PrgEnv-gnu': {

'type': 'ProgEnvironment',
'modules': ['PrgEnv-gnu'],

},

'PrgEnv-intel': {
'type': 'ProgEnvironment',
'modules': ['PrgEnv-intel'],

},

'PrgEnv-pgi': {
'type': 'ProgEnvironment',
'modules': ['PrgEnv-pgi'],

}
}

}
}

You can find the full settings.py file ready to be used by ReFrame in <reframe-install-prefix>/
tutorial/config/settings.py. You may first need to go over the “Configuring ReFrame For Your Site”
section, in order to prepare the framework for your systems.

3.4.1 The First Regression Test

The following is a simple regression test that compiles and runs a serial C program, which computes a matrix-vector
product (tutorial/src/example_matrix_multiplication.c), and verifies its sane execution. As a san-
ity check, it simply looks for a specific output in the output of the program. Here is the full code for this test:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example1Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Simple matrix-vector multiplication example'
self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.sourcepath = 'example_matrix_vector_multiplication.c'
self.executable_opts = ['1024', '100']
self.sanity_patterns = sn.assert_found(

r'time for single matrix vector multiplication', self.stdout)
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

A regression test written in ReFrame is essentially a Python class that must eventually derive from
RegressionTest. To make a test visible to the framework, you must decorate your final test class with one of

20 Chapter 3. Publications

configure.html

ReFrame Documentation, Release 2.19

the following decorators:

• @simple_test: for registering a single parameterless instantiation of your test.

• @parameterized_test: for registering multiple instantiations of your test.

Let’s see in more detail how the Example1Test is defined:

@rfm.simple_test
class Example1Test(rfm.RegressionTest):

def __init__(self):

The __init__()method is the constructor of your test. It is usually the only method you need to implement for your
tests, especially if you don’t want to customize any of the regression test pipeline stages. When your test is instantiated,
the framework assigns a default name to it. This name is essentially a concatenation of the fully qualified name of
the class and string representations of the constructor arguments, with any non-alphanumeric characters converted to
underscores. In this example, the auto-generated test name is simply Example1Test. You may change the name of
the test later in the constructor by setting the name attribute.

Note: Calling super().__init__() inside the constructor of a test is no more needed.

Changed in version 2.19.

Warning:

ReFrame requires that the names of all the tests it loads are unique. In case of name clashes, it will
refuse to load the conflicting test.

New in version 2.12.

The next line sets a more detailed description of the test:

self.descr = 'Simple matrix-vector multiplication example'

This is optional and it defaults to the auto-generated test’s name, if not specified.

Note: If you explicitly set only the name of the test, the description will not be automatically updated and will still
keep its default value.

The next two lines specify the systems and the programming environments that this test is valid for:

self.valid_systems = ['*']
self.valid_prog_environs = ['*']

Both of these variables accept a list of system names or environment names, respectively. The * symbol is a wildcard
meaning any system or any programming environment. The system and environment names listed in these variables
must correspond to names of systems and environments defined in the ReFrame’s settings file.

When specifying system names you can always specify a partition name as well by appending :<partname> to
the system’s name. For example, given the configuration for our tutorial, daint:gpu would refer specifically to the
gpu virtual partition of the system daint. If only a system name (without a partition) is specified in the self.
valid_systems variable, e.g., daint, it means that this test is valid for any partition of this system.

The next line specifies the source file that needs to be compiled:

3.4. ReFrame Tutorial 21

configure.html#the-configuration-file

ReFrame Documentation, Release 2.19

self.sourcepath = 'example_matrix_vector_multiplication.c'

ReFrame expects any source files, or generally resources, of the test to be inside an src/ directory, which is at the
same level as the regression test file. If you inspect the directory structure of the tutorial/ folder, you will notice
that:

tutorial/
example1.py
src/

example_matrix_vector_multiplication.c

Notice also that you need not specify the programming language of the file you are asking ReFrame to compile or the
compiler to use. ReFrame will automatically pick the correct compiler based on the extension of the source file. The
exact compiler that is going to be used depends on the programming environment that the test is running with. For
example, given our configuration, if it is run with PrgEnv-cray, the Cray C compiler will be used, if it is run with
PrgEnv-gnu, the GCC compiler will be used etc. A user can associate compilers with programming environments
in the ReFrame’s settings file.

The next line in our first regression test specifies a list of options to be used for running the generated executable (the
matrix dimension and the number of iterations in this particular example):

self.executable_opts = ['1024', '100']

Notice that you do not need to specify the executable name. Since ReFrame compiled it and generated it, it knows the
name. We will see in the “Customizing Further A ReFrame Regression Test” section, how you can specify the name
of the executable, in cases that ReFrame cannot guess its name.

The next lines specify what should be checked for assessing the sanity of the result of the test:

self.sanity_patterns = sn.assert_found(
r'time for single matrix vector multiplication', self.stdout)

This expression simply asks ReFrame to look for time for single matrix vector multiplication
in the standard output of the test. The sanity_patterns attribute can only be assigned the result of a special type
of functions, called sanity functions. Sanity functions are special in the sense that they are evaluated lazily. You can
generally treat them as normal Python functions inside a sanity_patterns expression. ReFrame provides already
a wide range of useful sanity functions ranging from wrappers to the standard built-in functions of Python to functions
related to parsing the output of a regression test. For a complete listing of the available functions, please have a look
at the “Sanity Functions Reference”.

In our example, the assert_found function accepts a regular expression pattern to be searched in a file and either
returns True on success or raises a SanityError in case of failure with a descriptive message. This function uses
internally the “re” module of the Python standard library, so it may accept the same regular expression syntax. As a
file argument, assert_found accepts any filename, which will be resolved against the stage directory of the test.
You can also use the stdout and stderr attributes to reference the standard output and standard error, respectively.

Tip: You need not to care about handling exceptions, and error handling in general, inside your test. The framework
will automatically abort the execution of the test, report the error and continue with the next test case.

The last two lines of the regression test are optional, but serve a good role in a production environment:

self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

In the maintainers attribute you may store a list of people responsible for the maintenance of this test. In case of
failure, this list will be printed in the failure summary.

22 Chapter 3. Publications

configure.html#the-configuration-file
advanced.html
deferrables.html
sanity_functions_reference.html
https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html#regular-expression-syntax

ReFrame Documentation, Release 2.19

The tags attribute is a set of tags that you can assign to this test. This is useful for categorizing the tests and helps in
quickly selecting the tests of interest. More about test selection, you can find in the “Running ReFrame” section.

Note: The values assigned to the attributes of a RegressionTest are validated and if they don’t have the correct
type, an error will be issued by ReFrame. For a list of all the attributes and their types, please refer to the “Reference
Guide”.

Running the Tutorial Examples

ReFrame offers a rich command-line interface that allows you to control several aspects of its executions. A more
detailed description can be found in the “Running ReFrame” section. Here we will only show you how to run a
specific tutorial test:

./bin/reframe -C tutorial/config/settings.py -c tutorial/example1.py -r

If everything is configured correctly for your system, you should get an output similar to the following:

Command line: ./bin/reframe -C tutorial/config/settings.py -c tutorial/example1.py -r
Reframe version: 2.13-dev0
Launched by user: XXX
Launched on host: daint104
Reframe paths
=============

Check prefix :
Check search path : 'tutorial/example1.py'
Stage dir prefix : /current/working/dir/stage/
Output dir prefix : /current/working/dir/output/
Logging dir : /current/working/dir/logs

[==========] Running 1 check(s)
[==========] Started on Fri May 18 13:19:12 2018

[----------] started processing Example1Test (Simple matrix-vector multiplication
→˓example)
[RUN] Example1Test on daint:login using PrgEnv-cray
[OK] Example1Test on daint:login using PrgEnv-cray
[RUN] Example1Test on daint:login using PrgEnv-gnu
[OK] Example1Test on daint:login using PrgEnv-gnu
[RUN] Example1Test on daint:login using PrgEnv-intel
[OK] Example1Test on daint:login using PrgEnv-intel
[RUN] Example1Test on daint:login using PrgEnv-pgi
[OK] Example1Test on daint:login using PrgEnv-pgi
[RUN] Example1Test on daint:gpu using PrgEnv-cray
[OK] Example1Test on daint:gpu using PrgEnv-cray
[RUN] Example1Test on daint:gpu using PrgEnv-gnu
[OK] Example1Test on daint:gpu using PrgEnv-gnu
[RUN] Example1Test on daint:gpu using PrgEnv-intel
[OK] Example1Test on daint:gpu using PrgEnv-intel
[RUN] Example1Test on daint:gpu using PrgEnv-pgi
[OK] Example1Test on daint:gpu using PrgEnv-pgi
[RUN] Example1Test on daint:mc using PrgEnv-cray
[OK] Example1Test on daint:mc using PrgEnv-cray
[RUN] Example1Test on daint:mc using PrgEnv-gnu
[OK] Example1Test on daint:mc using PrgEnv-gnu
[RUN] Example1Test on daint:mc using PrgEnv-intel
[OK] Example1Test on daint:mc using PrgEnv-intel

(continues on next page)

3.4. ReFrame Tutorial 23

running.html
reference.html
reference.html
running.html

ReFrame Documentation, Release 2.19

(continued from previous page)

[RUN] Example1Test on daint:mc using PrgEnv-pgi
[OK] Example1Test on daint:mc using PrgEnv-pgi
[----------] finished processing Example1Test (Simple matrix-vector multiplication
→˓example)

[PASSED] Ran 12 test case(s) from 1 check(s) (0 failure(s))
[==========] Finished on Fri May 18 13:20:17 2018

Notice how our regression test is run on every partition of the configured system and for every programming environ-
ment.

Now that you have got a first understanding of how a regression test is written in ReFrame, let’s try to expand our
example.

Inspecting the ReFrame Generated Files

As described in the regression test pipeline section, ReFrame generates several files during the execution of a test.
When developing or debugging a regression test it is important to be able to locate them and inspect them.

As soon as the setup stage of the test is executed, a stage directory specific to this test is generated. All the required
resources for the test are copied to this directory, and this will be the working directory for the compilation, run-
ning, sanity and performance checking phases. If the test is successful, this stage directory is removed, unless the
--keep-stage-files option is passed in the command line. Before removing this directory, ReFrame copies the
following files to a dedicated output directory for this test:

• The generated build script and its standard output and standard error. This allows you to inspect exactly how
your test was compiled.

• The generated run script and its standard output and standard error. This allows you to inspect exactly how your
test was run and verify that the sanity checking was correct.

• Any other user-specified files.

If a regression test fails, its stage directory will not be removed. This allows you to reproduce exactly what ReFrame
was trying to perform and will help you debug the problem with your test.

Let’s rerun our first example and instruct ReFrame to keep the stage directory of the test, so that we can inspect it.

./bin/reframe -C tutorial/config/settings.py -c tutorial/example1.py -r --keep-stage-
→˓files

ReFrame creates a stage directory for each test case using the following pattern:

$STAGEDIR_PREFIX/<system>/<partition>/<prog-environ>/<test-name>

Let’s pick the test case for the gpu partition and the PrgEnv-gnu programming environment from our first test to
inspect. The default STAGEDIR_PREFIX is ./stage:

cd stage/daint/gpu/PrgEnv-gnu/Example1Test/

If you do a listing in this directory, you will see all the files contained in the tutorial/src directory, as well as the
following files:

rfm_Example1Test_build.err rfm_Example1Test_job.err
rfm_Example1Test_build.out rfm_Example1Test_job.out
rfm_Example1Test_build.sh rfm_Example1Test_job.sh

24 Chapter 3. Publications

ReFrame Documentation, Release 2.19

The rfm_Example1Test_build.sh is the generated build script and the .out and .err are the compilation’s
standard output and standard error. Here is the generated build script for our first test:

#!/bin/bash

_onerror()
{

exitcode=$?
echo "-reframe: command \`$BASH_COMMAND' failed (exit code: $exitcode)"
exit $exitcode

}

trap _onerror ERR

module load daint-gpu
module unload PrgEnv-cray
module load PrgEnv-gnu
cc example_matrix_vector_multiplication.c -o ./Example1Test

Similarly, the rfm_Example1Test_job.sh is the generated job script and the .out and .err files are the
corresponding standard output and standard error. The generated job script for the test case we are currently inspecting
is the following:

#!/bin/bash -l
#SBATCH --job-name="rfm_Example1Test_job"
#SBATCH --time=0:10:0
#SBATCH --ntasks=1
#SBATCH --output=rfm_Example1Test_job.out
#SBATCH --error=rfm_Example1Test_job.err
#SBATCH --constraint=gpu
module load daint-gpu
module unload PrgEnv-cray
module load PrgEnv-gnu
srun ./Example1Test 1024 100

It is interesting to check here the generated job script for the login partition of the example system, which does not
use a workload manager:

cat stage/daint/login/PrgEnv-gnu/Example1Test/rfm_Example1Test_job.sh

#!/bin/bash -l
module unload PrgEnv-cray
module load PrgEnv-gnu
./Example1Test 1024 100

This is one of the advantages in using ReFrame: You do not have to care about the system-level details of the target
system that your test is running. Based on its configuration, ReFrame will generate the appropriate commands to run
your test.

3.4.2 Customizing the Compilation Phase

In this example, we write a regression test to compile and run the OpenMP version of the matrix-vector product
program, that we have shown before. The full code of this test follows:

import reframe as rfm
import reframe.utility.sanity as sn

(continues on next page)

3.4. ReFrame Tutorial 25

ReFrame Documentation, Release 2.19

(continued from previous page)

@rfm.simple_test
class Example2aTest(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vector multiplication example with OpenMP'
self.valid_systems = ['*']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_openmp.c'
self.build_system = 'SingleSource'
self.executable_opts = ['1024', '100']
self.variables = {

'OMP_NUM_THREADS': '4'
}
self.sanity_patterns = sn.assert_found(

r'time for single matrix vector multiplication', self.stdout)
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

def setup(self, partition, environ, **job_opts):
if environ.name == 'PrgEnv-cray':

self.build_system.cflags = ['-homp']
elif environ.name == 'PrgEnv-gnu':

self.build_system.cflags = ['-fopenmp']
elif environ.name == 'PrgEnv-intel':

self.build_system.cflags = ['-openmp']
elif environ.name == 'PrgEnv-pgi':

self.build_system.cflags = ['-mp']

This example introduces two new concepts:

1. We need to set the OMP_NUM_THREADS environment variable, in order to specify the number of threads to use
with our program.

2. We need to specify different flags for the different compilers provided by the programming environments we are
testing. Notice also that we now restrict the validity of our test only to the programming environments that we
know how to handle (see the valid_prog_environs).

To define environment variables to be set during the execution of a test, you should use the variables attribute of
the RegressionTest class. This is a dictionary, whose keys are the names of the environment variables and whose
values are the values of the environment variables. Notice that both the keys and the values must be strings.

From version 2.14, ReFrame manages compilation of tests through the concept of build systems. Any customization
of the build process should go through a build system. For straightforward cases, as in our first example, where no
customization is needed, ReFrame automatically picks the correct build system to build the code. In this example,
however, we want to set the flags for compiling the OpenMP code. Assuming our test supported only GCC, we could
simply add the following lines in the __init__() method of our test:

self.build_system = 'SingleSource'
self.build_system.cflags = ['-fopenmp']

The SingleSource build system that we use here supports the compilation of a single file only. Each build system
type defines a set of variables that the user can set. Based on the selected build system, ReFrame will generate a
build script that will be used for building the code. The generated build script can be found in the stage or the output
directory of the test, along with the output of the compilation. This way, you may reproduce exactly what ReFrame
does in case of any errors. More on the build systems feature can be found here.

26 Chapter 3. Publications

running.html#configuring-reframe-directories
running.html#configuring-reframe-directories
reference.html#build-systems

ReFrame Documentation, Release 2.19

Getting back to our test, simply setting the cflags to -fopenmp globally in the test will make it fail for pro-
gramming environments other than PrgEnv-gnu, since the OpenMP flags vary for the different compilers. Ideally,
we need to set the cflags differently for each programming environment. To achieve this we need to override the
setup method of the RegressionTest. As described in “The Regression Test Pipeline” section, it is during the
setup phase that a regression test is prepared for a new system partition and a new programming environment. The
following lines show the overriden setup() method:

def setup(self, partition, environ, **job_opts):
if environ.name == 'PrgEnv-cray':

self.build_system.cflags = ['-homp']
elif environ.name == 'PrgEnv-gnu':

self.build_system.cflags = ['-fopenmp']
elif environ.name == 'PrgEnv-intel':

self.build_system.cflags = ['-openmp']
elif environ.name == 'PrgEnv-pgi':

self.build_system.cflags = ['-mp']

super().setup(partition, environ, **job_opts)

The current environment is passed as argument by the framework to the setup() method, so we differentiate the
build system’s flags based on its name. Finally, we need call the setup() method of the base class, in order to
perform the actual setup of the test.

Tip: The RegressionTest implements the six phases of the regression test pipeline in separate methods. Indi-
vidual regression tests may override them to provide alternative implementations, but in most practical cases, only the
setup may need to be overriden. You will hardly ever need to override any of the other methods and, in fact, you
should be very careful when doing it.

Warning: Setting the compiler flags in the programming environment has been dropped completely in version
2.17.

An alternative implementation using dictionaries

Here we present an alternative implementation of the same test using a dictionary to hold the compilation flags for the
different programming environments. The advantage of this implementation is that you move the different compilation
flags in the initialization phase, where also the rest of the test’s specification is, thus making it more concise.

The setup() method is now very simple: it gets the correct compilation flags from the prgenv_flags dictionary
and applies them to the build system.

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example2bTest(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vector multiplication example with OpenMP'
self.valid_systems = ['*']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_openmp.c'
self.build_system = 'SingleSource'

(continues on next page)

3.4. ReFrame Tutorial 27

pipeline.html

ReFrame Documentation, Release 2.19

(continued from previous page)

self.executable_opts = ['1024', '100']
self.prgenv_flags = {

'PrgEnv-cray': ['-homp'],
'PrgEnv-gnu': ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp']

}
self.variables = {

'OMP_NUM_THREADS': '4'
}
self.sanity_patterns = sn.assert_found(

r'time for single matrix vector multiplication', self.stdout)
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

def setup(self, partition, environ, **job_opts):
self.build_system.cflags = self.prgenv_flags[environ.name]
super().setup(partition, environ, **job_opts)

Tip: A regression test is like any other Python class, so you can freely define your own attributes. If you accidentally
try to write on a reserved RegressionTest attribute that is not writeable, ReFrame will prevent this and it will
throw an error.

3.4.3 Running on Multiple Nodes

So far, all our tests run on a single node. Depending on the actual system that ReFrame is running, the test may
run locally or be submitted to the system’s job scheduler. In this example, we write a regression test for the
MPI+OpenMP version of the matrix-vector product. The source code of this program is in tutorial/src/
example_matrix_vector_multiplication_mpi_openmp.c. The regression test file follows:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example3Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vector multiplication example with MPI'
self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_mpi_openmp.c'
self.executable_opts = ['1024', '10']
self.build_system = 'SingleSource'
self.prgenv_flags = {

'PrgEnv-cray': ['-homp'],
'PrgEnv-gnu': ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp']

}
self.sanity_patterns = sn.assert_found(

r'time for single matrix vector multiplication', self.stdout)
self.num_tasks = 8

(continues on next page)

28 Chapter 3. Publications

ReFrame Documentation, Release 2.19

(continued from previous page)

self.num_tasks_per_node = 2
self.num_cpus_per_task = 4
self.variables = {

'OMP_NUM_THREADS': str(self.num_cpus_per_task)
}
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

def setup(self, partition, environ, **job_opts):
self.build_system.cflags = self.prgenv_flags[environ.name]
super().setup(partition, environ, **job_opts)

This test is pretty much similar to the test example for the OpenMP code we have shown before, except that it adds
some information about the configuration of the distributed tasks. It also restricts the valid systems only to those that
support distributed execution. Let’s take the changes step-by-step:

First we need to specify for which partitions this test is meaningful by setting the valid_systems attribute:

self.valid_systems = ['daint:gpu', 'daint:mc']

We only specify the partitions that are configured with a job scheduler. If we try to run the generated executable on
the login nodes, it will fail. So we remove this partition from the list of the supported systems.

The most important addition to this check are the variables controlling the distributed execution:

self.num_tasks = 8
self.num_tasks_per_node = 2
self.num_cpus_per_task = 4

By setting these variables, we specify that this test should run with 8 MPI tasks in total, using two tasks per node.
Each task may use four logical CPUs. Based on these variables ReFrame will generate the appropriate scheduler flags
to meet that requirement. For example, for Slurm these variables will result in the following flags: --ntasks=8,
--ntasks-per-node=2 and --cpus-per-task=4. ReFrame provides several more variables for configuring
the job submission. As shown in the following Table, they follow closely the corresponding Slurm options. For
schedulers that do not provide the same functionality, some of the variables may be ignored.

RegressionTest attribute Corresponding SLURM option
time_limit = (0, 10, 30) --time=00:10:30
use_multithreading = True --hint=multithread
use_multithreading = False --hint=nomultithread
exclusive_access = True --exclusive
num_tasks=72 --ntasks=72
num_tasks_per_node=36 --ntasks-per-node=36
num_cpus_per_task=4 --cpus-per-task=4
num_tasks_per_core=2 --ntasks-per-core=2
num_tasks_per_socket=36 --ntasks-per-socket=36

3.4.4 Testing a GPU Code

In this example, we will create two regression tests for two different GPU versions of our matrix-vector code: Ope-
nACC and CUDA. Let’s start with the OpenACC regression test:

3.4. ReFrame Tutorial 29

ReFrame Documentation, Release 2.19

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example4Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vector multiplication example with OpenACC'
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_openacc.c'
self.build_system = 'SingleSource'
self.executable_opts = ['1024', '100']
self.modules = ['craype-accel-nvidia60']
self.num_gpus_per_node = 1
self.prgenv_flags = {

'PrgEnv-cray': ['-hacc', '-hnoomp'],
'PrgEnv-pgi': ['-acc', '-ta=tesla:cc60']

}
self.sanity_patterns = sn.assert_found(

r'time for single matrix vector multiplication', self.stdout)
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

def setup(self, partition, environ, **job_opts):
self.build_system.cflags = self.prgenv_flags[environ.name]
super().setup(partition, environ, **job_opts)

The things to notice in this test are the restricted list of system partitions and programming environments that this test
supports and the use of the modules variable:

self.modules = ['craype-accel-nvidia60']

The modules variable takes a list of modules that should be loaded during the setup phase of the test. In this particular
test, we need to load the craype-accel-nvidia60 module, which enables the generation of a GPU binary from
an OpenACC code.

It is also important to note that in GPU-enabled tests the number of GPUs for each node have to be specified by setting
the corresponding variable num_gpus_per_node, as follows:

self.num_gpus_per_node = 1

The regression test for the CUDA code is slightly simpler:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example5Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vector multiplication example with CUDA'
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_cuda.cu'
self.executable_opts = ['1024', '100']
self.modules = ['cudatoolkit']

(continues on next page)

30 Chapter 3. Publications

ReFrame Documentation, Release 2.19

(continued from previous page)

self.num_gpus_per_node = 1
self.sanity_patterns = sn.assert_found(

r'time for single matrix vector multiplication', self.stdout)
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

ReFrame will recognize the .cu extension of the source file and it will try to invoke nvcc for compiling the code. In
this case, there is no need to differentiate across the programming environments, since the compiler will be eventually
the same. nvcc in our example is provided by the cudatoolkit module, which we list it in the modules variable.

3.4.5 More Advanced Sanity Checking

So far we have done a very simple sanity checking. We are only looking if a specific line is present in the output of
the test program. In this example, we expand the regression test of the serial code, so as to check also if the printed
norm of the result vector is correct.

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example6Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vector multiplication with L2 norm check'
self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.sourcepath = 'example_matrix_vector_multiplication.c'

matrix_dim = 1024
iterations = 100
self.executable_opts = [str(matrix_dim), str(iterations)]

expected_norm = matrix_dim
found_norm = sn.extractsingle(

r'The L2 norm of the resulting vector is:\s+(?P<norm>\S+)',
self.stdout, 'norm', float)

self.sanity_patterns = sn.all([
sn.assert_found(

r'time for single matrix vector multiplication', self.stdout),
sn.assert_lt(sn.abs(expected_norm - found_norm), 1.0e-6)

])
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

The only difference with our first example is actually the more complex expression to assess the sanity of the test.
Let’s go over it line-by-line. The first thing we do is to extract the norm printed in the standard output.

found_norm = sn.extractsingle(
r'The L2 norm of the resulting vector is:\s+(?P<norm>\S+)',
self.stdout, 'norm', float)

The extractsingle sanity function extracts some information from a single occurrence (by default the first) of a
pattern in a filename. In our case, this function will extract the norm capturing group from the match of the regular
expression r'The L2 norm of the resulting vector is:\s+(?P<norm>\S+)' in standard output,

3.4. ReFrame Tutorial 31

https://docs.python.org/3.6/library/re.html#regular-expression-syntax

ReFrame Documentation, Release 2.19

it will convert it to float and it will return it. Unnamed capturing groups in regular expressions are also supported,
which you can reference by their group number. For example, we could have written the same statement as follows:

found_norm = sn.extractsingle(
r'The L2 norm of the resulting vector is:\s+(\S+)',
self.stdout, 1, float)

Notice that we replaced the 'norm' argument with 1, which is the capturing group number.

Note: In regular expressions, capturing group 0 corresponds always to the whole match. In sanity functions dealing
with regular expressions, this will yield the whole line that matched.

A useful counterpart of extractsingle is the extractall function, which instead of a single occurrence,
returns a list of all the occurrences found. For a more detailed description of this and other sanity functions, please
refer to the sanity function reference.

The next four lines is the actual sanity check:

self.sanity_patterns = sn.all([
sn.assert_found(

r'time for single matrix vector multiplication', self.stdout),
sn.assert_lt(sn.abs(expected_norm - found_norm), 1.0e-6)

])

This expression combines two conditions that need to be true, in order for the sanity check to succeed:

1. Find in standard output the same line we were looking for already in the first example.

2. Verify that the printed norm does not deviate significantly from the expected value.

The all function is responsible for combining the results of the individual subexpressions. It is essentially the Python
built-in all() function, exposed as a sanity function, and requires that all the elements of the iterable it takes as an
argument evaluate to True. As mentioned before, all the assert_* functions either return True on success or
raise SanityError. So, if everything goes smoothly, sn.all() will evaluate to True and sanity checking will
succeed.

The expression for the second condition is more interesting. Here, we want to assert that the absolute value of the
difference between the expected and the found norm are below a certain value. The important thing to mention here is
that you can combine the results of sanity functions in arbitrary expressions, use them as arguments to other functions,
return them from functions, assign them to variables etc. Remember that sanity functions are not evaluated at the time
you call them. They will be evaluated later by the framework during the sanity checking phase. If you include the result
of a sanity function in an expression, the evaluation of the resulting expression will also be deferred. For a detailed
description of the mechanism behind the sanity functions, please have a look at “Understanding The Mechanism Of
Sanity Functions” section.

3.4.6 Writing a Performance Test

An important aspect of regression testing is checking for performance regressions. ReFrame offers a flexible way of
extracting and manipulating performance data from the program output, as well as a comprehensive way of setting
performance thresholds per system and system partitions.

In this example, we extend the CUDA test presented previously, so as to check also the performance of the matrix-
vector multiplication.

32 Chapter 3. Publications

sanity_functions_reference.html
https://docs.python.org/3.6/library/functions.html#all
deferrables.html
deferrables.html
tutorial.html#testing-a-gpu-code

ReFrame Documentation, Release 2.19

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example7Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vector multiplication (CUDA performance test)'
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-gnu', 'PrgEnv-cray', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_cuda.cu'
self.build_system = 'SingleSource'
self.build_system.cxxflags = ['-O3']
self.executable_opts = ['4096', '1000']
self.modules = ['cudatoolkit']
self.num_gpus_per_node = 1
self.sanity_patterns = sn.assert_found(

r'time for single matrix vector multiplication', self.stdout)
self.perf_patterns = {

'perf': sn.extractsingle(r'Performance:\s+(?P<Gflops>\S+) Gflop/s',
self.stdout, 'Gflops', float)

}
self.reference = {

'daint:gpu': {
'perf': (50.0, -0.1, 0.1, 'Gflop/s'),

}
}
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

The are two new variables set in this test that basically enable the performance testing:

perf_patterns This variable defines which are the performance patterns we are looking for and how to extract
the performance values.

reference This variable is a collection of reference values for different systems.

Let’s have a closer look at each of them:

self.perf_patterns = {
'perf': sn.extractsingle(r'Performance:\s+(?P<Gflops>\S+) Gflop/s',

self.stdout, 'Gflops', float)
}

The perf_patterns attribute is a dictionary, whose keys are performance variables (i.e., arbitrary names assigned
to the performance values we are looking for), and its values are sanity expressions that specify how to obtain these
performance values from the output. A sanity expression is a Python expression that uses the result of one or more
sanity functions. In our example, we name the performance value we are looking for simply as perf and we extract its
value by converting to float the regex capturing group named Gflops from the line that was matched in the standard
output.

Each of the performance variables defined in perf_patterns must be resolved in the reference dictionary
of reference values. When the framework obtains a performance value from the output of the test it searches for a
reference value in the reference dictionary, and then it checks whether the user supplied tolerance is respected.
Let’s go over the reference dictionary of our example and explain its syntax in more detail:

self.reference = {
'daint:gpu': {

(continues on next page)

3.4. ReFrame Tutorial 33

ReFrame Documentation, Release 2.19

(continued from previous page)

'perf': (50.0, -0.1, 0.1, 'Gflop/s'),
}

}

This is a special type of dictionary that we call scoped dictionary, because it defines scopes for its
keys. We have already seen it being used in the environments section of the configuration file of Re-
Frame. In order to resolve a reference value for a performance variable, ReFrame creates the following key
<current_sys>:<current_part>:<perf_variable> and looks it up inside the reference dictionary.
If our example, since this test is only allowed to run on the daint:gpu partition of our system, ReFrame will look
for the daint:gpu:perf reference key. The perf subkey will then be searched in the following scopes in this
order: daint:gpu, daint, *. The first occurrence will be used as the reference value of the perf performance
variable. In our example, the perf key will be resolved in the daint:gpu scope giving us the reference value.

Reference values in ReFrame are specified as a three-tuple or four-tuple comprising the reference value, the lower and
upper thresholds and, optionally, the measurement unit. Thresholds are specified as decimal fractions of the reference
value. For nonnegative reference values, the lower threshold must lie in the [-1,0], whereas the upper threshold may
be any positive real number or zero. In our example, the reference value for this test on daint:gpu is 50 Gflop/s
±10%. Setting a threshold value to None disables the threshold. If you specify a measurement unit as well, you will
be able to log it the performance logs of the test; this is handy when you are inspecting or plotting the performance
values.

ReFrame will always add a default * entry in the reference dictionary, if it does not exist, with the reference value
of (0, None, None, <unit>), where unit is derived from the unit of each respective performance variable.
This is useful when using ReFrame for benchmarking purposes and you would like to run a test on an unknown system.

Note: Reference tuples may now optionally contain units.

New in version 2.16.

Note: A default * entry is now always added to the reference dictionary.

New in version 2.19.

3.4.7 Combining It All Together

As we have mentioned before and as you have already experienced with the examples in this tutorial, regression tests
in ReFrame are written in pure Python. As a result, you can leverage the language features and capabilities to organize
better your tests and decrease the maintenance cost. In this example, we are going to reimplement all the tests of the
tutorial with much less code and in a single file. Here is the final example code that combines all the tests discussed
before:

import reframe as rfm
import reframe.utility.sanity as sn

class BaseMatrixVectorTest(rfm.RegressionTest):
def __init__(self, test_version):

self.descr = '%s matrix-vector multiplication' % test_version
self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.build_system = 'SingleSource'

(continues on next page)

34 Chapter 3. Publications

configure.html#environments-configuration

ReFrame Documentation, Release 2.19

(continued from previous page)

self.prgenv_flags = None

matrix_dim = 1024
iterations = 100
self.executable_opts = [str(matrix_dim), str(iterations)]

expected_norm = matrix_dim
found_norm = sn.extractsingle(

r'The L2 norm of the resulting vector is:\s+(?P<norm>\S+)',
self.stdout, 'norm', float)

self.sanity_patterns = sn.all([
sn.assert_found(

r'time for single matrix vector multiplication', self.stdout),
sn.assert_lt(sn.abs(expected_norm - found_norm), 1.0e-6)

])
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

def setup(self, partition, environ, **job_opts):
if self.prgenv_flags is not None:

self.build_system.cflags = self.prgenv_flags[environ.name]

super().setup(partition, environ, **job_opts)

@rfm.simple_test
class SerialTest(BaseMatrixVectorTest):

def __init__(self):
super().__init__('Serial')
self.sourcepath = 'example_matrix_vector_multiplication.c'

@rfm.simple_test
class OpenMPTest(BaseMatrixVectorTest):

def __init__(self):
super().__init__('OpenMP')
self.sourcepath = 'example_matrix_vector_multiplication_openmp.c'
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi']
self.prgenv_flags = {

'PrgEnv-cray': ['-homp'],
'PrgEnv-gnu': ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp']

}
self.variables = {

'OMP_NUM_THREADS': '4'
}

@rfm.simple_test
class MPITest(BaseMatrixVectorTest):

def __init__(self):
super().__init__('MPI')
self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi']
(continues on next page)

3.4. ReFrame Tutorial 35

ReFrame Documentation, Release 2.19

(continued from previous page)

self.sourcepath = 'example_matrix_vector_multiplication_mpi_openmp.c'
self.prgenv_flags = {

'PrgEnv-cray': ['-homp'],
'PrgEnv-gnu': ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp']

}
self.num_tasks = 8
self.num_tasks_per_node = 2
self.num_cpus_per_task = 4
self.variables = {

'OMP_NUM_THREADS': str(self.num_cpus_per_task)
}

@rfm.simple_test
class OpenACCTest(BaseMatrixVectorTest):

def __init__(self):
super().__init__('OpenACC')
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_openacc.c'
self.modules = ['craype-accel-nvidia60']
self.num_gpus_per_node = 1
self.prgenv_flags = {

'PrgEnv-cray': ['-hacc', '-hnoomp'],
'PrgEnv-pgi': ['-acc', '-ta=tesla:cc60']

}

@rfm.simple_test
class CudaTest(BaseMatrixVectorTest):

def __init__(self):
super().__init__('CUDA')
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-gnu', 'PrgEnv-cray', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_cuda.cu'
self.modules = ['cudatoolkit']
self.num_gpus_per_node = 1

This test abstracts away the common functionality found in almost all of our tutorial tests (executable options, sanity
checking, etc.) to a base class, from which all the concrete regression tests derive. Each test then redefines only the
parts that are specific to it. Notice also that only the actual tests, i.e., the derived classes, are made visible to the
framework through the @simple_test decorator. Decorating the base class has now meaning, because it does not
correspond to an actual test.

The total line count of this refactored example is less than half of that of the individual tutorial tests. Another interesting
thing to note here is the base class accepting additional additional parameters to its constructor, so that the concrete
subclasses can initialize it based on their needs.

3.4.8 Summary

This concludes our ReFrame tutorial. We have covered all basic aspects of writing regression tests in ReFrame and
you should now be able to start experimenting by writing your first useful tests. The next section covers further topics
in customizing a regression test to your needs.

36 Chapter 3. Publications

advanced.html

ReFrame Documentation, Release 2.19

3.5 Customizing Further a Regression Test

In this section, we are going to show some more elaborate use cases of ReFrame. Through the use of more advanced ex-
amples, we will demonstrate further customization options which modify the default options of the ReFrame pipeline.
The corresponding scripts as well as the source code of the examples discussed here can be found in the directory
tutorial/advanced.

3.5.1 Working with Makefiles

We have already shown how you can compile a single source file associated with your regression test. In this example,
we show how ReFrame can leverage Makefiles to build executables.

Compiling a regression test through a Makefile is straightforward with ReFrame. If the sourcepath attribute refers
to a directory, then ReFrame will automatically invoke make in that directory. More specifically, ReFrame first
copies the sourcesdir to the stage directory at the beginning of the compilation phase and then constructs the path
os.path.join('{STAGEDIR}', self.sourcepath) to determine the actual compilation path. If this is a
directory, it will invoke make in it.

Note: The sourcepath attribute must be a relative path refering to a subdirectory of sourcesdir, i.e., relative
paths starting with .. will be rejected.

By default, sourcepath is the empty string and sourcesdir is set to 'src/'. As a result, by not specifying a
sourcepath at all, ReFrame will eventually compile the files found in the src/ directory. This is exactly what our
first example here does.

For completeness, here are the contents of Makefile provided:

EXECUTABLE := advanced_example1

.SUFFIXES: .o .c

OBJS := advanced_example1.o

$(EXECUTABLE): $(OBJS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^

$(OBJS): advanced_example1.c
$(CC) $(CPPFLAGS) $(CFLAGS) -c $(LDFLAGS) -o $@ $^

The corresponding advanced_example1.c source file consists of a simple printing of a message, whose content
depends on the preprocessor variable MESSAGE:

#include <stdio.h>

int main(){
#ifdef MESSAGE

char *message = "SUCCESS";
#else

char *message = "FAILURE";
#endif

printf("Setting of preprocessor variable: %s\n", message);
return 0;

}

3.5. Customizing Further a Regression Test 37

ReFrame Documentation, Release 2.19

The purpose of the regression test in this case is to set the preprocessor variable MESSAGE via CPPFLAGS and then
check the standard output for the message SUCCESS, which indicates that the preprocessor flag has been passed and
processed correctly by the Makefile.

The contents of this regression test are the following (tutorial/advanced/advanced_example1.py):

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class MakefileTest(rfm.RegressionTest):

def __init__(self):
self.descr = ('ReFrame tutorial demonstrating the use of Makefiles '

'and compile options')
self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.executable = './advanced_example1'
self.build_system = 'Make'
self.build_system.cppflags = ['-DMESSAGE']
self.sanity_patterns = sn.assert_found('SUCCESS', self.stdout)
self.maintainers = ['put-your-name-here']
self.tags = {'tutorial'}

The important bit here is how we set up the build system for this test:

self.build_system = 'Make'
self.build_system.cppflags = ['-DMESSAGE']

First, we set the build system to Make and then set the preprocessor flags for the compilation. ReFrame will invoke
make as follows:

make -j 1 CC='cc' CXX='CC' FC='ftn' NVCC='nvcc' CPPFLAGS='-DMESSAGE'

The compiler variables (CC, CXX etc.) are set based on the corresponding values specified in the coniguration of the
current environment. You may instruct the build system to ignore the default values from the environment by setting
the following:

self.build_system.flags_from_environ = False

In this case, make will be invoked as follows:

make -j 1 CPPFLAGS='-DMESSAGE'

Notice that the -j 1 option is always generated. You may change the maximum build concurrency as follows:

self.build_system.max_concurrency = 4

By setting max_concurrency to None, no limit for concurrent parallel jobs will be placed. This means that make
-j will be used for building.

Finally, you may also customize the name of the Makefile. You can achieve that by setting the corresponding
variable of the Make build system:

self.build_system.makefile = 'Makefile_custom'

More details on ReFrame’s build systems, you may find here.

38 Chapter 3. Publications

configure.html#environments-configuration
configure.html#environments-configuration
reference.html#build-systems

ReFrame Documentation, Release 2.19

Retrieving the source code from a Git repository

It might be the case that a regression test needs to clone its source code from a remote repository. This can be achieved
in two ways with ReFrame. One way is to set the sourcesdir attribute to None and explicitly clone or checkout a
repository using the prebuild_cmd:

self.sourcesdir = None
self.prebuild_cmd = ['git clone https://github.com/me/myrepo .']

By setting sourcesdir to None, you are telling ReFrame that you are going to provide the source files in the
stage directory. The working directory of the prebuild_cmd and postbuild_cmd commands will be the stage
directory of the test.

An alternative way to retrieve specifically a Git repository is to assign its URL directly to the sourcesdir attribute:

self.sourcesdir = 'https://github.com/me/myrepo'

ReFrame will attempt to clone this repository inside the stage directory by executing git clone <repo> . and
will then procede with the compilation as described above.

Note: ReFrame recognizes only URLs in the sourcesdir attribute and requires passwordless access to the repos-
itory. This means that the SCP-style repository specification will not be accepted. You will have to specify it as URL
using the ssh:// protocol (see Git documentation page).

Add a configuration step before compiling the code

It is often the case that a configuration step is needed before compiling a code with make. To address this kind of
projects, ReFrame aims to offer specific abstractions for “configure-make”-style build systems. It supports CMake-
based projects through the CMake build system, as well as Autotools-based projects through the Autotools build
system.

For other build systems, you can achieve the same effect using the Make build system and the prebuild_cmd for
performing the configuration step. The following code snippet will configure a code with ./custom_configure
before invoking make:

self.prebuild_cmd = ['./custom_configure -with-mylib']
self.build_system = 'Make'
self.build_system.cppflags = ['-DHAVE_FOO']
self.build_system.flags_from_environ = False

The generated build script then will have the following lines:

./custom_configure -with-mylib
make -j 1 CPPFLAGS='-DHAVE_FOO'

3.5.2 Implementing a Run-Only Regression Test

There are cases when it is desirable to perform regression testing for an already built executable. The following test
uses the echo Bash shell command to print a random integer between specific lower and upper bounds. Here is the
full regression test (tutorial/advanced/advanced_example2.py):

3.5. Customizing Further a Regression Test 39

https://git-scm.com/docs/git-clone#_git_urls_a_id_urls_a
https://cmake.org/
https://cmake.org/
https://www.gnu.org/software/automake/

ReFrame Documentation, Release 2.19

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class ExampleRunOnlyTest(rfm.RunOnlyRegressionTest):

def __init__(self):
self.descr = ('ReFrame tutorial demonstrating the class'

'RunOnlyRegressionTest')
self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.sourcesdir = None

lower = 90
upper = 100
self.executable = 'echo "Random: $((RANDOM%({1}+1-{0})+{0}))"'.format(

lower, upper)
self.sanity_patterns = sn.assert_bounded(sn.extractsingle(

r'Random: (?P<number>\S+)', self.stdout, 'number', float),
lower, upper)

self.maintainers = ['put-your-name-here']
self.tags = {'tutorial'}

There is nothing special for this test compared to those presented earlier except that it derives from the
RunOnlyRegressionTest and that it does not contain any resources (self.sourcesdir = None). Note
that run-only regression tests may also have resources, as for instance a precompiled executable or some input data.
The copying of these resources to the stage directory is performed at the beginning of the run phase. For standard
regression tests, this happens at the beginning of the compilation phase, instead. Furthermore, in this particular test the
executable consists only of standard Bash shell commands. For this reason, we can set sourcesdir to None
informing ReFrame that the test does not have any resources.

3.5.3 Implementing a Compile-Only Regression Test

ReFrame provides the option to write compile-only tests which consist only of a compilation phase without a spec-
ified executable. This kind of tests must derive from the CompileOnlyRegressionTest class provided by the
framework. The following example (tutorial/advanced/advanced_example3.py) reuses the code of our
first example in this section and checks that no warnings are issued by the compiler:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class ExampleCompileOnlyTest(rfm.CompileOnlyRegressionTest):

def __init__(self):
self.descr = ('ReFrame tutorial demonstrating the class'

'CompileOnlyRegressionTest')
self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.sanity_patterns = sn.assert_not_found('warning', self.stderr)
self.maintainers = ['put-your-name-here']
self.tags = {'tutorial'}

The important thing to note here is that the standard output and standard error of the tests, accessible through the
stdout and stderr attributes, are now the corresponding those of the compilation command. So sanity checking
can be done in exactly the same way as with a normal test.

40 Chapter 3. Publications

tutorial.html

ReFrame Documentation, Release 2.19

3.5.4 Leveraging Environment Variables

We have already demonstrated in the tutorial that ReFrame allows you to load the required modules for re-
gression tests and also set any needed environment variables. When setting environment variables for your test
through the variables attribute, you can assign them values of other, already defined, environment variables
using the standard notation $OTHER_VARIABLE or ${OTHER_VARIABLE}. The following regression test
(tutorial/advanced/advanced_example4.py) sets the CUDA_HOME environment variable to the value
of the CUDATOOLKIT_HOME and then compiles and runs a simple program:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class EnvironmentVariableTest(rfm.RegressionTest):

def __init__(self):
self.descr = ('ReFrame tutorial demonstrating the use'

'of environment variables provided by loaded modules')
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['*']
self.modules = ['cudatoolkit']
self.variables = {'CUDA_HOME': '$CUDATOOLKIT_HOME'}
self.executable = './advanced_example4'
self.build_system = 'Make'
self.build_system.makefile = 'Makefile_example4'
self.sanity_patterns = sn.assert_found(r'SUCCESS', self.stdout)
self.maintainers = ['put-your-name-here']
self.tags = {'tutorial'}

Before discussing this test in more detail, let’s first have a look in the source code and the Makefile of this example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef CUDA_HOME
define CUDA_HOME ""
#endif

int main() {
char *cuda_home_compile = CUDA_HOME;
char *cuda_home_runtime = getenv("CUDA_HOME");
if (cuda_home_runtime &&

strnlen(cuda_home_runtime, 256) &&
strnlen(cuda_home_compile, 256) &&
!strncmp(cuda_home_compile, cuda_home_runtime, 256)) {
printf("SUCCESS\n");

} else {
printf("FAILURE\n");
printf("Compiled with CUDA_HOME=%s, ran with CUDA_HOME=%s\n",

cuda_home_compile,
cuda_home_runtime ? cuda_home_runtime : "<null>");

}

return 0;
}

This program is pretty basic, but enough to demonstrate the use of environment variables from ReFrame. It simply

3.5. Customizing Further a Regression Test 41

tutorial.html

ReFrame Documentation, Release 2.19

compares the value of the CUDA_HOME macro with the value of the environment variable CUDA_HOME at runtime,
printing SUCCESS if they are not empty and match. The Makefile for this example compiles this source by simply
setting CUDA_HOME to the value of the CUDA_HOME environment variable:

EXECUTABLE := advanced_example4

CPPFLAGS = -DCUDA_HOME=\"$(CUDA_HOME)\"

.SUFFIXES: .o .c

OBJS := advanced_example4.o

$(EXECUTABLE): $(OBJS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^

$(OBJS): advanced_example4.c
$(CC) $(CPPFLAGS) $(CFLAGS) -c $(LDFLAGS) -o $@ $^

clean:
/bin/rm -f $(OBJS) $(EXECUTABLE)

Coming back now to the ReFrame regression test, the CUDATOOLKIT_HOME environment variable is defined by the
cudatoolkit module. If you try to run the test, you will see that it will succeed, meaning that the CUDA_HOME
variable was set correctly both during the compilation and the runtime.

When ReFrame sets up a test, it first loads its required modules and then sets the required environment variables
expanding their values. This has the result that CUDA_HOME takes the correct value in our example at the compilation
time.

At runtime, ReFrame will generate the following instructions in the shell script associated with this test:

module load cudatoolkit
export CUDA_HOME=$CUDATOOLKIT_HOME

This ensures that the environment of the test is also set correctly at runtime.

Finally, as already mentioned previously, since the name of the makefile is not one of the standard ones, it must be set
explicitly in the build system:

self.build_system.makefile = 'Makefile_example4'

3.5.5 Setting a Time Limit for Regression Tests

ReFrame gives you the option to limit the execution time of regression tests. The following example (tutorial/
advanced/advanced_example5.py) demonstrates how you can achieve this by limiting the execution time of
a test that tries to sleep 100 seconds:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class TimeLimitTest(rfm.RunOnlyRegressionTest):

def __init__(self):
self.descr = ('ReFrame tutorial demonstrating the use'

'of a user-defined time limit')

(continues on next page)

42 Chapter 3. Publications

pipeline.html#the-setup-phase

ReFrame Documentation, Release 2.19

(continued from previous page)

self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['*']
self.time_limit = (0, 1, 0)
self.executable = 'sleep'
self.executable_opts = ['100']
self.sanity_patterns = sn.assert_found(

r'CANCELLED.*DUE TO TIME LIMIT', self.stderr)
self.maintainers = ['put-your-name-here']
self.tags = {'tutorial'}

The important bit here is the following line that sets the time limit for the test to one minute:

self.time_limit = (0, 1, 0)

The time_limit attribute is a three-tuple in the form (HOURS, MINUTES, SECONDS). Time limits are imple-
mented for all the scheduler backends.

The sanity condition for this test verifies that associated job has been canceled due to the time limit (note that this
message is SLURM-specific).

self.sanity_patterns = sn.assert_found(
r'CANCELLED.*DUE TO TIME LIMIT', self.stderr)

3.5.6 Applying a sanity function iteratively

It is often the case that a common sanity pattern has to be applied many times. In this example we will demonstrate
how the above situation can be easily tackled using the sanity functions offered by ReFrame. Specifically, we
would like to execute the following shell script and check that its output is correct:

#!/usr/bin/env bash

if [-z $LOWER]; then
export LOWER=90

fi

if [-z $UPPER]; then
export UPPER=100

fi

for i in {1..100}; do
echo Random: $((RANDOM%($UPPER+1-$LOWER)+$LOWER))

done

The above script simply prints 100 random integers between the limits given by the variables LOWER and UPPER.
In the corresponding regression test we want to check that all the random numbers printed lie between 90 and 100
ensuring that the script executed correctly. Hence, a common sanity check has to be applied to all the printed random
numbers. In ReFrame this can achieved by the use of map sanity function accepting a function and an iterable as
arguments. Through map the given function will be applied to all the members of the iterable object. Note that since
map is a sanity function, its execution will be deferred. The contents of the ReFrame regression test contained in
advanced_example6.py are the following:

import reframe as rfm
import reframe.utility.sanity as sn

(continues on next page)

3.5. Customizing Further a Regression Test 43

ReFrame Documentation, Release 2.19

(continued from previous page)

@rfm.simple_test
class DeferredIterationTest(rfm.RunOnlyRegressionTest):

def __init__(self):
self.descr = ('ReFrame tutorial demonstrating the use of deferred '

'iteration via the `map` sanity function.')
self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.executable = './random_numbers.sh'
numbers = sn.extractall(

r'Random: (?P<number>\S+)', self.stdout, 'number', float)
self.sanity_patterns = sn.and_(

sn.assert_eq(sn.count(numbers), 100),
sn.all(sn.map(lambda x: sn.assert_bounded(x, 90, 100), numbers)))

self.maintainers = ['put-your-name-here']
self.tags = {'tutorial'}

First the random numbers are extracted through the extractall function as follows:

numbers = sn.extractall(
r'Random: (?P<number>\S+)', self.stdout, 'number', float)

The numbers variable is a deferred iterable, which upon evaluation will return all the extracted numbers. In order to
check that the extracted numbers lie within the specified limits, we make use of the map sanity function, which will
apply the assert_bounded to all the elements of numbers. Additionally, our requirement is that all the numbers
satisfy the above constraint and we therefore use all.

There is still a small complication that needs to be addressed. The all function returns True for empty iterables,
which is not what we want. So we must ensure that all the numbers are extracted as well. To achieve this, we make
use of count to get the number of elements contained in numbers combined with assert_eq to check that the
number is indeed 100. Finally, both of the above conditions have to be satisfied for the program execution to be
considered successful, hence the use of the and_ function. Note that the and operator is not deferrable and will
trigger the evaluation of any deferrable argument passed to it.

The full syntax for the sanity_patterns is the following:

self.sanity_patterns = sn.and_(
sn.assert_eq(sn.count(numbers), 100),
sn.all(sn.map(lambda x: sn.assert_bounded(x, 90, 100), numbers)))

3.5.7 Customizing the Generated Job Script

It is often the case that you must run some commands before and/or after the parallel launch of your executable. This
can be easily achieved by using the pre_run and post_run attributes of RegressionTest.

The following example is a slightly modified version of the previous one. The lower and upper limits for the random
numbers are now set inside a helper shell script in scripts/limits.sh and we want also to print the word
FINISHED after our executable has finished. In order to achieve this, we need to source the helper script just before
launching the executable and echo the desired message just after it finishes. Here is the test file:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
(continues on next page)

44 Chapter 3. Publications

ReFrame Documentation, Release 2.19

(continued from previous page)

class PrerunDemoTest(rfm.RunOnlyRegressionTest):
def __init__(self):

self.descr = ('ReFrame tutorial demonstrating the use of '
'pre- and post-run commands')

self.valid_systems = ['*']
self.valid_prog_environs = ['*']
self.pre_run = ['source scripts/limits.sh']
self.post_run = ['echo FINISHED']
self.executable = './random_numbers.sh'
numbers = sn.extractall(

r'Random: (?P<number>\S+)', self.stdout, 'number', float)
self.sanity_patterns = sn.all([

sn.assert_eq(sn.count(numbers), 100),
sn.all(sn.map(lambda x: sn.assert_bounded(x, 50, 80), numbers)),
sn.assert_found('FINISHED', self.stdout)

])
self.maintainers = ['put-your-name-here']
self.tags = {'tutorial'}

Notice the use of the pre_run and post_run attributes. These are list of shell commands that are emitted verbatim
in the job script. The generated job script for this example is the following:

#!/bin/bash -l
#SBATCH --job-name="prerun_demo_check_daint_gpu_PrgEnv-gnu"
#SBATCH --time=0:10:0
#SBATCH --ntasks=1
#SBATCH --output=prerun_demo_check.out
#SBATCH --error=prerun_demo_check.err
#SBATCH --constraint=gpu
module load daint-gpu
module unload PrgEnv-cray
module load PrgEnv-gnu
source scripts/limits.sh
srun ./random_numbers.sh
echo FINISHED

ReFrame generates the job shell script using the following pattern:

#!/bin/bash -l
{job_scheduler_preamble}
{test_environment}
{pre_run}
{parallel_launcher} {executable} {executable_opts}
{post_run}

The job_scheduler_preamble contains the directives that control the job allocation. The
test_environment are the necessary commands for setting up the environment of the test. This is the
place where the modules and environment variables specified in modules and variables attributes are emitted.
Then the commands specified in pre_run follow, while those specified in the post_run come after the launch of
the parallel job. The parallel launch itself consists of three parts:

1. The parallel launcher program (e.g., srun, mpirun etc.) with its options,

2. the regression test executable as specified in the executable attribute and

3. the options to be passed to the executable as specified in the executable_opts attribute.

A key thing to note about the generated job script is that ReFrame submits it from the stage directory of the test, so

3.5. Customizing Further a Regression Test 45

ReFrame Documentation, Release 2.19

that all relative paths are resolved against it.

3.5.8 Working with parameterized tests

New in version 2.13.

We have seen already in the basic tutorial how we could better organize the tests so as to avoid code duplication by
using test class hierarchies. An alternative technique, which could also be used in parallel with the class hierarchies,
is to use parameterized tests. The following is a test that takes a variant parameter, which controls which variant
of the code will be used. Depending on that value, the test is set up differently:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.parameterized_test(['MPI'], ['OpenMP'])
class MatrixVectorTest(rfm.RegressionTest):

def __init__(self, variant):
self.descr = 'Matrix-vector multiplication test (%s)' % variant
self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi']
self.build_system = 'SingleSource'
self.prgenv_flags = {

'PrgEnv-cray': ['-homp'],
'PrgEnv-gnu': ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp']

}

if variant == 'MPI':
self.num_tasks = 8
self.num_tasks_per_node = 2
self.num_cpus_per_task = 4
self.sourcepath = 'example_matrix_vector_multiplication_mpi_openmp.c'

elif variant == 'OpenMP':
self.sourcepath = 'example_matrix_vector_multiplication_openmp.c'
self.num_cpus_per_task = 4

self.variables = {
'OMP_NUM_THREADS': str(self.num_cpus_per_task)

}
matrix_dim = 1024
iterations = 100
self.executable_opts = [str(matrix_dim), str(iterations)]

expected_norm = matrix_dim
found_norm = sn.extractsingle(

r'The L2 norm of the resulting vector is:\s+(?P<norm>\S+)',
self.stdout, 'norm', float)

self.sanity_patterns = sn.all([
sn.assert_found(

r'time for single matrix vector multiplication', self.stdout),
sn.assert_lt(sn.abs(expected_norm - found_norm), 1.0e-6)

])
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

(continues on next page)

46 Chapter 3. Publications

tutorial.html#combining-it-all-together

ReFrame Documentation, Release 2.19

(continued from previous page)

def setup(self, partition, environ, **job_opts):
if self.prgenv_flags is not None:

self.build_system.cflags = self.prgenv_flags[environ.name]

super().setup(partition, environ, **job_opts)

If you have already gone through the tutorial, this test can be easily understood. The new bit here is the
@parameterized_test decorator of the MatrixVectorTest class. This decorator takes an arbitrary num-
ber of arguments, which are either of a sequence type (i.e., list, tuple etc.) or of a mapping type (i.e., dictionary).
Each of the decorator’s arguments corresponds to the constructor arguments of the decorated test that will be used to
instantiate it. In the example shown, the test will be instantiated twice, once passing variant as MPI and a second
time with variant passed as OpenMP. The framework will try to generate unique names for the generated tests by
stringifying the arguments passed to the test’s constructor:

Command line: ./bin/reframe -C tutorial/config/settings.py -c tutorial/advanced/
→˓advanced_example8.py -l
Reframe version: 2.15-dev1
Launched by user: XXX
Launched on host: daint101
Reframe paths
=============

Check prefix :
Check search path : 'tutorial/advanced/advanced_example8.py'
Stage dir prefix : current/working/dir/reframe/stage/
Output dir prefix : current/working/dir/reframe/output/
Logging dir : current/working/dir/reframe/logs

List of matched checks
======================

* MatrixVectorTest_MPI (Matrix-vector multiplication test (MPI))

* MatrixVectorTest_OpenMP (Matrix-vector multiplication test (OpenMP))
Found 2 check(s).

There are a couple of different ways that we could have used the @parameterized_test decorator. One is to use
dictionaries for specifying the instantiations of our test class. The dictionaries will be converted to keyword arguments
and passed to the constructor of the test class:

@rfm.parameterized_test({'variant': 'MPI'}, {'variant': 'OpenMP'})

Another way, which is quite useful if you want to generate lots of different tests at the same time, is to use either list
comprehensions or generator expressions for specifying the different test instantiations:

@rfm.parameterized_test(*([variant] for variant in ['MPI', 'OpenMP']))

Note: In versions of the framework prior to 2.13, this could be achieved by explicitly instantiating your tests inside
the _get_checks() method.

Tip: Combining parameterized tests and test class hierarchies can offer you a very flexible way for generating multiple
related tests at once keeping at the same time the maintenance cost low. We use this technique extensively in our tests.

3.5. Customizing Further a Regression Test 47

tutorial.html
https://docs.python.org/3.6/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3.6/tutorial/datastructures.html#list-comprehensions
https://www.python.org/dev/peps/pep-0289/

ReFrame Documentation, Release 2.19

3.5.9 Flexible Regression Tests

New in version 2.15.

ReFrame can automatically set the number of tasks of a particular test, if its num_tasks attribute is set to <=0. In
ReFrame’s terminology, such tests are called flexible. Negative values indicate the minimum number of tasks that is
acceptable for this test (a value of -4 indicates a minimum acceptable number of 4 tasks). A zero value indicates the
default minimum number of tasks which is equal to num_tasks_per_node.

By default, ReFrame will spawn such a test on all the idle nodes of the current system partition, but this behavior can
be adjusted from the command-line. Flexible tests are very useful for diagnostics tests, e.g., tests for checking the
health of a whole set nodes. In this example, we demonstrate this feature through a simple test that runs hostname.
The test will verify that all the nodes print the expected host name:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HostnameCheck(rfm.RunOnlyRegressionTest):

def __init__(self):
self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['PrgEnv-cray']
self.executable = 'hostname'
self.sourcesdir = None
self.num_tasks = 0
self.num_tasks_per_node = 1
self.sanity_patterns = sn.assert_eq(

self.num_tasks_assigned,
sn.count(sn.findall(r'nid\d+', self.stdout))

)
self.maintainers = ['you-can-type-your-email-here']
self.tags = {'tutorial'}

@property
@sn.sanity_function
def num_tasks_assigned(self):

return self.job.num_tasks

The first thing to notice in this test is that num_tasks is set to 0. This is a requirement for flexible tests:

self.num_tasks = 0

The sanity function of this test simply counts the host names and verifies that they are as many as expected:

self.sanity_patterns = sn.assert_eq(
self.num_tasks_assigned,
sn.count(sn.findall(r'nid\d+', self.stdout))

)

Notice, however, that the sanity check does not use num_tasks for verification, but rather a different, custom at-
tribute, the num_tasks_assigned. This happens for two reasons:

a. At the time the sanity check expression is created, num_tasks is 0. So the actual number of tasks assigned
must be a deferred expression as well.

b. When ReFrame will determine and set the number of tasks of the test, it will not set the num_tasks attribute
of the RegressionTest. It will only set the corresponding attribute of the associated job instance.

48 Chapter 3. Publications

ReFrame Documentation, Release 2.19

Here is how the new deferred attribute is defined:

@property
@sn.sanity_function
def num_tasks_assigned(self):

return self.job.num_tasks

The behavior of the flexible task allocation is controlled by the --flex-alloc-tasks command line option. See
the corresponding section for more information.

3.6 Understanding the Mechanism of Sanity Functions

This section describes the mechanism behind the sanity functions that are used for the sanity and performance check-
ing. Generally, writing a new sanity function is as straightforward as decorating a simple Python function with either
the sanity_function or the @reframe.core.deferrable.deferrable decorator. However, it is im-
portant to understand how and when a deferrable function is evaluated, especially if your function takes as arguments
the results of other deferrable functions.

3.6.1 What Is a Deferrable Function?

A deferrable function is a function whose a evaluation is deferred to a later point in time. You can define any function
as deferrable by adding the @sanity_funcion or the @deferrable decorator before its definition. The example
below demonstrates a simple scenario:

import reframe.utility.sanity as sn

@sn.sanity_function
def foo():

print('hello')

If you try to call foo(), its code will not execute:

>>> foo()
<reframe.core.deferrable._DeferredExpression object at 0x2b70fff23550>

Instead, a special object is returned that represents the function whose execution is deferred. Notice the more general
deferred expression name of this object. We shall see later on why this name is used.

In order to explicitly trigger the execution of foo(), you have to call evaluate on it:

>>> from reframe.core.deferrable import evaluate
>>> evaluate(foo())
hello

If the argument passed to evaluate is not a deferred expression, it will be simply returned as is.

Deferrable functions may also be combined as we do with normal functions. Let’s extend our example with foo()
accepting an argument and printing it:

import reframe.utility.sanity as sn

@sn.sanity_function
def foo(arg):

print(arg)
(continues on next page)

3.6. Understanding the Mechanism of Sanity Functions 49

running.html#controlling-the-flexible-task-allocation

ReFrame Documentation, Release 2.19

(continued from previous page)

@sn.sanity_function
def greetings():

return 'hello'

If we now do foo(greetings()), again nothing will be evaluated:

>>> foo(greetings())
<reframe.core.deferrable._DeferredExpression object at 0x2b7100e9e978>

If we trigger the evaluation of foo() as before, we will get expected result:

>>> evaluate(foo(greetings()))
hello

Notice how the evaluation mechanism goes down the function call graph and returns the expected result. An alternative
way to evaluate this expression would be the following:

>>> x = foo(greetings())
>>> x.evaluate()
hello

As you may have noticed, you can assign a deferred function to a variable and evaluate it later. You may also do
evaluate(x), which is equivalent to x.evaluate().

To demonstrate more clearly how the deferred evaluation of a function works, let’s consider the following size3()
deferrable function that simply checks whether an iterable passed as argument has three elements inside it:

@sn.sanity_function
def size3(iterable):

return len(iterable) == 3

Now let’s assume the following example:

>>> l = [1, 2]
>>> x = size3(l)
>>> evaluate(x)
False
>>> l += [3]
>>> evaluate(x)
True

We first call size3() and store its result in x. As expected when we evaluate x, False is returned, since at the time
of the evaluation our list has two elements. We later append an element to our list and reevaluate x and we get True,
since at this point the list has three elements.

Note: Deferred functions and expressions may be stored and (re)evaluated at any later point in the program.

An important thing to point out here is that deferrable functions capture their arguments at the point they are called.
If you change the binding of a variable name (either explicitly or implicitly by applying an operator to an immutable
object), this change will not be reflected when you evaluate the deferred function. The function instead will operate
on its captured arguments. We will demonstrate this by replacing the list in the above example with a tuple:

50 Chapter 3. Publications

ReFrame Documentation, Release 2.19

>>> l = (1, 2)
>>> x = size3(l)
>>> l += (3,)
>>> l
(1, 2, 3)
>>> evaluate(x)
False

Why this is happening? This is because tuples are immutable so when we are doing l += (3,) to append to our
tuple, Python constructs a new tuple and rebinds l to the newly created tuple that has three elements. However, when
we called our deferrable function, l was pointing to a different tuple object, and that was the actual tuple argument
that our deferrable function has captured.

The following augmented example demonstrates this:

>>> l = (1, 2)
>>> x = size3(l)
>>> l += (3,)
>>> l
(1, 2, 3)
>>> evaluate(x)
False
>>> l = (1, 2)
>>> id(l)
47764346657160
>>> x = size3(l)
>>> l += (3,)
>>> id(l)
47764330582232
>>> l
(1, 2, 3)
>>> evaluate(x)
False

Notice the different IDs of l before and after the += operation. This a key trait of deferrable functions and expressions
that you should be aware of.

3.6.2 Deferred expressions

You might be still wondering why the internal name of a deferred function refers to the more general term deferred
expression. Here is why:

>>> @sn.sanity_function
... def size(iterable):
... return len(iterable)
...
>>> l = [1, 2]
>>> x = 2*(size(l) + 3)
>>> x
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f4e940>
>>> evaluate(x)
10

As you can see, you can use the result of a deferred function inside arithmetic operations. The result will be another
deferred expression that you can evaluate later. You can practically use any Python builtin operator or builtin function

3.6. Understanding the Mechanism of Sanity Functions 51

ReFrame Documentation, Release 2.19

with a deferred expression and the result will be another deferred expression. This is quite a powerful mechanism,
since with the standard syntax you can create arbitrary expressions that may be evaluated later in your program.

There are some exceptions to this rule, though. The logical and, or and not operators as well as the in operator
cannot be deferred automatically. These operators try to take the truthy value of their arguments by calling bool on
them. As we shall see later, applying the bool function on a deferred expression causes its immediate evaluation
and returns the result. If you want to defer the execution of such operators, you should use the corresponding and_,
or_, not_ and contains functions in reframe.utility.sanity , which basically wrap the expression in a
deferrable function.

In summary deferrable functions have the following characteristics:

• You can make any function deferrable by preceding it with the @sanity_function or the @deferrable
decorator.

• When you call a deferrable function, its body is not executed but its arguments are captured and an object
representing the deferred function is returned.

• You can execute the body of a deferrable function at any later point by calling evaluate on the deferred
expression object that it has been returned by the call to the deferred function.

• Deferred functions can accept other deferred expressions as arguments and may also return a deferred expres-
sion.

• When you evaluate a deferrable function, any other deferrable function down the call tree will also be evaluated.

• You can include a call to a deferrable function in any Python expression and the result will be another deferred
expression.

3.6.3 How a Deferred Expression Is Evaluated?

As discussed before, you can create a new deferred expression by calling a function whose definition is decorated by
the @sanity_function or @deferrable decorator or by including an already deferred expression in any sort
of arithmetic operation. When you call evaluate on a deferred expression, you trigger the evaluation of the whole
subexpression tree. Here is how the evaluation process evolves:

A deferred expression object is merely a placeholder of the target function and its arguments at the moment you call
it. Deferred expressions leverage also the Python’s data model so as to capture all the binary and unary operators
supported by the language. When you call evaluate() on a deferred expression object, the stored function will be
called passing it the captured arguments. If any of the arguments is a deferred expression, it will be evaluated too. If
the return value of the deferred expression is also a deferred expression, it will be evaluated as well.

This last property lets you call other deferrable functions from inside a deferrable function. Here is an example where
we define two deferrable variations of the builtins sum and len and another deferrable function avg() that computes
the average value of the elements of an iterable by calling our deferred builtin alternatives.

@sn.sanity_function
def dsum(iterable):

return sum(iterable)

@sn.sanity_function
def dlen(iterable):

return len(iterable)

@sn.sanity_function
def avg(iterable):

return dsum(iterable) / dlen(iterable)

If you try to evaluate avg() with a list, you will get the expected result:

52 Chapter 3. Publications

https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/library/functions.html#len

ReFrame Documentation, Release 2.19

>>> avg([1, 2, 3, 4])
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f54b70>
>>> evaluate(avg([1, 2, 3, 4]))
2.5

The return value of evaluate(avg()) would normally be a deferred expression representing the division of the
results of the other two deferrable functions. However, the evaluation mechanism detects that the return value is a
deferred expression and it automatically triggers its evaluation, yielding the expected result. The following figure
shows how the evaluation evolves for this particular example:

Fig. 2: Sequence diagram of the evaluation of the deferrable avg() function.

3.6.4 Implicit evaluation of a deferred expression

Although you can trigger the evaluation of a deferred expression at any time by calling evaluate, there are some
cases where the evaluation is triggered implicitly:

• When you try to get the truthy value of a deferred expression by calling bool on it. This happens for example
when you include a deferred expression in an if statement or as an argument to the and, or, not and in
(__contains__) operators. The following example demonstrates this behavior:

>>> if avg([1, 2, 3, 4]) > 2:
... print('hello')
...
hello

The expression avg([1, 2, 3, 4]) > 2 is a deferred expression, but its evaluation is triggered from the
Python interpreter by calling the bool()method on it, in order to evaluate the if statement. A similar example
is the following that demonstrates the behaviour of the in operator:

>>> from reframe.core.deferrable import make_deferrable
>>> l = make_deferrable([1, 2, 3])
>>> l
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f54cf8>
>>> evaluate(l)
[1, 2, 3]
>>> 4 in l
False
>>> 3 in l
True

The make_deferrable is simply a deferrable version of the identity function (a function that simply returns
its argument). As expected, l is a deferred expression that evaluates to the [1, 2, 3] list. When we apply
the in operator, the deferred expression is immediately evaluated.

Note: Python expands this expression into bool(l.__contains__(3)). Although __contains__ is
also defined as a deferrable function in _DeferredExpression, its evaluation is triggered by the bool
builtin.

• When you try to iterate over a deferred expression by calling the iter function on it. This call happens
implicitly by the Python interpreter when you try to iterate over a container. Here is an example:

3.6. Understanding the Mechanism of Sanity Functions 53

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/library/functions.html#iter

ReFrame Documentation, Release 2.19

>>> @sn.sanity_function
... def getlist(iterable):
... ret = list(iterable)
... ret += [1, 2, 3]
... return ret
>>> getlist([1, 2, 3])
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f54dd8>
>>> for x in getlist([1, 2, 3]):
... print(x)
...
1
2
3
1
2
3

Simply calling getlist() will not execute anything and a deferred expression object will be returned. How-
ever, when you try to iterate over the result of this call, then the deferred expression will be evaluated immedi-
ately.

• When you try to call str on a deferred expression. This will be called by the Python interpreter every time you
try to print this expression. Here is an example with the getlist deferrable function:

>>> print(getlist([1, 2, 3]))
[1, 2, 3, 1, 2, 3]

3.6.5 How to Write a Deferrable Function?

The answer is simple: like you would with any other normal function! We’ve done that already in all the examples
we’ve shown in this documentation. A question that somehow naturally comes up here is whether you can call a
deferrable function from within a deferrable function, since this doesn’t make a lot of sense: after all, your function
will be deferred anyway.

The answer is, yes. You can call other deferrable functions from within a deferrable function. Thanks to the implicit
evaluation rules as well as the fact that the return value of a deferrable function is also evaluated if it is a deferred ex-
pression, you can write a deferrable function without caring much about whether the functions you call are themselves
deferrable or not. However, you should be aware of passing mutable objects to deferrable functions. If these objects
happen to change between the actual call and the implicit evaluation of the deferrable function, you might run into
surprises. In any case, if you want the immediate evaluation of a deferrable function or expression, you can always do
that by calling evaluate on it.

The following example demonstrates two different ways writing a deferrable function that checks the average of the
elements of an iterable:

import reframe.utility.sanity as sn

@sn.sanity_function
def check_avg_with_deferrables(iterable):

avg = sn.sum(iterable) / sn.len(iterable)
return -1 if avg > 2 else 1

@sn.sanity_function
def check_avg_without_deferrables(iterable):

avg = sum(iterable) / len(iterable)
return -1 if avg > 2 else 1

54 Chapter 3. Publications

ReFrame Documentation, Release 2.19

>>> evaluate(check_avg_with_deferrables([1, 2, 3, 4]))
-1
>>> evaluate(check_avg_without_deferrables([1, 2, 3, 4]))
-1

The first version uses the sum and len functions from reframe.utility.sanity , which are deferrable versions
of the corresponding builtins. The second version uses directly the builtin sum and len functions. As you can see,
both of them behave in exactly the same way. In the version with the deferrables, avg is a deferred expression but it
is evaluated by the if statement before returning.

Generally, inside a sanity function, it is a preferable to use the non-deferrable version of a function, if that exists, since
you avoid the extra overhead and bookkeeping of the deferring mechanism.

3.6.6 Deferrable Sanity Functions

Normally, you will not have to implement your own sanity functions, since ReFrame provides already a variety of
them. You can find the complete list of provided sanity functions here.

Similarities and Differences with Generators

Python allows you to create functions that will be evaluated lazily. These are called generator functions. Their key
characteristic is that instead of using the return keyword to return values, they use the yield keyword. I’m not
going to go into the details of the generators, since there is plenty of documentation out there, so I will focus on the
similarities and differences with our deferrable functions.

Similarities

• Both generators and our deferrables return an object representing the deferred expression when you call them.

• Both generators and deferrables may be evaluated explicitly or implicitly when they appear in certain expres-
sions.

• When you try to iterate over a generator or a deferrable, you trigger its evaluation.

Differences

• You can include deferrables in any arithmetic expression and the result will be another deferrable expression.
This is not true with generator functions, which will raise a TypeError in such cases or they will always
evaluate to False if you include them in boolean expressions Here is an example demonstrating this:

>>> @sn.sanity_function
... def dsize(iterable):
... print(len(iterable))
... return len(iterable)
...
>>> def gsize(iterable):
... print(len(iterable))
... yield len(iterable)
...
>>> l = [1, 2]
>>> dsize(l)
<reframe.core.deferrable._DeferredExpression object at 0x2abc630abb38>
>>> gsize(l)

(continues on next page)

3.6. Understanding the Mechanism of Sanity Functions 55

https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/reference/compound_stmts.html#if
sanity_functions_reference.html
https://wiki.python.org/moin/Generators
https://docs.python.org/3/reference/simple_stmts.html#return
https://docs.python.org/3/reference/simple_stmts.html#yield
https://docs.python.org/3/library/exceptions.html#TypeError

ReFrame Documentation, Release 2.19

(continued from previous page)

<generator object gsize at 0x2abc62a4bf10>
>>> expr = gsize(l) == 2
>>> expr
False
>>> expr = gsize(l) + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'generator' and 'int'
>>> expr = dsize(l) == 2
>>> expr
<reframe.core.deferrable._DeferredExpression object at 0x2abc630abba8>
>>> expr = dsize(l) + 2
>>> expr
<reframe.core.deferrable._DeferredExpression object at 0x2abc630abc18>

Notice that you cannot include generators in expressions, whereas you can generate arbitrary expressions with de-
ferrables.

• Generators are iterator objects, while deferred expressions are not. As a result, you can trigger the evaluation of
a generator expression using the next builtin function. For a deferred expression you should use evaluate
instead.

• A generator object is iterable, whereas a deferrable object will be iterable if and only if the result of its evaluation
is iterable.

Note: Technically, a deferrable object is iterable, too, since it provides the __iter__ method. That’s why
you can include it in iteration expressions. However, it delegates this call to the result of its evaluation.

Here is an example demonstrating this difference:

>>> for i in gsize(l): print(i)
...
2
2
>>> for i in dsize(l): print(i)
...
2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/users/karakasv/Devel/reframe/reframe/core/deferrable.py", line 73, in __

→˓iter__
return iter(self.evaluate())

TypeError: 'int' object is not iterable

Notice how the iteration works fine with the generator object, whereas with the deferrable function, the iteration
call is delegated to the result of the evaluation, which is not an iterable, therefore yielding TypeError. Notice
also, the printout of 2 in the iteration over the deferrable expression, which shows that it has been evaluated.

3.7 Running ReFrame

Before getting into any details, the simplest way to invoke ReFrame is the following:

./bin/reframe -c /path/to/checks -R --run

56 Chapter 3. Publications

https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/exceptions.html#TypeError

ReFrame Documentation, Release 2.19

This will search recursively for test files in /path/to/checks and will start running them on the current system.

ReFrame’s front-end goes through three phases:

1. Load tests

2. Filter tests

3. Act on tests

In the following, we will elaborate on these phases and the key command-line options controlling them. A detailed
listing of all the command-line options grouped by phase is given by ./bin/reframe -h.

3.7.1 Supported Actions

Even though an action is the last phase that the front-end goes through, we are listing it first since an action is always
required. Currently there are only two available actions:

1. Listing of the selected checks

2. Execution of the selected checks

Listing of the regression tests

To retrieve a listing of the selected checks, you must specify the -l or --list options. This will provide a list with a
brief description for each test containing only its name and the path to the file where it is defined. An example listing
of checks is the following that lists all the tests found under the tutorial/ folder:

./bin/reframe -c tutorial -l

The output looks like:

Command line: ./bin/reframe -c tutorial/ -l
Reframe version: 2.15-dev1
Launched by user: USER
Launched on host: daint103
Reframe paths
=============

Check prefix :
Check search path : 'tutorial/'
Stage dir prefix : /path/to/reframe/stage/
Output dir prefix : /path/to/reframe/output/
Logging dir : /path/to/reframe/logs

List of matched checks
======================

* Example5Test (found in /path/to/reframe/tutorial/example5.py)

* Example1Test (found in /path/to/reframe/tutorial/example1.py)

* Example4Test (found in /path/to/reframe/tutorial/example4.py)

* SerialTest (found in /path/to/reframe/tutorial/example8.py)

* OpenMPTest (found in /path/to/reframe/tutorial/example8.py)

* MPITest (found in /path/to/reframe/tutorial/example8.py)

* OpenACCTest (found in /path/to/reframe/tutorial/example8.py)

* CudaTest (found in /path/to/reframe/tutorial/example8.py)

* Example3Test (found in /path/to/reframe/tutorial/example3.py)

* Example7Test (found in /path/to/reframe/tutorial/example7.py)

* Example6Test (found in /path/to/reframe/tutorial/example6.py)

* Example2aTest (found in /path/to/reframe/tutorial/example2.py)

(continues on next page)

3.7. Running ReFrame 57

ReFrame Documentation, Release 2.19

(continued from previous page)

* Example2bTest (found in /path/to/reframe/tutorial/example2.py)
Found 13 check(s).

You may also retrieve a listing with detailed information about the each check using the option -L or
--list-detailed. The following example lists detailed information about the tutorial check:

Command line: ./bin/reframe -c tutorial/ -L
Reframe version: 2.18-dev2
Launched by user: USER
Launched on host: daint103
Reframe paths
=============

Check prefix :
Check search path : 'tutorial/'
Stage dir prefix : /path/to/reframe/stage/
Output dir prefix : /path/to/reframe/output/
Logging dir : /path/to/reframe/logs

List of matched checks
======================

* Example5Test (found in /path/to/reframe/tutorial/example5.py)
- description: Matrix-vector multiplication example with CUDA
- systems: daint:gpu
- environments: PrgEnv-cray, PrgEnv-gnu, PrgEnv-pgi
- modules: cudatoolkit
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* Example1Test (found in /path/to/reframe/tutorial/example1.py)
- description: Simple matrix-vector multiplication example
- systems: *
- environments: *
- modules:
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* Example4Test (found in /path/to/reframe/tutorial/example4.py)
- description: Matrix-vector multiplication example with OpenACC
- systems: daint:gpu
- environments: PrgEnv-cray, PrgEnv-pgi
- modules: craype-accel-nvidia60
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* SerialTest (found in /path/to/reframe/tutorial/example8.py)
- description: Serial matrix-vector multiplication
- systems: *
- environments: *
- modules:
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* OpenMPTest (found in /path/to/reframe/tutorial/example8.py)
- description: OpenMP matrix-vector multiplication
- systems: *
- environments: PrgEnv-cray, PrgEnv-gnu, PrgEnv-intel, PrgEnv-pgi
- modules:

(continues on next page)

58 Chapter 3. Publications

ReFrame Documentation, Release 2.19

(continued from previous page)

- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* MPITest (found in /path/to/reframe/tutorial/example8.py)
- description: MPI matrix-vector multiplication
- systems: daint:gpu, daint:mc
- environments: PrgEnv-cray, PrgEnv-gnu, PrgEnv-intel, PrgEnv-pgi
- modules:
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* OpenACCTest (found in /path/to/reframe/tutorial/example8.py)
- description: OpenACC matrix-vector multiplication
- systems: daint:gpu
- environments: PrgEnv-cray, PrgEnv-pgi
- modules: craype-accel-nvidia60
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* CudaTest (found in /path/to/reframe/tutorial/example8.py)
- description: CUDA matrix-vector multiplication
- systems: daint:gpu
- environments: PrgEnv-gnu, PrgEnv-cray, PrgEnv-pgi
- modules: cudatoolkit
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* Example3Test (found in /path/to/reframe/tutorial/example3.py)
- description: Matrix-vector multiplication example with MPI
- systems: daint:gpu, daint:mc
- environments: PrgEnv-cray, PrgEnv-gnu, PrgEnv-intel, PrgEnv-pgi
- modules:
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* Example7Test (found in /path/to/reframe/tutorial/example7.py)
- description: Matrix-vector multiplication (CUDA performance test)
- systems: daint:gpu
- environments: PrgEnv-gnu, PrgEnv-cray, PrgEnv-pgi
- modules: cudatoolkit
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* Example6Test (found in /path/to/reframe/tutorial/example6.py)
- description: Matrix-vector multiplication with L2 norm check
- systems: *
- environments: *
- modules:
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

* Example2aTest (found in /path/to/reframe/tutorial/example2.py)
- description: Matrix-vector multiplication example with OpenMP
- systems: *
- environments: PrgEnv-cray, PrgEnv-gnu, PrgEnv-intel, PrgEnv-pgi
- modules:
- task allocation: standard

(continues on next page)

3.7. Running ReFrame 59

ReFrame Documentation, Release 2.19

(continued from previous page)

- tags: tutorial
- maintainers: you-can-type-your-email-here

* Example2bTest (found in /path/to/reframe/tutorial/example2.py)
- description: Matrix-vector multiplication example with OpenMP
- systems: *
- environments: PrgEnv-cray, PrgEnv-gnu, PrgEnv-intel, PrgEnv-pgi
- modules:
- task allocation: standard
- tags: tutorial
- maintainers: you-can-type-your-email-here

Found 13 check(s).

The detailed listing shows the description of the test, its supported systems and programming environments (* stands
for any system or programming environment), the environment modules that it loads, its tags and its maintainers.

Warning: The list of modules showed in the detailed listing may not correspond to actual modules loaded by test,
if the test customizes its behavior during the setup stage.

Note: New in version 2.15: Support for detailed listings. Standard listing using the -l option is now shorter.

Note: Changed in version 2.15: Test listing lists only tests supported by the current system. Previous versions were
showing all the tests found.

Execution of the regression tests

To run the regression tests you should specify the run action though the -r or --run options.

Note: The listing action takes precedence over the execution, meaning that if you specify both -l -r, only the
listing action will be performed.

./reframe.py -C tutorial/config/settings.py -c tutorial/example1.py -r

The output of the regression run looks like the following:

Command line: ./reframe.py -C tutorial/config/settings.py -c tutorial/example1.py -r
Reframe version: 2.13-dev0
Launched by user: USER
Launched on host: daint103
Reframe paths
=============

Check prefix :
Check search path : 'tutorial/example1.py'
Stage dir prefix : /path/to/reframe/stage/
Output dir prefix : /path/to/reframe/output/
Logging dir : /path/to/reframe/logs

[==========] Running 1 check(s)
[==========] Started on Sat May 26 00:34:34 2018

(continues on next page)

60 Chapter 3. Publications

ReFrame Documentation, Release 2.19

(continued from previous page)

[----------] started processing Example1Test (Simple matrix-vector multiplication
→˓example)
[RUN] Example1Test on daint:login using PrgEnv-cray
[OK] Example1Test on daint:login using PrgEnv-cray
[RUN] Example1Test on daint:login using PrgEnv-gnu
[OK] Example1Test on daint:login using PrgEnv-gnu
[RUN] Example1Test on daint:login using PrgEnv-intel
[OK] Example1Test on daint:login using PrgEnv-intel
[RUN] Example1Test on daint:login using PrgEnv-pgi
[OK] Example1Test on daint:login using PrgEnv-pgi
[RUN] Example1Test on daint:gpu using PrgEnv-cray
[OK] Example1Test on daint:gpu using PrgEnv-cray
[RUN] Example1Test on daint:gpu using PrgEnv-gnu
[OK] Example1Test on daint:gpu using PrgEnv-gnu
[RUN] Example1Test on daint:gpu using PrgEnv-intel
[OK] Example1Test on daint:gpu using PrgEnv-intel
[RUN] Example1Test on daint:gpu using PrgEnv-pgi
[OK] Example1Test on daint:gpu using PrgEnv-pgi
[RUN] Example1Test on daint:mc using PrgEnv-cray
[OK] Example1Test on daint:mc using PrgEnv-cray
[RUN] Example1Test on daint:mc using PrgEnv-gnu
[OK] Example1Test on daint:mc using PrgEnv-gnu
[RUN] Example1Test on daint:mc using PrgEnv-intel
[OK] Example1Test on daint:mc using PrgEnv-intel
[RUN] Example1Test on daint:mc using PrgEnv-pgi
[OK] Example1Test on daint:mc using PrgEnv-pgi
[----------] finished processing Example1Test (Simple matrix-vector multiplication
→˓example)

[PASSED] Ran 12 test case(s) from 1 check(s) (0 failure(s))
[==========] Finished on Sat May 26 00:35:39 2018

3.7.2 Discovery of Regression Tests

When ReFrame is invoked, it tries to locate regression tests in a predefined path. By default, this path is the
<reframe-install-dir>/checks. You can also retrieve this path as follows:

./bin/reframe -l | grep 'Check search path'

If the path line is prefixed with (R), every directory in that path will be searched recursively for regression tests.

As described extensively in the “ReFrame Tutorial”, regression tests in ReFrame are essentially Python source files
that provide a special function, which returns the actual regression test instances. A single source file may also provide
multiple regression tests. ReFrame loads the python source files and tries to call this special function; if this function
cannot be found, the source file will be ignored. At the end of this phase, the front-end will have instantiated all the
tests found in the path.

You can override the default search path for tests by specifying the -c or --checkpath options. We have already
done that already when listing all the tutorial tests:

./bin/reframe -c tutorial/ -l

ReFrame the does not search recursively into directories specified with the -c option, unless you explicitly specify
the -R or --recurse options.

3.7. Running ReFrame 61

tutorial.html

ReFrame Documentation, Release 2.19

The -c option completely overrides the default path. Currently, there is no option to prepend or append to the default
regression path. However, you can build your own check path by specifying multiple times the -c option. The
-coption accepts also regular files. This is very useful when you are implementing new regression tests, since it
allows you to run only your test:

./bin/reframe -c /path/to/my/new/test.py -r

Important: The names of the loaded tests must be unique. Trying to load two or more tests with the same name will
produce an error. You may ignore the error by using the --ignore-check-conflicts option. In this case, any
conflicting test will not be loaded and a warning will be issued.

New in version 2.12.

3.7.3 Filtering of Regression Tests

At this phase you can select which regression tests should be run or listed. There are several ways to select regression
tests, which we describe in more detail here:

Selecting tests by system

New in version 2.15.

By default, ReFrame always selects the tests that are supported by the current system. If you want to list the tests
supported by a different system, you may achieve that by passing the --system option:

./bin/reframe --system=kesch -l

This example lists all the tests that are supported by the system named kesch. It is also possible to list only the tests
that are supported by a specific system partition. The following example will list only the tests suported by the login
partition of the kesch system:

./bin/reframe --system=kesch:login -l

Finally, in order to list all the tests found regardless of their supported systems, you should pass the
--skip-system-check option:

./bin/reframe --skip-system-check -l

Selecting tests by programming environment

To select tests by the programming environment, use the -p or --prgenv options:

./bin/reframe -p PrgEnv-gnu -l

This will select all the checks that support the PrgEnv-gnu environment.

You can also specify multiple times the -p option, in which case a test will be selected if it support all the programming
environments specified in the command line. For example the following will select all the checks that can run with
both PrgEnv-cray and PrgEnv-gnu on the current system:

./bin/reframe -p PrgEnv-gnu -p PrgEnv-cray -l

62 Chapter 3. Publications

ReFrame Documentation, Release 2.19

If you are going to run a set of tests selected by programming environment, they will run only for the selected pro-
gramming environment(s).

The -p option accepts also the Python regular expression syntax. In fact, the argument to -p option is treated as a reg-
ular expression always. This means that the -p PrgEnv-gnu will match also tests that support a PrgEnv-gnuXX
environment. If you would like to stricly select tests that support PrgEnv-gnu only and not PrgEnv-gnuXX,
you should write -p PrgEnv-gnu$. As described above multiple -p options are AND-ed. Combining that with
regular expressions can be quite powerful. For example, the following will select all tests that support programming
environment foo and either PrgEnv-gnu or PrgEnv-pgi:

./bin/reframe -p foo -p 'PrgEnv-(gnu|pgi)' -l

Note: New in version 2.17.

The -p option recognizes regular expressions as arguments.

Selecting tests by tags

As we have seen in the “ReFrame tutorial”, every regression test may be associated with a set of tags. Using the -t or
--tag option you can select the regression tests associated with a specific tag. For example the following will list all
the tests that have a maintenance tag and can run on the current system:

./bin/reframe -t maintenance -l

Similarly to the -p option, you can chain multiple -t options together, in which case a regression test will be selected
if it is associated with all the tags specified in the command line. The list of tags associated with a check can be viewed
in the listing output when specifying the -l option.

Note: New in version 2.17.

The -t option recognizes regular expressions as arguments.

Selecting tests by name

It is possible to select or exclude tests by name through the --name or -n and --exclude or -x options. For
example, you can select only the Example7Test from the tutorial as follows:

./bin/reframe -c tutorial/ -n Example7Test -l

Command line: ./bin/reframe -c tutorial/ -n Example7Test -l
Reframe version: 2.15-dev1
Launched by user: USER
Launched on host: daint103
Reframe paths
=============

Check prefix :
Check search path : 'tutorial'
Stage dir prefix : /path/to/reframe/stage/
Output dir prefix : /path/to/reframe/output/
Logging dir : /path/to/reframe/logs

List of matched checks

(continues on next page)

3.7. Running ReFrame 63

https://docs.python.org/3.6/library/re.html#regular-expression-syntax
tutorial.html

ReFrame Documentation, Release 2.19

(continued from previous page)

======================

* Example7Test (found in /path/to/reframe/tutorial/example7.py)
Found 1 check(s).

Similarly, you can exclude this test by passing the -x Example7Test option:

Command line: ./bin/reframe -c tutorial -x Example7Test -l
Reframe version: 2.15-dev1
Launched by user: USER
Launched on host: daint103
Reframe paths
=============

Check prefix :
Check search path : 'tutorial'
Stage dir prefix : /path/to/reframe/stage/
Output dir prefix : /path/to/reframe/output/
Logging dir : /path/to/reframe/logs

List of matched checks
======================

* Example5Test (found in /path/to/reframe/tutorial/example5.py)

* Example1Test (found in /path/to/reframe/tutorial/example1.py)

* Example4Test (found in /path/to/reframe/tutorial/example4.py)

* SerialTest (found in /path/to/reframe/tutorial/example8.py)

* OpenMPTest (found in /path/to/reframe/tutorial/example8.py)

* MPITest (found in /path/to/reframe/tutorial/example8.py)

* OpenACCTest (found in /path/to/reframe/tutorial/example8.py)

* CudaTest (found in /path/to/reframe/tutorial/example8.py)

* Example3Test (found in /path/to/reframe/tutorial/example3.py)

* Example6Test (found in /path/to/reframe/tutorial/example6.py)

* Example2aTest (found in /path/to/reframe/tutorial/example2.py)

* Example2bTest (found in /path/to/reframe/tutorial/example2.py)
Found 12 check(s).

Both -n and -x options can be chained, in which case either the tests that have any of the specified names are selected
or excluded from running. They may also accept regular expressions as arguments.

Note: New in version 2.17: The -n and -x options recognize regular expressions as arguments. Chaining these
options, e.g., -n A -n B, is equivalent to a regular expression that applies OR to the individual arguments, i.e.,
equivalent to -n 'A|B'.

3.7.4 Controlling the Execution of Regression Tests

There are several options for controlling the execution of regression tests. Keep in mind that these options will affect
all the tests that will run with the current invocation. They are summarized below:

• -A ACCOUNT, --account ACCOUNT: Submit regression test jobs using ACCOUNT.

• -P PART, --partition PART: Submit regression test jobs in the scheduler partition PART.

• --reservation RES: Submit regression test jobs in reservation RES.

• --nodelist NODELIST: Run regression test jobs on the nodes specified in NODELIST.

• --exclude-nodes NODELIST: Do not run the regression test jobs on any of the nodes specified in
NODELIST.

64 Chapter 3. Publications

ReFrame Documentation, Release 2.19

• --job-option OPT: Pass option OPT directly to the back-end job scheduler. This option must be
used with care, since you may break the submission mechanism. All of the above job submission re-
lated options could be expressed with this option. For example, the -n NODELIST is equivalent to
--job-option='--nodelist=NODELIST' for a Slurm job scheduler. If you pass an option that is al-
ready defined by the framework, the framework will not explicitly override it; this is up to scheduler. All extra
options defined from the command line are appended to the automatically generated options in the generated
batch script file. So if you redefine one of them, e.g., --output for the Slurm scheduler, it is up the job
scheduler on how to interpret multiple definitions of the same options. In this example, Slurm’s policy is that
later definitions of options override previous ones. So, in this case, way you would override the standard output
for all the submitted jobs!

• --flex-alloc-tasks {all|idle|NUM}: Automatically determine the number of tasks allocated for
each test.

• --force-local: Force the local execution of the selected tests. No jobs will be submitted.

• --skip-sanity-check: Skip sanity checking phase.

• --skip-performance-check: Skip performance verification phase.

• --strict: Force strict performance checking. Some tests may set their strict_check attribute to False
(see “Reference Guide”) in order to just let their performance recorded but not yield an error. This option
overrides this behavior and forces all tests to be strict.

• --skip-system-check: Skips the system check and run the selected tests even if they do not support the
current system. This option is sometimes useful when you need to quickly verify if a regression test supports a
new system.

• --skip-prgenv-check: Skips programming environment check and run the selected tests for even if they
do not support a programming environment. This option is useful when you need to quickly verify if a regres-
sion check supports another programming environment. For example, if you know that a tests supports only
PrgEnv-cray and you need to check if it also works with PrgEnv-gnu, you can test is as follows:

./bin/reframe -c /path/to/my/check.py -p PrgEnv-gnu --skip-prgenv-check -r

• --max-retries NUM: Specify the maximum number of times a failed regression test may be retried (default:
0).

3.7.5 Generating a Performance Report

If you are running performance tests, you may instruct ReFrame to produce a performance report at the end using the
–performance-report command-line options. The performance report is printed after the output of the regression tests
and has the following format:

PERFORMANCE REPORT
--
Check1
- system:partition

- PrgEnv1

* perf_variable1: <value> <units>

* perf_variable2: <value> <units>

* ...
- PrgEnv2

: perf_variable1: <value> <units>
: perf_variable2: <value> <units>

* ...
--

(continues on next page)

3.7. Running ReFrame 65

running.html#controlling-the-execution-of-regression-tests

ReFrame Documentation, Release 2.19

(continued from previous page)

Check2
- system:partition

- PrgEnv1

* perf_variable1: <value> <units>

* perf_variable2: <value> <units>

* ...
- PrgEnv2

* perf_variable1: <value> <units>

* perf_variable2: <value> <units>

* ...
--

Achieved performance values are listed by system partition and programming environment for each performance
test that has run. Performance variables are the variables collected through the reframe.core.pipeline.
RegressionTest.perf_patterns attribute.

The following command will run the CUDA matrix-vector multiplication example from the tutorial and will produce
a performance report:

./bin/reframe -C tutorial/config/settings.py -c tutorial/example7.py -r --performance-
→˓report

Command line: ./bin/reframe -C tutorial/config/settings.py -c tutorial/example7.py -r
→˓--performance-report
Reframe version: 2.18-dev1
Launched by user: USER
Launched on host: daint101
Reframe paths
=============

Check prefix :
Check search path : 'example7.py'
Stage dir prefix : /path/to/reframe/stage/
Output dir prefix : /path/to/reframe/output/
Perf. logging prefix : /path/to/reframe/perflogs

[==========] Running 1 check(s)
[==========] Started on Mon Apr 15 13:49:34 2019

[----------] started processing Example7Test (Matrix-vector multiplication (CUDA
→˓performance test))
[RUN] Example7Test on daint:gpu using PrgEnv-cray
[OK] Example7Test on daint:gpu using PrgEnv-cray
[RUN] Example7Test on daint:gpu using PrgEnv-gnu
[OK] Example7Test on daint:gpu using PrgEnv-gnu
[RUN] Example7Test on daint:gpu using PrgEnv-pgi
[OK] Example7Test on daint:gpu using PrgEnv-pgi
[----------] finished processing Example7Test (Matrix-vector multiplication (CUDA
→˓performance test))

[PASSED] Ran 3 test case(s) from 1 check(s) (0 failure(s))
[==========] Finished on Mon Apr 15 13:55:22 2019
==
PERFORMANCE REPORT
--
Example7Test
- daint:gpu

- PrgEnv-cray

(continues on next page)

66 Chapter 3. Publications

tutorial.html

ReFrame Documentation, Release 2.19

(continued from previous page)

* perf: 49.994311 Gflop/s
- PrgEnv-gnu

* perf: 50.748701 Gflop/s
- PrgEnv-pgi

* perf: 49.844147 Gflop/s
--

For completeness, we show here the corresponding section from the Example7Test, so that the connection between
the test’s code and the output becomes clear:

'perf': sn.extractsingle(r'Performance:\s+(?P<Gflops>\S+) Gflop/s',
self.stdout, 'Gflops', float)

}
self.reference = {

'daint:gpu': {
'perf': (50.0, -0.1, 0.1, 'Gflop/s'),

}
}
self.maintainers = ['you-can-type-your-email-here']

If you are writing a benchmark, it is often the case that you will run it in an unknown system, where you don’t have
any reference value. Normally, if ReFrame cannot find a reference for the system it is running on, it will complain
and mark the test as a failure. However, you may right your test in such a way, that it allows it to run success-
fully on any new system. To achieve this, simply insert a “catch-all” * entry in the reframe.core.pipeline.
RegressionTest.reference attribute:

self.reference = {
'*': {

'perf_var1': (0, None, None, 'units'),
'perf_var2': (0, None, None, 'units')
...

}
}

The performance test will always pass on new systems and you may use the --performance-report option for
getting the actual performance values.

Note: The performance report should not be confused with performance logging. It is simply a way of quickly
visualizing the performance results and is useful for interactive testing. Performance logging, if configured, occurs
independently of the performance report and is meant for keeping performance data over time. Its formatting facilitates
parsing and it should be used for later analysis of the performance data obtained.

3.7.6 Configuring ReFrame Directories

ReFrame uses two basic directories during the execution of tests:

1. The stage directory

• Each regression test is executed in a “sandbox”; all of its resources (source files, input data etc.) are copied over
to a stage directory (if the directory preexists, it will be wiped out) and executed from there. This will also be
the working directory for the test.

2. The output directory

3.7. Running ReFrame 67

ReFrame Documentation, Release 2.19

• After a regression test finishes some important files will be copied from the stage directory to the output directory
(if the directory preexists, it will be wiped out). By default these are the standard output, standard error and the
generated job script file. A regression test may also specify to keep additional files.

By default, these directories are placed under a common prefix, which defaults to .. The rest of the directories are
organized as follows:

• Stage directory: ${prefix}/stage/<timestamp>

• Output directory: ${prefix}/output/<timestamp>

You can optionally append a timestamp directory component to the above paths (except the logs directory), by using
the --timestamp option. This options takes an optional argument to specify the timestamp format. The default
time format is %FT%T, which results into timestamps of the form 2017-10-24T21:10:29.

You can override either the default global prefix or any of the default individual directories using the corresponding
options.

• --prefix DIR: set prefix to DIR.

• --output DIR: set output directory to DIR.

• --stage DIR: set stage directory to DIR.

The stage and output directories are created only when you run a regression test. However you can view the directories
that will be created even when you do a listing of the available checks with the -l option. This is useful if you want
to check the directories that ReFrame will create.

./bin/reframe -C tutorial/config/settings.py --prefix /foo -l

Command line: ./bin/reframe -C tutorial/config/settings.py --prefix /foo -l
Reframe version: 2.13-dev0
Launched by user: USER
Launched on host: daint103
Reframe paths
=============

Check prefix : /path/to/reframe
(R) Check search path : 'checks/'

Stage dir prefix : /foo/stage/
Output dir prefix : /foo/output/
Perf. logging prefix : /Users/karakasv/Repositories/reframe/logs

List of matched checks
======================
Found 0 check(s).

You can also define different default directories per system by specifying them in the site configuration settings file.
The command line options, though, take always precedence over any default directory.

3.7.7 Logging

From version 2.4 onward, ReFrame supports logging of its actions. ReFrame creates two files inside the current
working directory every time it is run:

• reframe.out: This file stores the output of a run as it was printed in the standard output.

• reframe.log: This file stores more detailed of information on ReFrame’s actions.

By default, the output in reframe.log looks like the following:

68 Chapter 3. Publications

http://man7.org/linux/man-pages/man3/strftime.3.html
configure.html#the-configuration-file

ReFrame Documentation, Release 2.19

2018-05-26T00:30:39] info: reframe: [RUN] Example7Test on daint:gpu using
→˓PrgEnv-cray
[2018-05-26T00:30:39] debug: Example7Test: entering stage: setup
[2018-05-26T00:30:39] debug: Example7Test: loading environment for the current
→˓partition
[2018-05-26T00:30:39] debug: Example7Test: executing OS command: modulecmd python
→˓show daint-gpu
[2018-05-26T00:30:39] debug: Example7Test: executing OS command: modulecmd python
→˓load daint-gpu
[2018-05-26T00:30:39] debug: Example7Test: loading test's environment
[2018-05-26T00:30:39] debug: Example7Test: executing OS command: modulecmd python
→˓show PrgEnv-cray
[2018-05-26T00:30:39] debug: Example7Test: executing OS command: modulecmd python
→˓unload PrgEnv-gnu
[2018-05-26T00:30:39] debug: Example7Test: executing OS command: modulecmd python
→˓load PrgEnv-cray
[2018-05-26T00:30:39] debug: Example7Test: executing OS command: modulecmd python
→˓show cudatoolkit
[2018-05-26T00:30:39] debug: Example7Test: executing OS command: modulecmd python
→˓load cudatoolkit
[2018-05-26T00:30:39] debug: Example7Test: setting up paths
[2018-05-26T00:30:40] debug: Example7Test: setting up the job descriptor
[2018-05-26T00:30:40] debug: Example7Test: job scheduler backend: local
[2018-05-26T00:30:40] debug: Example7Test: setting up performance logging
[2018-05-26T00:30:40] debug: Example7Test: entering stage: compile
[2018-05-26T00:30:40] debug: Example7Test: copying /path/to/reframe/tutorial/src to
→˓stage directory (/path/to/reframe/stage/gpu/Example7Test/PrgEnv-cray)
[2018-05-26T00:30:40] debug: Example7Test: symlinking files: []
[2018-05-26T00:30:40] debug: Example7Test: Staged sourcepath: /path/to/reframe/stage/
→˓gpu/Example7Test/PrgEnv-cray/example_matrix_vector_multiplication_cuda.cu
[2018-05-26T00:30:40] debug: Example7Test: executing OS command: nvcc -O3 -I/path/to/
→˓reframe/stage/gpu/Example7Test/PrgEnv-cray /path/to/reframe/stage/gpu/Example7Test/
→˓PrgEnv-cray/e
xample_matrix_vector_multiplication_cuda.cu -o /path/to/reframe/stage/gpu/
→˓Example7Test/PrgEnv-cray/./Example7Test
[2018-05-26T00:30:40] debug: Example7Test: compilation stdout:

[2018-05-26T00:30:40] debug: Example7Test: compilation stderr:
nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated,
→˓and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress
→˓warning).

[2018-05-26T00:30:40] debug: Example7Test: compilation finished
[2018-05-26T00:30:40] debug: Example7Test: entering stage: run
[2018-05-26T00:30:40] debug: Example7Test: executing OS command: sbatch /path/to/
→˓reframe/stage/gpu/Example7Test/PrgEnv-cray/Example7Test_daint_gpu_PrgEnv-cray.sh
[2018-05-26T00:30:40] debug: Example7Test: spawned job (jobid=746641)
[2018-05-26T00:30:40] debug: Example7Test: entering stage: wait
[2018-05-26T00:30:40] debug: Example7Test: executing OS command: sacct -S 2018-05-26 -
→˓P -j 746641 -o jobid,state,exitcode
[2018-05-26T00:30:40] debug: Example7Test: job state not matched (stdout follows)
JobID|State|ExitCode

[2018-05-26T00:30:41] debug: Example7Test: executing OS command: sacct -S 2018-05-26 -
→˓P -j 746641 -o jobid,state,exitcode
[2018-05-26T00:30:44] debug: Example7Test: executing OS command: sacct -S 2018-05-26 -
→˓P -j 746641 -o jobid,state,exitcode

(continues on next page)

3.7. Running ReFrame 69

ReFrame Documentation, Release 2.19

(continued from previous page)

[2018-05-26T00:30:47] debug: Example7Test: executing OS command: sacct -S 2018-05-26 -
→˓P -j 746641 -o jobid,state,exitcode
[2018-05-26T00:30:47] debug: Example7Test: spawned job finished
[2018-05-26T00:30:47] debug: Example7Test: entering stage: sanity
[2018-05-26T00:30:47] debug: Example7Test: entering stage: performance
[2018-05-26T00:30:47] debug: Example7Test: entering stage: cleanup
[2018-05-26T00:30:47] debug: Example7Test: copying interesting files to output
→˓directory
[2018-05-26T00:30:47] debug: Example7Test: removing stage directory
[2018-05-26T00:30:47] info: reframe: [OK] Example7Test on daint:gpu using
→˓PrgEnv-cray

Each line starts with a timestamp, the level of the message (info, debug etc.), the context in which the framework
is currently executing (either reframe or the name of the current test and, finally, the actual message.

Every time ReFrame is run, both reframe.out and reframe.log files will be rewritten. However, you can ask
ReFrame to copy them to the output directory before exiting by passing it the --save-log-files option.

Configuring Logging

You can configure several aspects of logging in ReFrame and even how the output will look like. ReFrame’s logging
mechanism is built upon Python’s logging framework adding extra logging levels and more formatting capabilities.

Logging in ReFrame is configured by the logging_config variable in the reframe/settings.py file. The
default configuration looks as follows:

{
'type': 'file',
'name': 'reframe.log',
'level': 'DEBUG',
'format': '[%(asctime)s] %(levelname)s: '

'%(check_info)s: %(message)s',
'append': False,

},

Output handling
{

'type': 'stream',
'name': 'stdout',
'level': 'INFO',
'format': '%(message)s'

},
{

'type': 'file',
'name': 'reframe.out',
'level': 'INFO',
'format': '%(message)s',
'append': False,

}
]

}

perf_logging_config = {
'level': 'DEBUG',

Note that this configuration dictionary is not the same as the one used by Python’s logging framework. It is a simplified
version adapted to the needs of ReFrame.

70 Chapter 3. Publications

https://docs.python.org/3.6/library/logging.html

ReFrame Documentation, Release 2.19

The logging_config dictionary has two main key entries:

• level (default: 'INFO'): This is the lowest level of messages that will be passed down to the different log
record handlers. Any message with a lower level than that, it will be filtered out immediately and will not be
passed to any handler. ReFrame defines the following logging levels with a decreasing severity: CRITICAL,
ERROR, WARNING, INFO, VERBOSE and DEBUG. Note that the level name is not case sensitive in ReFrame.

• handlers: A list of log record handlers that are attached to ReFrame’s logging mechanism. You can attach
as many handlers as you like. For example, by default ReFrame uses three handlers: (a) a handler that logs
debug information into reframe.log, (b) a handler that controls the actual output of the framework to the
standart output, which does not print any debug messages, and (c) a handler that writes the same output to a file
reframe.out.

Each handler is configured by another dictionary that holds its properties as string key/value pairs. For standard
ReFrame logging there are currently two types of handlers, which recognize different properties.

Note: New syntax for handlers is introduced. The old syntax is still valid, but users are advised to update their logging
configuration to the new syntax.

Changed in version 2.13.

Common Log Handler Attributes

All handlers accept the following set of attributes (keys) in their configuration:

• type: (required) the type of the handler. There are several types of handlers used for logging in ReFrame.
Some of them are only relevant for performance logging:

1. file: a handler that writes log records in file.

2. stream: a handler that writes log records in a file stream.

3. syslog: a handler that sends log records to Unix syslog.

4. filelog: a handler for writing performance logs (relevant only for performance logging).

5. graylog: a handler for sending performance logs to a Graylog server (relevant only for performance
logging).

• level: (default: DEBUG) The lowest level of log records that this handler can process.

• format (default: '%(message)s'): Format string for the printout of the log record. ReFrame supports all
the format strings from Python’s logging library and provides the following additional ones:

– check_environ: The programming environment a test is currently executing for.

– check_info: Print live information of the currently executing check. By default this field has the form
<check_name> on <current_partition> using <current_environment>. It can be
configured on a per test basis by overriding the info method of a specific regression test.

– check_jobid: Prints the job or process id of the job or process associated with the currently executing
regression test. If a job or process is not yet created, -1 will be printed.

– check_name: Prints the name of the regression test on behalf of which ReFrame is currently executing.
If ReFrame is not in the context of regression test, reframe will be printed.

– check_outputdir: The output directory associated with the currently executing test.

– check_partition: The system partition where this test is currently executing.

– check_stagedir: The stage directory associated with the currently executing test.

3.7. Running ReFrame 71

https://docs.python.org/3.6/library/logging.html#logrecord-attributes

ReFrame Documentation, Release 2.19

– check_system: The host system where this test is currently executing.

– check_tags: The tags associated with this test.

– osuser: The name of the OS user running ReFrame.

– osgroup: The group name of the OS user running ReFrame.

– version: The ReFrame version.

• datefmt (default: '%FT%T') The format that will be used for outputting timestamps (i.e., the %(asctime)s
field). Acceptable formats must conform to standard library’s time.strftime() function.

Caution: The testcase_name logging attribute is replaced with the check_info, which is now also con-
figurable

Changed in version 2.10.

File log handlers

In addition to the common log handler attributes, file log handlers accept the following:

• name: (required) The name of the file where log records will be written.

• append (default: False) Controls whether ReFrame should append to this file or not.

• timestamp (default: None): Append a timestamp to this log filename. This property may accept any date
format that is accepted also by the datefmt property. If the name of the file is filename.log and this
attribute is set to True, the resulting log file name will be filename_<timestamp>.log.

Stream log handlers

In addition to the common log handler attributes, file log handlers accept the following:

• name: (default stdout) The symbolic name of the log stream to use. Available values: stdout for standard
output and stderr for standard error.

Syslog log handler

In addition to the common log handler attributes, file log handlers accept the following:

• socktype: The type of socket where the handler will send log records to. There are two socket types:

1. udp: (default) This opens a UDP datagram socket.

2. tcp: This opens a TCP stream socket.

• facility: (default: user) The Syslog facility to send records to. The list of supported facilities can be found
here.

• address: (required) The address where the handler will connect to. This can either be of the form
<host>:<port> or simply a path that refers to a Unix domain socket.

Note: New in version 2.17.

72 Chapter 3. Publications

https://docs.python.org/3.6/library/time.html#time.strftime
https://docs.python.org/3.6/library/logging.handlers.html#logging.handlers.SysLogHandler.encodePriority

ReFrame Documentation, Release 2.19

Performance Logging

ReFrame supports an additional logging facility for recording performance values, in order to be able to keep historical
performance data. This is configured by the perf_logging_config variables, whose syntax is the same as for
the logging_config:

{
'type': 'filelog',
'prefix': '%(check_system)s/%(check_partition)s',
'level': 'INFO',
'format': (

'%(asctime)s|reframe %(version)s|'
'%(check_info)s|jobid=%(check_jobid)s|'
'%(check_perf_var)s=%(check_perf_value)s|'
'ref=%(check_perf_ref)s '
'(l=%(check_perf_lower_thres)s, '
'u=%(check_perf_upper_thres)s)|'
'%(check_perf_unit)s'

),
'append': True

}
]

}

ings = ReframeSettings()

Performance logging introduces two new log record handlers, specifically designed for this purpose.

File-based Performance Logging

The type of this handler is filelog and logs the performance of a regression test in one or more files. The attributes
of this handler are the following:

• prefix: This is the directory prefix (usually dynamic) where the performance logs of a test will be stored.
This attribute accepts any of the check-specific formatting placeholders described above. This allows you to
create dynamic paths based on the current system, partition and/or programming environment a test executes.
This dynamic prefix is appended to the “global” performance log directory prefix, configurable through the
--perflogdir option or the perflogdir attribute of the system configuration. The default configuration
of ReFrame for performance logging (shown in the previous listing) generates the following files:

{PERFLOG_PREFIX}/
system1/

partition1/
test_name.log

partition2/
test_name.log

...
system2/
...

A log file, named after the test’s name, is generated in different directories, which are themselves named af-
ter the system and partition names that this test has run on. The PERFLOG_PREFIX will have the value of
--perflogdir option, if specified, otherwise it will default to {REFRAME_PREFIX}/perflogs. You
can always check its value by looking into the paths printed by ReFrame at the beginning of its output:

3.7. Running ReFrame 73

configuring.html#system-configuration

ReFrame Documentation, Release 2.19

Command line: ./reframe.py --prefix=/foo --system=generic -l
Reframe version: 2.13-dev0
Launched by user: USER
Launched on host: HOSTNAME
Reframe paths
=============

Check prefix : /Users/karakasv/Repositories/reframe
(R) Check search path : 'checks/'

Stage dir prefix : /foo/stage/
Output dir prefix : /foo/output/
Perf. logging prefix : /foo/perflogs

List of matched checks
======================
Found 0 check(s).

• format: The syntax of this attribute is the same as of the standard logging facility, except that it adds a couple
more performance-specific formatting placeholders:

– check_perf_lower_thres: The lower threshold of the difference from the reference value expressed
as a fraction of the reference.

– check_perf_upper_thres: The upper threshold of the difference from the reference value expressed
as a fraction of the reference.

– check_perf_ref: The reference performance value of a certain performance variable.

– check_perf_value: The performance value obtained by this test for a certain performance variable.

– check_perf_var: The name of the performance variable, whose value is logged.

– check_perf_unit: The unit of measurement for the measured performance variable, if specified in the
corresponding tuple of the reframe.core.pipeline.RegressionTest.reference attribute.

Using the default performance log format, the resulting log entries look like the following:

2018-05-30T00:14:53|reframe 2.13-dev0|Example7Test on daint:gpu using PrgEnv-
→˓gnu|jobid=749667|perf=49.152408|ref=50.0 (l=-0.1, u=0.1)
2018-05-30T00:14:53|reframe 2.13-dev0|Example7Test on daint:gpu using PrgEnv-
→˓pgi|jobid=749668|perf=48.930356|ref=50.0 (l=-0.1, u=0.1)
2018-05-30T00:14:53|reframe 2.13-dev0|Example7Test on daint:gpu using PrgEnv-
→˓cray|jobid=749666|perf=48.914735|ref=50.0 (l=-0.1, u=0.1)

The interpretation of the performance values depends on the individual tests. The above output is from the CUDA
performance test we presented in the tutorial, so the value refers to the achieved Gflop/s.

Performance Logging Using Graylog

The type of this handler is graylog and it logs performance data to a Graylog server. Graylog is a distributed
enterprise log management service. An example configuration of such a handler is the following:

{
'type': 'graylog',
'host': 'my.graylog.server',
'port': 12345,
'level': 'INFO',
'format': (

'%(asctime)s|reframe %(version)s|'
'%(check_info)s|jobid=%(check_jobid)s|'

(continues on next page)

74 Chapter 3. Publications

tutorial.html#writing-a-performance-test
tutorial.html#writing-a-performance-test
https://www.graylog.org/

ReFrame Documentation, Release 2.19

(continued from previous page)

'%(check_perf_var)s=%(check_perf_value)s|'
'ref=%(check_perf_ref)s '
'(l=%(check_perf_lower_thres)s, '
'u=%(check_perf_upper_thres)s)'

),
'extras': {

'facility': 'reframe',
}

},

This handler introduces three new attributes:

• host: (required) The Graylog server that accepts the log messages.

• port: (required) The port where the Graylog server accepts connections.

• extras: (optional) A set of optional user attributes to be passed with each log record to the server. These may
depend on the server configuration.

This log handler uses internally pygelf, so this Python module must be available, otherwise this log handler will be
ignored. GELF is a format specification for log messages that are sent over the network. The ReFrame’s graylog
handler sends log messages in JSON format using an HTTP POST request to the specified host and port. More details
on this log format may be found here.

Adjusting verbosity of output

ReFrame’s output is handled by a logging mechanism. In fact, as revealed in the corresponding configuration entry (see
Configuring Logging), a specific logging handler takes care of printing ReFrame’s message in the standard output. One
way to change the verbosity level of the output is by explicitly setting the value of the level key in the configuration
of the output handler. Alternatively, you may increase the verbosity level from the command line by chaining the
-v or --verbose option. Every time -v is specified, the next verbosity level will be selected for the output. For
example, if the initial level of the output handler is set to INFO (in the configuration file), specifying -v twice will
make ReFrame spit out all DEBUG messages.

New in version 2.16: -v and --verbose options are added.

3.7.8 Asynchronous Execution of Regression Checks

From version 2.4, ReFrame supports asynchronous execution of regression tests. This execution policy can be enabled
by passing the option --exec-policy=async to the command line. The default execution policy is serial
which enforces a sequential execution of the selected regression tests. The asynchronous execution policy parallelizes
only the running phase of the tests. The rest of the phases remain sequential.

A limit of concurrent jobs (pending and running) may be configured for each virtual system partition. As soon as
the concurrency limit of a partition is reached, ReFrame will hold the execution of new regression tests until a slot is
released in that partition.

When executing in asynchronous mode, ReFrame’s output differs from the sequential execution. The final result of
the tests will be printed at the end and additional messages may be printed to indicate that a test is held. Here is an
example output of ReFrame using asynchronous execution policy:

Command line: ./bin/reframe -C tutorial/config/settings.py -c tutorial/ --exec-
→˓policy=async -r
Reframe version: 2.13-dev0
Launched by user: USER

(continues on next page)

3.7. Running ReFrame 75

https://pypi.org/project/pygelf/
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html#gelf-payload-specification
https://github.com/eth-cscs/reframe/releases/tag/v2.4
pipeline.html#the-run-phase
configure.html#partition-configuration

ReFrame Documentation, Release 2.19

(continued from previous page)

Launched on host: daint103
Reframe paths
=============

Check prefix :
Check search path : 'tutorial/'
Stage dir prefix : /path/to/reframe/stage/
Output dir prefix : /path/to/reframe/output/
Logging dir : /path/to/reframe/logs

[==========] Running 13 check(s)
[==========] Started on Sat May 26 00:48:03 2018

[----------] started processing Example1Test (Simple matrix-vector multiplication
→˓example)
[RUN] Example1Test on daint:login using PrgEnv-cray
[RUN] Example1Test on daint:login using PrgEnv-gnu
[RUN] Example1Test on daint:login using PrgEnv-intel
[RUN] Example1Test on daint:login using PrgEnv-pgi
[RUN] Example1Test on daint:gpu using PrgEnv-cray
[RUN] Example1Test on daint:gpu using PrgEnv-gnu
[RUN] Example1Test on daint:gpu using PrgEnv-intel
[RUN] Example1Test on daint:gpu using PrgEnv-pgi
[RUN] Example1Test on daint:mc using PrgEnv-cray
[RUN] Example1Test on daint:mc using PrgEnv-gnu
[RUN] Example1Test on daint:mc using PrgEnv-intel
[RUN] Example1Test on daint:mc using PrgEnv-pgi
[----------] finished processing Example1Test (Simple matrix-vector multiplication
→˓example)

[----------] started processing Example2aTest (Matrix-vector multiplication example
→˓with OpenMP)
[RUN] Example2aTest on daint:login using PrgEnv-cray
[RUN] Example2aTest on daint:login using PrgEnv-gnu
[RUN] Example2aTest on daint:login using PrgEnv-intel
[RUN] Example2aTest on daint:login using PrgEnv-pgi
[RUN] Example2aTest on daint:gpu using PrgEnv-cray
[RUN] Example2aTest on daint:gpu using PrgEnv-gnu
[RUN] Example2aTest on daint:gpu using PrgEnv-intel
[RUN] Example2aTest on daint:gpu using PrgEnv-pgi
[RUN] Example2aTest on daint:mc using PrgEnv-cray
[RUN] Example2aTest on daint:mc using PrgEnv-gnu
[RUN] Example2aTest on daint:mc using PrgEnv-intel
[RUN] Example2aTest on daint:mc using PrgEnv-pgi
[----------] finished processing Example2aTest (Matrix-vector multiplication example
→˓with OpenMP)
<output omitted>
[----------] waiting for spawned checks to finish
[OK] MPITest on daint:gpu using PrgEnv-pgi
[OK] MPITest on daint:gpu using PrgEnv-gnu
[OK] OpenMPTest on daint:mc using PrgEnv-pgi
[OK] OpenMPTest on daint:mc using PrgEnv-gnu
[OK] OpenMPTest on daint:gpu using PrgEnv-pgi
[OK] OpenMPTest on daint:gpu using PrgEnv-gnu
<output omitted>
[OK] Example1Test on daint:login using PrgEnv-cray
[OK] MPITest on daint:mc using PrgEnv-cray
[OK] MPITest on daint:gpu using PrgEnv-cray
[OK] OpenMPTest on daint:mc using PrgEnv-cray

(continues on next page)

76 Chapter 3. Publications

ReFrame Documentation, Release 2.19

(continued from previous page)

[OK] OpenMPTest on daint:gpu using PrgEnv-cray
[OK] SerialTest on daint:login using PrgEnv-pgi
[OK] MPITest on daint:mc using PrgEnv-gnu
[OK] OpenMPTest on daint:mc using PrgEnv-intel
[OK] OpenMPTest on daint:login using PrgEnv-gnu
[OK] OpenMPTest on daint:gpu using PrgEnv-intel
[OK] MPITest on daint:gpu using PrgEnv-intel
[OK] CudaTest on daint:gpu using PrgEnv-gnu
[OK] OpenACCTest on daint:gpu using PrgEnv-pgi
[OK] MPITest on daint:mc using PrgEnv-intel
[OK] CudaTest on daint:gpu using PrgEnv-cray
[OK] MPITest on daint:mc using PrgEnv-pgi
[OK] OpenACCTest on daint:gpu using PrgEnv-cray
[OK] CudaTest on daint:gpu using PrgEnv-pgi
[----------] all spawned checks have finished

[PASSED] Ran 101 test case(s) from 13 check(s) (0 failure(s))
[==========] Finished on Sat May 26 00:52:02 2018

The asynchronous execution policy may provide significant overall performance benefits for run-only regression tests.
For compile-only and normal tests that require a compilation, the execution time will be bound by the total compilation
time of the test.

3.7.9 Manipulating modules

New in version 2.11.

Note: Changed in version 2.19: Module self loops are now allowed in module mappings.

ReFrame allows you to change the modules loaded by a regression test on-the-fly without having to edit the regression
test file. This feature is extremely useful when you need to quickly test a newer version of a module, but it also allows
you to completely decouple the module names used in your regression tests from the real module names in a system,
thus making your test even more portable. This is achieved by defining module mappings.

There are two ways to pass module mappings to ReFrame. The first is to use the --map-module command-line
option, which accepts a module mapping. For example, the following line maps the module test_module to the
module real_module:

--map-module='test_module: real_module'

In this case, whenever ReFrame is asked to load test_module, it will load real_module. Any string without
spaces may be accepted in place of test_module and real_module. You can also define multiple module
mappings at once by repeating the --map-module. If more than one mapping is specified for the same module,
then the last mapping will take precedence. It is also possible to map a single module to more than one target. This
can be done by listing the target modules separated by spaces in the order that they should be loaded. In the following
example, ReFrame will load real_module0 and real_module1 whenever the test_module is encountered:

--map-module 'test_module: real_module0 real_module1'

The second way of defining mappings is by listing them on a file, which you can then pass to ReFrame through the
command-line option --module-mappings. Each line on the file corresponds to the definition of a mapping for a
single module. The syntax of the individual mappings in the file is the same as with the option --map-module and
the same rules apply regarding repeated definitions. Text starting with # is considered a comment and is ignored until

3.7. Running ReFrame 77

ReFrame Documentation, Release 2.19

the end of line is encountered. Empty lines are ignored. The following block shows an example of module mapping
file:

module-1: module-1a # an inline comment
module-2: module-2a module-2b module-2c

This is a full line comment
module-4: module-4a module-4b

If both --map-module and --module-mappings are passed, ReFrame will first create a mapping from the
definitions on the file and it will then process the definitions passed with the --map-module options. As usual, later
definitions will override the former.

A final note on module mappings. Module mappings can be arbitrarily deep as long as they do not form a cycle. In
this case, ReFrame will issue an error (denoting the offending cyclic dependency). For example, suppose having the
following mapping file:

cudatoolkit: foo
foo: bar
bar: foobar
foobar: cudatoolkit

If you now try to run a test that loads the module cudatoolkit, the following error will be yielded:

--
FAILURE INFO for Example7Test

* System partition: daint:gpu

* Environment: PrgEnv-gnu

* Stage directory: None

* Job type: batch job (id=-1)

* Maintainers: ['you-can-type-your-email-here']

* Failing phase: setup

* Reason: caught framework exception: module cyclic dependency: cudatoolkit->foo->
→˓bar->foobar->cudatoolkit
--

On the other hand, module mappings containing self loops are allowed. In the following example, ReFrame will load
both module-1 and module-2 whenever the module-1 is encountered:

--map-module 'module-1: module-1 module-2'

3.7.10 Controlling the Flexible Task Allocation

New in version 2.15.

ReFrame can automatically set the number of tasks of a particular test, if its num_tasks attribute is set to a value
<=0. By default, ReFrame will spawn such a test on all the idle nodes of the current system partition. This behavior
can be adjusted using the --flex-alloc-tasks command line option. This option accepts three values:

1. idle: (default) In this case, ReFrame will set the number of tasks to the number of idle nodes of the current
logical partition multiplied by the num_tasks_per_node attribute of the particular test.

2. all: In this case, ReFrame will set the number of tasks to the number of all the nodes of the current logical
partition multiplied by the num_tasks_per_node attribute of the particular test.

3. Any positive integer: In this case, ReFrame will set the number of tasks to the given value.

78 Chapter 3. Publications

ReFrame Documentation, Release 2.19

The flexible allocation of number of tasks takes into account any additional logical constraint imposed by the
command line options affecting the job allocation, such as --partition, --reservation, --nodelist,
--exclude-nodes and --job-option (if the scheduler option passed to the latter imposes a restriction). Notice
that ReFrame will issue an error if the resulting number of nodes is zero.

For example, using the following options would run a flexible test on all the nodes of reservation foo except the nodes
n0[1-5]:

--flex-alloc-tasks=all --reservation=foo --exclude-nodes=n0[1-5]

Note: Flexible task allocation is supported only for the Slurm scheduler backend.

Warning: Test cases resulting from flexible ReFrame tests may not be run using the asynchronous execution pol-
icy, because the nodes satisfying the required criteria will be allocated for the first test case, causing all subsequent
ones to fail.

3.8 Use Cases

3.8.1 ReFrame Usage at CSCS

The ReFrame framework has been in production at CSCS since December 2016. We use it to test not only Piz Daint,
but almost all our systems that we provide to users.

We have two large sets of regression tests:

• production tests and

• maintenance tests.

Tags are used to mark these categories and a regression test may belong to both of them. Production tests are run
daily to monitor the sanity of the system and its performance. All performance tests log their performance values. The
performance over time of certain applications are monitored graphically using Grafana.

The total set of our regression tests comprises 172 individual tests, from which 153 are marked as production tests.
Some of them are eligible to run on both the multicore and hybrid partitions of the system, whereas others are meant
to run only on the login nodes. Depending on the test, multiple programming environments might be tried. In total,
448 test cases are run from the 153 regression tests on all the system partitions. The following Table summarizes the
production regression tests.

The set of maintenance regression tests is much more limited to decrease the downtime of the system. The regression
suite runs at the beginning of the maintenance session and just before returning the machine to the users, so that we
can ensure that the user experience is at least at the level before the system was taken down. The maintenance set of
tests comprises application performance tests, some GPU library performance checks, Slurm checks and some POSIX
filesystem checks.

The porting of the regression suite to the MeteoSwiss production system Piz Kesch, using ReFrame was almost trivial.
The new system entry was added in the framework’s configuration file describing the different partitions together
with a new redefined PrgEnv-gnu environment to use different compiler wrappers. Porting the regression tests of
interest was also a straightforward process. In most of the cases, adding just the corresponding system partitions to the
valid_systems variables and adjusting accordingly the valid_prog_environs was enough.

ReFrame really focuses on abstracting away all the gory details from the regression test description, hence letting the
user to concentrate solely on the logic of his test. A bit of this effect can be seen in the following Table where the total

3.8. Use Cases 79

http://www.cscs.ch
http://www.cscs.ch/computers/piz_daint/index.html
https://grafana.com/
http://www.meteosvizzera.admin.ch/home.html?tab=overview
http://www.cscs.ch/computers/kesch_escha_meteoswiss/index.html

ReFrame Documentation, Release 2.19

amount of lines of code (loc) of the regression tests written in the previous shell script-based solution and ReFrame is
shown. We also present a snapshot of the first public release of ReFrame (v2.2).

Maintenance Burden Shell-Script Based ReFrame (May 2017) ReFrame (Nov 2017)
Total tests 179 122 172
Total size of tests 14635 loc 2985 loc 4493 loc
Avg. test file size 179 loc 93 loc 87 loc
Avg. effective test size 179 loc 25 loc 25 loc

The difference in the total amount of regression test code is dramatic. From the 15K lines of code of the old shell script
based regression testing suite, ReFrame tests use only 3K lines of code (first release) achieving a higher coverage.

Note: The higher test count of the older suite refers to test cases, i.e., running the same test for different programming
environments, whereas for ReFrame the counts do not account for this.

Each regression test file in ReFrame is 80–90 loc on average. However, each regression test file may contain or
generate more than one related tests, thus leading to the effective decrease of the line count per test to only 25 loc.

Separating the logical description of a regression test from all the unnecessary implementation details contributes
significantly in the ease of writing and maintaining new regression tests with ReFrame.

3.9 About ReFrame

3.9.1 What Is ReFrame?

ReFrame is a framework developed by CSCS to facilitate the writing of regression tests that check the sanity of HPC
systems. Its main goal is to allow users to write their own regression tests without having to deal with all the details of
setting up the environment for the test, querying the status of their job, managing the output of the job and looking for
sanity and/or performance results. Users should be concerned only about the logical requirements of their tests. This
allows users’ regression checks to be maintained and adapted to new systems easily.

The user describes his test in a simple Python class and the framework takes care of all the details of the low-level
interaction with the system. The framework is structured in such a way that with a basic knowledge of Python and
minimal coding a user can write a regression test, which will be able to run out-of-the-box on a variety of systems and
programming environments.

Writing regression tests in a high-level language, such as Python, allows users to take advantage of the language’s
higher expressiveness and bigger capabilities compared to classical shell scripting, which is the norm in HPC testing.
This could lead to a more manageable code base of regression tests with significantly reduced maintenance costs.

3.9.2 ReFrame’s Goals

When designing the framework we have set three major goals:

Productivity The writer of a regression test should focus only on the logical structure and requirements of the test
and should not need to deal with any of the low level details of interacting with the system, e.g., how the
environment of the test is loaded, how the associated job is created and has its status checked, how the output
parsing is performed etc.

Portability Configuring the framework to support new systems and system configurations should be easy and should
not affect the existing tests. Also, adding support of a new system in a regression test should require minimal
adjustments.

80 Chapter 3. Publications

https://github.com/eth-cscs/reframe/releases/tag/v2.2

ReFrame Documentation, Release 2.19

Robustness and ease of use The new framework must be stable enough and easy to use by non-advanced users.
When the system needs to be returned to users outside normal working hours the personnel in charge should be
able to run the regression suite and verify the sanity of the system with a minimal involvement.

3.9.3 Why ReFrame?

HPC systems are highly complex systems in all levels of integration; from the physical infrastructure up to the software
stack provided to the users. A small change in any of these levels could have an impact on the stability or the
performance of the system perceived by the end users. It is of crucial importance, therefore, not only to make sure
that the system is in a sane condition after every maintenance before handing it off to users, but also to monitor its
performance during production, so that possible problems are detected early enough and the quality of service is not
compromised.

Regression testing can provide a reliable way to ensure the stability and the performance requirements of the system,
provided that sufficient tests exist that cover a wide aspect of the system’s operations from both the operators’ and
users’ point of view. However, given the complexity of HPC systems, writing and maintaining regression tests can be
a very time consuming task. A small change in system configuration or deployment may require adapting hundreds
of regression tests at the same time. Similarly, porting a test to a different system may require significant effort if the
new system’s configuration is substantially different than that of the system that it was originally written for.

ReFrame was designed to help HPC support teams to easily write tests that

• monitor the impact of changes to the system that would affect negatively the users,

• monitor system performance,

• monitor system stability and

• guarantee quality of service.

And also decrease the amount of time and resources required to

• write and maintain regression tests and

• port regression tests to other HPC systems.

3.10 Reference Guide

This page provides a reference guide of the ReFrame API for writing regression tests covering all the relevant details.
Internal data structures and APIs are covered only to the extent that might be helpful to the final user of the framework.

3.10.1 Regression test classes and related utilities

class reframe.RegressionTest(name=None, prefix=None)
This is an alias of reframe.core.pipeline.RegressionTest.

New in version 2.13.

class reframe.RunOnlyRegressionTest(*args, **kwargs)
This is an alias of reframe.core.pipeline.RunOnlyRegressionTest.

New in version 2.13.

class reframe.CompileOnlyRegressionTest(*args, **kwargs)
This is an alias of reframe.core.pipeline.CompileOnlyRegressionTest.

New in version 2.13.

3.10. Reference Guide 81

ReFrame Documentation, Release 2.19

@reframe.simple_test
This is an alias of reframe.core.decorators.simple_test().

New in version 2.13.

@reframe.parameterized_test(inst=[])
This is an alias of reframe.core.decorators.parameterized_test().

New in version 2.13.

reframe.core.decorators.parameterized_test(*inst)
Class decorator for registering multiple instantiations of a test class.

The decorated class must derive from reframe.core.pipeline.RegressionTest. This decorator is
also available directly under the reframe module.

Parameters inst – The different instantiations of the test. Each instantiation argument may be
either a sequence or a mapping.

New in version 2.13.

Note: This decorator does not instantiate any test. It only registers them. The actual instantiation happens
during the loading phase of the test.

reframe.core.decorators.simple_test(cls)
Class decorator for registering parameterless tests with ReFrame.

The decorated class must derive from reframe.core.pipeline.RegressionTest. This decorator is
also available directly under the reframe module.

New in version 2.13.

reframe.core.decorators.required_version(*versions)
Class decorator for specifying the required ReFrame versions for the following test.

If the test is not compatible with the current ReFrame version it will be skipped.

Parameters versions – A list of ReFrame version specifications that this test is allowed to run.
A version specification string can have one of the following formats:

1. VERSION: Specifies a single version.

2. {OP}VERSION, where {OP} can be any of >, >=, <, <=, == and !=. For example, the
version specification string '>=2.15' will only allow the following test to be loaded only by
ReFrame 2.15 and higher. The ==VERSION specification is the equivalent of VERSION.

3. V1..V2: Specifies a range of versions.

You can specify multiple versions with this decorator, such as @required_version('2.
13', '>=2.16'), in which case the test will be selected if any of the versions is satisfied,
even if the versions specifications are conflicting.

New in version 2.13.

class reframe.core.pipeline.RegressionTest
Bases: object

Base class for regression tests.

All regression tests must eventually inherit from this class. This class provides the implementation of the
pipeline phases that the regression test goes through during its lifetime.

Parameters

82 Chapter 3. Publications

https://docs.python.org/3/library/functions.html#object

ReFrame Documentation, Release 2.19

• name – The name of the test. If None, the framework will try to assign a unique and
human-readable name to the test.

• prefix – The directory prefix of the test. If None, the framework will set it to the directory
containing the test file.

Note:

The name and prefix arguments are just maintained for backward compatibility to the old (prior
to 2.13) syntax of regression tests. Users are advised to use the new simplified syntax for writing
regression tests. Refer to the ReFrame Tutorial for more information.

This class is also directly available under the top-level reframe module.

Changed in version 2.13.

build_system
The build system to be used for this test. If not specified, the framework will try to figure it out automati-
cally based on the value of sourcepath.

This field may be set using either a string referring to a concrete build system class name (see build
systems) or an instance of reframe.core.buildsystems.BuildSystem. The former is the rec-
ommended way.

Type str or reframe.core.buildsystems.BuildSystem.

Default None.

New in version 2.14.

check_performance()
The performance checking phase of the regression test pipeline.

Raises reframe.core.exceptions.SanityError – If the performance check fails.

check_sanity()
The sanity checking phase of the regression test pipeline.

Raises reframe.core.exceptions.SanityError – If the sanity check fails.

cleanup(remove_files=False, unload_env=True)
The cleanup phase of the regression test pipeline.

Parameters

• remove_files – If True, the stage directory associated with this test will be removed.

• unload_env – If True, the environment that was used to run this test will be unloaded.

compile()
The compilation phase of the regression test pipeline.

Raises reframe.core.exceptions.ReframeError – In case of errors.

compile_wait()
Wait for compilation phase to finish.

New in version 2.13.

current_environ
The programming environment that the regression test is currently executing with.

This is set by the framework during the setup() phase.

3.10. Reference Guide 83

reference.html#build-systems
reference.html#build-systems
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

Type reframe.core.environments.Environment.

current_partition
The system partition the regression test is currently executing on.

This is set by the framework during the setup() phase.

Type reframe.core.systems.SystemPartition.

current_system
The system the regression test is currently executing on.

This is set by the framework during the initialization phase.

Type reframe.core.runtime.HostSystem.

descr
A detailed description of the test.

Type str

Default self.name

exclusive_access
Specify whether this test needs exclusive access to nodes.

Type boolean

Default False

executable
The name of the executable to be launched during the run phase.

Type str

Default os.path.join('.', self.name)

executable_opts
List of options to be passed to the executable.

Type List[str]

Default []

extra_resources
Extra resources for this test.

This field is for specifying custom resources needed by this test. These resources are defined in the con-
figuration of a system partition. For example, assume that two additional resources, named gpu and
datawarp, are defined in the configuration file as follows:

'resources': {
'gpu': [

'--gres=gpu:{num_gpus_per_node}'
],
'datawarp': [

'#DW jobdw capacity={capacity}',
'#DW stage_in source={stagein_src}'

]
}

A regression test then may instantiate the above resources by setting the extra_resources attribute
as follows:

84 Chapter 3. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

self.extra_resources = {
'gpu': {'num_gpus_per_node': 2}
'datawarp': {

'capacity': '100GB',
'stagein_src': '/foo'

}
}

The generated batch script (for Slurm) will then contain the following lines:

#SBATCH --gres=gpu:2
#DW jobdw capacity=100GB
#DW stage_in source=/foo

Notice that if the resource specified in the configuration uses an alternative directive prefix (in this case
#DW), this will replace the standard prefix of the backend scheduler (in this case #SBATCH)

If the resource name specified in this variable does not match a resource name in the partition configuration,
it will be simply ignored. The num_gpus_per_node attribute translates internally to the _rfm_gpu
resource, so that setting self.num_gpus_per_node = 2 is equivalent to the following:

self.extra_resources = {'_rfm_gpu': {'num_gpus_per_node': 2}}

Type Dict[str, Dict[str, object]]

Default {}

Note: New in version 2.8.

Changed in version 2.9.

A new more powerful syntax was introduced that allows also custom job script directive prefixes.

info()
Provide live information of a running test.

This method is used by the front-end to print the status message during the test’s execution. This function
is also called to provide the message for the check_info logging attribute. By default, it returns a
message reporting the test name, the current partition and the current programming environment that the
test is currently executing on.

Returns a string with an informational message about this test

Note: When overriding this method, you should pay extra attention on how you use the
RegressionTest’s attributes, because this method may be called at any point of the test’s lifetime.

New in version 2.10.

is_local()
Check if the test will execute locally.

A test executes locally if the local attribute is set or if the current partition’s scheduler does not support
job submission.

job
The job descriptor associated with this test.

3.10. Reference Guide 85

running.html#logging

ReFrame Documentation, Release 2.19

This is set by the framework during the setup() phase.

Type reframe.core.schedulers.Job.

keep_files
List of files to be kept after the test finishes.

By default, the framework saves the standard output, the standard error and the generated shell script that
was used to run this test.

These files will be copied over to the framework’s output directory during the cleanup() phase.

Directories are also accepted in this field.

Relative path names are resolved against the stage directory.

Type List[str]

Default []

local
Always execute this test locally.

Type boolean

Default False

logger
A logger associated with the this test.

You can use this logger to log information for your test.

maintainers
List of people responsible for this test.

When the test fails, this contact list will be printed out.

Type List[str]

Default []

modules
List of modules to be loaded before running this test.

These modules will be loaded during the setup() phase.

Type List[str]

Default []

name
The name of the test.

Type string that can contain any character except /

num_cpus_per_task
Number of CPUs per task required by this test.

Ignored if None.

Type integral or None

Default None

num_gpus_per_node
Number of GPUs per node required by this test.

Type integral

86 Chapter 3. Publications

ReFrame Documentation, Release 2.19

Default 0

num_tasks
Number of tasks required by this test.

If the number of tasks is set to a number <=0, ReFrame will try to flexibly allocate the number of
tasks, based on the command line option --flex-alloc-tasks. A negative number is used to
indicate the minimum number of tasks required for the test. In this case the minimum number of
tasks is the absolute value of the number, while Setting num_tasks to 0 is equivalent to setting it to
-num_tasks_per_node.

Type integral

Default 1

Note: Changed in version 2.15: Added support for flexible allocation of the number of tasks according to
the --flex-alloc-tasks command line option (see Flexible task allocation) if the number of tasks
is set to 0.

Changed in version 2.16: Negative num_tasks is allowed for specifying the minimum number of re-
quired tasks by the test.

num_tasks_per_core
Number of tasks per core required by this test.

Ignored if None.

Type integral or None

Default None

num_tasks_per_node
Number of tasks per node required by this test.

Ignored if None.

Type integral or None

Default None

num_tasks_per_socket
Number of tasks per socket required by this test.

Ignored if None.

Type integral or None

Default None

outputdir
The output directory of the test.

This is set during the setup() phase.

New in version 2.13.

Type str.

perf_patterns
Patterns for verifying the performance of this test.

Refer to the ReFrame Tutorial for concrete usage examples.

If set to None, no performance checking will be performed.

3.10. Reference Guide 87

running.html#flexible-task-allocation
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

Type A dictionary with keys of type str and deferrable expressions (i.e., the result of a sanity
function) as values. None is also allowed.

Default None

poll()
Poll the test’s state.

Returns

True if the associated job has finished, False otherwise.

If no job descriptor is yet associated with this test, True is returned.

Raises reframe.core.exceptions.ReframeError – In case of errors.

post_run
List of shell commands to execute after launching this job.

See pre_run for a more detailed description of the semantics.

Type List[str]

Default []

Note: New in version 2.10.

postbuild_cmd
List of shell commands to be executed after a successful compilation.

These commands are executed during the compilation phase and from inside the stage directory. Each
entry in the list spawns a new shell.

Type List[str]

Default []

pre_run
List of shell commands to execute before launching this job.

These commands do not execute in the context of ReFrame. Instead, they are emitted in the generated job
script just before the actual job launch command.

Type List[str]

Default []

Note: New in version 2.10.

prebuild_cmd
List of shell commands to be executed before compiling.

These commands are executed during the compilation phase and from inside the stage directory. Each
entry in the list spawns a new shell.

Type List[str]

Default []

prefix
The prefix directory of the test.

Type str.

88 Chapter 3. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

readonly_files
List of files or directories (relative to the sourcesdir) that will be symlinked in the stage directory and
not copied.

You can use this variable to avoid copying very large files to the stage directory.

Type List[str]

Default []

reference
The set of reference values for this test.

The reference values are specified as a scoped dictionary keyed on the performance variables defined in
perf_patterns and scoped under the system/partition combinations. The reference itself is a three- or
four-tuple that contains the reference value, the lower and upper thresholds and, optionally, the measure-
ment unit. An example follows:

self.reference = {
'sys0:part0': {

'perfvar0': (50, -0.1, 0.1, 'Gflop/s'),
'perfvar1': (20, -0.1, 0.1, 'GB/s')

},
'sys0:part1': {

'perfvar0': (100, -0.1, 0.1, 'Gflop/s'),
'perfvar1': (40, -0.1, 0.1, 'GB/s')

}
}

Type A scoped dictionary with system names as scopes or None

Default {}

run()
The run phase of the regression test pipeline.

This call is non-blocking. It simply submits the job associated with this test and returns.

sanity_patterns
Refer to the ReFrame Tutorial for concrete usage examples.

If set to None, a sanity error will be raised during sanity checking.

Type A deferrable expression (i.e., the result of a sanity function) or None

Default None

Note: Changed in version 2.9: The default behaviour has changed and it is now considered a sanity failure
if this attribute is set to None.

If a test doesn’t care about its output, this must be stated explicitly as follows:

self.sanity_patterns = sn.assert_found(r'.*', self.stdout)

setup(partition, environ, **job_opts)
The setup phase of the regression test pipeline.

Parameters

• partition – The system partition to set up this test for.

3.10. Reference Guide 89

ReFrame Documentation, Release 2.19

• environ – The environment to set up this test for.

• job_opts – Options to be passed through to the backend scheduler. When overriding
this method users should always pass through job_opts to the base class method.

Raises reframe.core.exceptions.ReframeError – In case of errors.

sourcepath
The path to the source file or source directory of the test.

It must be a path relative to the sourcesdir, pointing to a subfolder or a file contained in sourcesdir.
This applies also in the case where sourcesdir is a Git repository.

If it refers to a regular file, this file will be compiled using the SingleSource build system. If it refers
to a directory, ReFrame will try to infer the build system to use for the project and will fall back in using
the Make build system, if it cannot find a more specific one.

Type str

Default ''

sourcesdir
The directory containing the test’s resources.

This directory may be specified with an absolute path or with a path relative to the location of the test. Its
contents will always be copied to the stage directory of the test.

This attribute may also accept a URL, in which case ReFrame will treat it as a Git repository and will try
to clone its contents in the stage directory of the test.

If set to None, the test has no resources an no action is taken.

Type str or None

Default 'src'

Note: Changed in version 2.9: Allow None values to be set also in regression tests with a compilation
phase

Changed in version 2.10: Support for Git repositories was added.

stagedir
The stage directory of the test.

This is set during the setup() phase.

Type str.

stderr
The name of the file containing the standard error of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str.

stdout
The name of the file containing the standard output of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str.

90 Chapter 3. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

strict_check
Mark this test as a strict performance test.

If a test is marked as non-strict, the performance checking phase will always succeed, unless the
--strict command-line option is passed when invoking ReFrame.

Type boolean

Default True

tags
Set of tags associated with this test.

This test can be selected from the frontend using any of these tags.

Type Set[str]

Default an empty set

time_limit
Time limit for this test.

Time limit is specified as a three-tuple in the form (hh, mm, ss), with hh >= 0, 0 <= mm <= 59
and 0 <= ss <= 59. If set to None, no time limit will be set. The default time limit of the system
partition’s scheduler will be used.

Type tuple[int]

Default (0, 10, 0)

Note: Changed in version 2.15.

This attribute may be set to None.

use_multithreading
Specify whether this tests needs simultaneous multithreading enabled.

Ignored if None.

Type boolean or None

Default None

valid_prog_environs
List of programming environments supported by this test.

If * is in the list then all programming environments are supported by this test.

Type List[str]

Default []

Note: Changed in version 2.12: Programming environments can now be specified using wildcards.

Changed in version 2.17: Support for wildcards is dropped.

valid_systems
List of systems supported by this test. The general syntax for systems is <sysname>[:<partname].

Type List[str]

Default []

3.10. Reference Guide 91

ReFrame Documentation, Release 2.19

variables
Environment variables to be set before running this test.

These variables will be set during the setup() phase.

Type Dict[str, str]

Default {}

wait()
Wait for this test to finish.

Raises reframe.core.exceptions.ReframeError – In case of errors.

class reframe.core.pipeline.RunOnlyRegressionTest
Bases: reframe.core.pipeline.RegressionTest

Base class for run-only regression tests.

This class is also directly available under the top-level reframe module.

compile()
The compilation phase of the regression test pipeline.

This is a no-op for this type of test.

compile_wait()
Wait for compilation phase to finish.

This is a no-op for this type of test.

run()
The run phase of the regression test pipeline.

The resources of the test are copied to the stage directory and the rest of execution is delegated to the
RegressionTest.run().

class reframe.core.pipeline.CompileOnlyRegressionTest
Bases: reframe.core.pipeline.RegressionTest

Base class for compile-only regression tests.

These tests are by default local and will skip the run phase of the regression test pipeline.

The standard output and standard error of the test will be set to those of the compilation stage.

This class is also directly available under the top-level reframe module.

run()
The run stage of the regression test pipeline.

Implemented as no-op.

setup(partition, environ, **job_opts)
The setup stage of the regression test pipeline.

Similar to the RegressionTest.setup(), except that no job descriptor is set up for this test.

stderr
The name of the file containing the standard error of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str.

92 Chapter 3. Publications

https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

stdout
The name of the file containing the standard output of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str.

wait()
Wait for this test to finish.

Implemented as no-op

3.10.2 Environments and Systems

class reframe.core.environments.Environment(name, modules=[], variables=[])
Bases: object

This class abstracts away an environment to run regression tests.

It is simply a collection of modules to be loaded and environment variables to be set when this environment is
loaded by the framework. Users may not create or modify directly environments.

details()
Return a detailed description of this environment.

is_loaded
True if this environment is loaded, False otherwise.

modules
The modules associated with this environment.

Type list of str

name
The name of this environment.

Type str

variables
The environment variables associated with this environment.

Type dictionary of str keys/values.

class reframe.core.environments.EnvironmentSnapshot(name=’env_snapshot’)
Bases: reframe.core.environments.Environment

is_loaded
True if this environment is loaded, False otherwise.

class reframe.core.environments.ProgEnvironment(name, modules=[], variables={},
cc=’cc’, cxx=’CC’, ftn=’ftn’,
nvcc=’nvcc’, cppflags=None,
cflags=None, cxxflags=None,
fflags=None, ldflags=None,
**kwargs)

Bases: reframe.core.environments.Environment

A class representing a programming environment.

This type of environment adds also attributes for setting the compiler and compilation flags.

3.10. Reference Guide 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

If compilation flags are set to None (the default, if not set otherwise in ReFrame’s configuration), they are not
passed to the make invocation.

If you want to disable completely the propagation of the compilation flags to the make invocation, even if they
are set, you should set the propagate attribute to False.

cc
The C compiler of this programming environment.

Type str

cflags
The C compiler flags of this programming environment.

Type str or None

cppflags
The preprocessor flags of this programming environment.

Type str or None

cxx
The C++ compiler of this programming environment.

Type str or None

cxxflags
The C++ compiler flags of this programming environment.

Type str or None

fflags
The Fortran compiler flags of this programming environment.

Type str or None

ftn
The Fortran compiler of this programming environment.

Type str or None

ldflags
The linker flags of this programming environment.

Type str or None

class reframe.core.environments.save_environment
Bases: object

A context manager for saving and restoring the current environment.

class reframe.core.systems.System(name, descr=None, hostnames=[], partitions=[],
preload_env=None, prefix=’.’, stagedir=None, output-
dir=None, perflogdir=None, resourcesdir=’.’, mod-
ules_system=None)

Bases: object

A representation of a system inside ReFrame.

descr
The description of this system.

hostnames
The hostname patterns associated with this system.

94 Chapter 3. Publications

configure.html#environments-configuration
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

ReFrame Documentation, Release 2.19

modules_system
The modules system name associated with this system.

name
The name of this system.

outputdir
The ReFrame output directory prefix associated with this system.

partitions
All the system partitions associated with this system.

perflogdir
The ReFrame log directory prefix associated with this system.

prefix
The ReFrame prefix associated with this system.

preload_environ
The environment to load whenever ReFrame runs on this system.

Note: New in version 2.19.

resourcesdir
Global resources directory for this system.

You may use this directory for storing large resource files of your regression tests. See here on how to
configure this.

Type str

stagedir
The ReFrame stage directory prefix associated with this system.

class reframe.core.systems.SystemPartition(name, descr=None, scheduler=None,
launcher=None, access=[], environs=[],
resources={}, local_env=None, max_jobs=1)

Bases: object

A representation of a system partition inside ReFrame.

This class is immutable.

descr
A detailed description of this partition.

fullname
Return the fully-qualified name of this partition.

The fully-qualified name is of the form <parent-system-name>:<partition-name>.

Type str

launcher
The type of the backend launcher of this partition.

Returns a subclass of reframe.core.launchers.JobLauncher.

Note: New in version 2.8.

3.10. Reference Guide 95

configure.html#system-configuration
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

ReFrame Documentation, Release 2.19

name
The name of this partition.

Type str

scheduler
The type of the backend scheduler of this partition.

Returns a subclass of reframe.core.schedulers.Job.

Note: Changed in version 2.8.

Prior versions returned a string representing the scheduler and job launcher combination.

3.10.3 Job schedulers and parallel launchers

class reframe.core.schedulers.Job(name, launcher, workdir=’.’, num_tasks=1,
num_tasks_per_node=None, num_tasks_per_core=None,
num_tasks_per_socket=None, num_cpus_per_task=None,
use_smt=None, time_limit=None, script_filename=None,
stdout=None, stderr=None, pre_run=[],
post_run=[], sched_flex_alloc_tasks=None,
sched_access=[], sched_account=None,
sched_partition=None, sched_reservation=None,
sched_nodelist=None, sched_exclude_nodelist=None,
sched_exclusive_access=None, sched_options=[])

Bases: abc.ABC

A job descriptor.

Caution: This is an abstract class. Users may not create jobs directly.

launcher
The parallel program launcher that will be used to launch the parallel executable of this job.

Type reframe.core.launchers.JobLauncher

nodelist
The list of node names assigned to this job.

This attribute is None if no nodes are assigned to the job yet. This attribute is set reliably only for the
slurm backend, i.e., Slurm with accounting enabled. The squeue scheduler backend, i.e., Slurm without
accounting, might not set this attribute for jobs that finish very quickly. For the local scheduler backend,
this returns an one-element list containing the hostname of the current host.

This attribute might be useful in a flexible regression test for determining the actual nodes that were
assigned to the test.

For more information on flexible task allocation, please refer to the corresponding section of the tutorial.

This attribute is not supported by the pbs scheduler backend.

New in version 2.17.

num_tasks
The number of tasks assigned to this job.

96 Chapter 3. Publications

https://docs.python.org/3/library/abc.html#abc.ABC
advanced.html#flexible-regression-tests

ReFrame Documentation, Release 2.19

This attribute is useful in a flexible regression test for determining the actual number of tasks that ReFrame
assigned to the test.

For more information on flexible task allocation, please refer to the tutorial.

options
Options to be passed to the backend job scheduler.

Type List[str]

Default []

class reframe.core.launchers.JobLauncher(options=[])
Bases: abc.ABC

A job launcher.

A job launcher is the executable that actually launches a distributed program to multiple nodes, e.g., mpirun,
srun etc.

Note: This is an abstract class. Regression tests may not instantiate this class directly.

Note: Changed in version 2.8: Job launchers do not get a reference to a job during their initialization.

command(job)
The launcher command.

Parameters job – A reframe.core.schedulers.Job that will be used by this launcher
to properly emit its options. Subclasses may override this method and emit options according
the number of tasks associated to the job etc.

Returns a list of command line arguments (including the launcher executable).

options
List of options to be passed to the job launcher invocation.

Type list of str

Default []

class reframe.core.launchers.LauncherWrapper(target_launcher, wrapper_command, wrap-
per_options=[])

Bases: reframe.core.launchers.JobLauncher

Wrap a launcher object so as to modify its invocation.

This is useful for parallel debuggers. For example, to launch a regression test using the DDT debugger, you can
do the following:

def setup(self, partition, environ, **job_opts):
super().setup(partition, environ, **job_opts)
self.job.launcher = LauncherWrapper(self.job.launcher, 'ddt',

['--offline'])

If the current system partition uses native Slurm for job submission, this setup will generate the following
command in the submission script:

ddt --offline srun <test_executable>

If the current partition uses mpirun instead, it will generate

3.10. Reference Guide 97

advanced.html#flexible-regression-tests
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://www.allinea.com/products/ddt/

ReFrame Documentation, Release 2.19

ddt --offline mpirun -np <num_tasks> ... <test_executable>

Parameters

• target_launcher – The launcher to wrap.

• wrapper_command – The wrapper command.

• wrapper_options – List of options to pass to the wrapper command.

command(job)
The launcher command.

Parameters job – A reframe.core.schedulers.Job that will be used by this launcher
to properly emit its options. Subclasses may override this method and emit options according
the number of tasks associated to the job etc.

Returns a list of command line arguments (including the launcher executable).

reframe.core.launchers.registry.getlauncher(name)
Get launcher by its registered name.

The available names are those specified in the configuration file.

This method may become handy in very special situations, e.g., testing an application that needs to replace the
system partition launcher or if a different launcher must be used for a different programming environment.

For example, if you want to replace the current partition’s launcher with the local one, here is how you can
achieve it:

def setup(self, partition, environ, **job_opts):
super().setup(partition, environ, **job_opts)
self.job.launcher = getlauncher('local')()

Note that this method returns a launcher class type and not an instance of that class. You have to instantiate it
explicitly before assigning it to the launcher attribute of the job.

Note: New in version 2.8.

Parameters name – The name of the launcher to retrieve.

Returns The class of the launcher requested, which is a subclass of reframe.core.
launchers.JobLauncher.

Raises reframe.core.exceptions.ConfigError – if no launcher is registered with that
name.

reframe.core.launchers.registry.register_launcher(name, local=False)
Class decorator for registering new job launchers.

Caution: This decorator is only relevant to developers of new job launchers.

Note: New in version 2.8.

98 Chapter 3. Publications

ReFrame Documentation, Release 2.19

Parameters

• name – The registration name of this launcher

• local – True if launcher may only submit local jobs, False otherwise.

Raises ValueError – if a job launcher is already registered with the same name.

3.10.4 Runtime services

class reframe.core.runtime.HostResources(prefix=None, stagedir=None, outputdir=None,
perflogdir=None, timefmt=None)

Bases: object

Resources associated with ReFrame execution on the current host.

Note: New in version 2.13.

output_prefix
The output prefix directory of ReFrame.

prefix
The prefix directory of ReFrame execution. This is always an absolute path.

Type str

Caution: Users may not set this field.

stage_prefix
The stage prefix directory of ReFrame.

class reframe.core.runtime.HostSystem(system, partname=None)
Bases: object

The host system of the framework.

The host system is a representation of the system that the framework currently runs on.If the framework is
properly configured, the host system is automatically detected. If not, it may be explicitly set by the user.

This class is mainly a proxy of reframe.core.systems.System that stores optionally a partition name
and provides some additional functionality for manipulating system partitions.

All attributes of the reframe.core.systems.System may be accessed directly from this proxy.

Note: New in version 2.13.

partition(name)
Return the system partition name.

Type reframe.core.systems.SystemPartition.

partitions
The partitions of this system.

Type list[reframe.core.systems.SystemPartition].

3.10. Reference Guide 99

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

ReFrame Documentation, Release 2.19

class reframe.core.runtime.RuntimeContext(dict_config, sysdescr=None)
Bases: object

The runtime context of the framework.

This class essentially groups the current host system and the associated resources of the framework on the
current system.

There is a single instance of this class globally in the framework.

Note: New in version 2.13.

modules_system
The modules system used by the current host system.

Type reframe.core.modules.ModulesSystem.

resources
The framework resources.

Type reframe.core.runtime.HostResources

show_config()
Return a textual representation of the current runtime.

system
The current host system.

Type reframe.core.runtime.HostSystem

reframe.core.runtime.runtime()
Retrieve the framework’s runtime context.

Type reframe.core.runtime.RuntimeContext

Note: New in version 2.13.

3.10.5 Modules System API

class reframe.core.modules.ModulesSystem(backend)
A modules system abstraction inside ReFrame.

This class interfaces between the framework internals and the actual modules systems implementation.

conflicted_modules(name)
Return the list of the modules conflicting with module name.

If module name resolves to multiple real modules, then the returned list will be the concatenation of the
conflict lists of all the real modules.

This method returns a list of strings.

emit_load_commands(name)
Return the appropriate shell command for loading module name.

emit_unload_commands(name)
Return the appropriate shell command for unloading module name.

100 Chapter 3. Publications

https://docs.python.org/3/library/functions.html#object

ReFrame Documentation, Release 2.19

is_module_loaded(name)
Check if module name is loaded.

If module name refers to multiple real modules, this method will return True only if all the referees are
loaded.

load_mapping(mapping)
Update the internal module mappings using a single mapping.

Parameters mapping – a string specifying the module mapping. Example syntax: 'm0: m1
m2'.

load_mapping_from_file(filename)
Update the internal module mappings from mappings read from file.

load_module(name, force=False)
Load the module name.

If force is set, forces the loading, unloading first any conflicting modules currently loaded. If module
name refers to multiple real modules, all of the target modules will be loaded.

Returns the list of unloaded modules as strings.

loaded_modules()
Return a list of loaded modules.

This method returns a list of strings.

name
Return the name of this module system.

resolve_module(name)
Resolve module name in the registered module map.

Returns the list of real modules names pointed to by name.

Raises reframe.core.exceptions.ConfigError if the mapping contains a cycle.

searchpath
The module system search path as a list of directories.

searchpath_add(*dirs)
Add dirs to the module system search path.

searchpath_remove(*dirs)
Remove dirs from the module system search path.

unload_all()
Unload all loaded modules.

unload_module(name)
Unload module name.

If module name refers to multiple real modules, all the referred to modules will be unloaded in reverse
order.

version
Return the version of this module system.

3.10.6 Build systems

New in version 2.14.

3.10. Reference Guide 101

ReFrame Documentation, Release 2.19

ReFrame delegates the compilation of the regression test to a build system. Build systems in ReFrame are entities that
are responsible for generating the necessary shell commands for compiling a code. Each build system defines a set of
attributes that users may set in order to customize their compilation. An example usage is the following:

self.build_system = 'SingleSource'
self.build_system.cflags = ['-fopenmp']

Users simply set the build system to use in their regression tests and then they configure it. If no special configuration
is needed for the compilation, users may completely ignore the build systems. ReFrame will automatically pick one
based on the regression test attributes and will try to compile the code.

All build systems in ReFrame derive from the abstract base class reframe.core.buildsystems.
BuildSystem. This class defines a set of common attributes, such us compilers, compilation flags etc. that all
subclasses inherit. It is up to the concrete build system implementations on how to use or not these attributes.

class reframe.core.buildsystems.Autotools
Bases: reframe.core.buildsystems.ConfigureBasedBuildSystem

A build system for compiling Autotools-based projects.

This build system will emit the following commands:

1. Create a build directory if builddir is not None and change to it.

2. Invoke configure to configure the project by setting the corresponding flags for compilers and compiler
flags.

3. Issue make to compile the code.

emit_build_commands(environ)
Return the list of commands for building using this build system.

The build commands may always assume to be issued from the top-level directory of the code that is to be
built.

Parameters environ (reframe.core.environments.ProgEnvironment) – The
programming environment for which to emit the build instructions. The framework passes
here the current programming environment.

Raises BuildSystemError in case of errors when generating the build instructions.

Note: This method is relevant only to developers of new build systems.

class reframe.core.buildsystems.BuildSystem
Bases: abc.ABC

The abstract base class of any build system.

Concrete build systems inherit from this class and must override the emit_build_commands() abstract
function.

cc
The C compiler to be used. If set to None and flags_from_environ is True, the compiler defined
in the current programming environment will be used.

Type str

Default None

cflags
The C compiler flags to be used. If set to None and flags_from_environ is True, the corresponding
flags defined in the current programming environment will be used.

102 Chapter 3. Publications

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

Type List[str]

Default None

cppflags
The preprocessor flags to be used. If set to None and flags_from_environ is True, the correspond-
ing flags defined in the current programming environment will be used.

Type List[str]

Default None

cxx
The C++ compiler to be used. If set to None and flags_from_environ is True, the compiler defined
in the current programming environment will be used.

Type str

Default None

cxxflags
The C++ compiler flags to be used. If set to None and flags_from_environ is True, the corre-
sponding flags defined in the current programming environment will be used.

Type List[str]

Default None

emit_build_commands(environ)
Return the list of commands for building using this build system.

The build commands may always assume to be issued from the top-level directory of the code that is to be
built.

Parameters environ (reframe.core.environments.ProgEnvironment) – The
programming environment for which to emit the build instructions. The framework passes
here the current programming environment.

Raises BuildSystemError in case of errors when generating the build instructions.

Note: This method is relevant only to developers of new build systems.

fflags
The Fortran compiler flags to be used. If set to None and flags_from_environ is True, the corre-
sponding flags defined in the current programming environment will be used.

Type List[str]

Default None

flags_from_environ
Set compiler and compiler flags from the current programming environment if not specified otherwise.

Type bool

Default True

ftn
The Fortran compiler to be used. If set to None and flags_from_environ is True, the compiler
defined in the current programming environment will be used.

Type str

Default None

3.10. Reference Guide 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

ldflags
The linker flags to be used. If set to None and flags_from_environ is True, the corresponding
flags defined in the current programming environment will be used.

Type List[str]

Default None

nvcc
The CUDA compiler to be used. If set to None and flags_from_environ is True, the compiler
defined in the current programming environment will be used.

Type str

Default None

class reframe.core.buildsystems.CMake
Bases: reframe.core.buildsystems.ConfigureBasedBuildSystem

A build system for compiling CMake-based projects.

This build system will emit the following commands:

1. Create a build directory if builddir is not None and change to it.

2. Invoke cmake to configure the project by setting the corresponding CMake flags for compilers and com-
piler flags.

3. Issue make to compile the code.

emit_build_commands(environ)
Return the list of commands for building using this build system.

The build commands may always assume to be issued from the top-level directory of the code that is to be
built.

Parameters environ (reframe.core.environments.ProgEnvironment) – The
programming environment for which to emit the build instructions. The framework passes
here the current programming environment.

Raises BuildSystemError in case of errors when generating the build instructions.

Note: This method is relevant only to developers of new build systems.

class reframe.core.buildsystems.ConfigureBasedBuildSystem
Bases: reframe.core.buildsystems.BuildSystem

Abstract base class for configured-based build systems.

builddir
The CMake build directory, where all the generated files will be placed.

Type str

Default None

config_opts
Additional configuration options to be passed to the CMake invocation.

Type List[str]

Default []

104 Chapter 3. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

make_opts
Options to be passed to the subsequent make invocation.

Type List[str]

Default []

max_concurrency
Same as for the Make build system.

Type integer

Default 1

srcdir
The top-level directory of the code.

This is set automatically by the framework based on the reframe.core.pipeline.
RegressionTest.sourcepath attribute.

Type str

Default None

class reframe.core.buildsystems.Make
Bases: reframe.core.buildsystems.BuildSystem

A build system for compiling codes using make.

The generated build command has the following form:

make -j [N] [-f MAKEFILE] [-C SRCDIR] CC="X" CXX="X" FC="X" NVCC="X" CPPFLAGS="X"
→˓CFLAGS="X" CXXFLAGS="X" FCFLAGS="X" LDFLAGS="X" OPTIONS

The compiler and compiler flags variables will only be passed if they are not None. Their value is determined
by the corresponding attributes of BuildSystem. If you want to completely disable passing these variables
to the make invocation, you should make sure not to set any of the correspoding attributes and set also the
BuildSystem.flags_from_environ flag to False.

emit_build_commands(environ)
Return the list of commands for building using this build system.

The build commands may always assume to be issued from the top-level directory of the code that is to be
built.

Parameters environ (reframe.core.environments.ProgEnvironment) – The
programming environment for which to emit the build instructions. The framework passes
here the current programming environment.

Raises BuildSystemError in case of errors when generating the build instructions.

Note: This method is relevant only to developers of new build systems.

makefile
Instruct build system to use this Makefile. This option is useful when having non-standard Makefile names.

Type str

Default None

max_concurrency
Limit concurrency for make jobs. This attribute controls the -j option passed to make. If not None,
make will be invoked as make -j max_concurrency. Otherwise, it will invoked as make -j.

3.10. Reference Guide 105

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

Type integer

Default 1

Note: Changed in version 2.19: The default value is now 1

options
Append these options to the make invocation. This variable is also useful for passing variables or targets
to make.

Type List[str]

Default []

srcdir
The top-level directory of the code.

This is set automatically by the framework based on the reframe.core.pipeline.
RegressionTest.sourcepath attribute.

Type str

Default None

class reframe.core.buildsystems.SingleSource
Bases: reframe.core.buildsystems.BuildSystem

A build system for compiling a single source file.

The generated build command will have the following form:

COMP CPPFLAGS XFLAGS SRCFILE -o EXEC LDFLAGS

• COMP is the required compiler for compiling SRCFILE. This build system will automatically detect the
programming language of the source file and pick the correct compiler. See also the SingleSource.
lang attribute.

• CPPFLAGS are the preprocessor flags and are passed to any compiler.

• XFLAGS is any of CFLAGS, CXXFLAGS or FCFLAGS depending on the programming language of the
source file.

• SRCFILE is the source file to be compiled. This is set up automatically by the framework. See also the
SingleSource.srcfile attribute.

• EXEC is the executable to be generated. This is also set automatically by the framework. See also the
SingleSource.executable attribute.

• LDFLAGS are the linker flags.

For CUDA codes, the language assumed is C++ (for the compilation flags) and the compiler used is
BuildSystem.nvcc.

emit_build_commands(environ)
Return the list of commands for building using this build system.

The build commands may always assume to be issued from the top-level directory of the code that is to be
built.

Parameters environ (reframe.core.environments.ProgEnvironment) – The
programming environment for which to emit the build instructions. The framework passes
here the current programming environment.

106 Chapter 3. Publications

https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

Raises BuildSystemError in case of errors when generating the build instructions.

Note: This method is relevant only to developers of new build systems.

executable
The executable file to be generated.

This is set automatically by the framework based on the reframe.core.pipeline.
RegressionTest.executable attribute.

Type str or None

include_path
The include path to be used for this compilation.

All the elements of this list will be appended to the BuildSystem.cppflags, by prepending to each
of them the -I option.

Type List[str]

Default []

lang
The programming language of the file that needs to be compiled. If not specified, the build system will
try to figure it out automatically based on the extension of the source file. The automatically detected
extensions are the following:

• C: .c.

• C++: .cc, .cp, .cxx, .cpp, .CPP, .c++ and .C.

• Fortran: .f, .for, .ftn, .F, .FOR, .fpp, .FPP, .FTN, .f90, .f95, .f03, .f08, .F90, .F95, .F03 and .F08.

• CUDA: .cu.

Type str or None

srcfile
The source file to compile. This is automatically set by the framework based on the reframe.core.
pipeline.RegressionTest.sourcepath attribute.

Type str or None

3.11 Sanity Functions Reference

Sanity deferrable functions.

This module provides functions to be used with the sanity_patterns and :attr‘perf_patterns <re-
frame.core.pipeline.RegressionTest.perf_patterns>‘. The key characteristic of these functions is that they are not exe-
cuted the time they are called. Instead they are evaluated at a later point by the framework (inside the check_sanity
and check_performance methods). Any sanity function may be evaluated either explicitly or implicitly.

3.11.1 Explicit evaluation of sanity functions

Sanity functions may be evaluated at any time by calling the evaluate on their return value.

3.11. Sanity Functions Reference 107

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 2.19

3.11.2 Implicit evaluation of sanity functions

Sanity functions may also be evaluated implicitly in the following situations:

• When you try to get their truthy value by either explicitly or implicitly calling bool on their return value. This
implies that when you include the result of a sanity function in an if statement or when you apply the and, or
or not operators, this will trigger their immediate evaluation.

• When you try to iterate over their result. This implies that including the result of a sanity function in a for
statement will trigger its evaluation immediately.

• When you try to explicitly or implicitly get its string representation by calling str on its result. This implies
that printing the return value of a sanity function will automatically trigger its evaluation.

This module provides three categories of sanity functions:

1. Deferrable replacements of certain Python built-in functions. These functions simply delegate their execution
to the actual built-ins.

2. Assertion functions. These functions are used to assert certain conditions and they either return True or raise
reframe.core.exceptions.SanityError with a message describing the error. Users may provide
their own formatted messages through the msg argument. For example, in the following call to assert_eq()
the {0} and {1} placeholders will obtain the actual arguments passed to the assertion function.

assert_eq(a, 1, msg="{0} is not equal to {1}")

If in the user provided message more placeholders are used than the arguments of the assert function (except the
msg argument), no argument substitution will be performed in the user message.

3. Utility functions. The are functions that you will normally use when defining sanity_patterns and
perf_patterns. They include, but are not limited to, functions to iterate over regex matches in a file,
extracting and converting values from regex matches, computing statistical information on series of data etc.

reframe.utility.sanity.abs(x)
Replacement for the built-in abs() function.

reframe.utility.sanity.all(iterable)
Replacement for the built-in all() function.

reframe.utility.sanity.allx(iterable)
Same as the built-in all() function, except that it returns False if iterable is empty.

New in version 2.13.

reframe.utility.sanity.and_(a, b)
Deferrable version of the and operator.

Returns a and b.

reframe.utility.sanity.any(iterable)
Replacement for the built-in any() function.

reframe.utility.sanity.assert_bounded(val, lower=None, upper=None, msg=None)
Assert that lower <= val <= upper.

Parameters

• val – The value to check.

• lower – The lower bound. If None, it defaults to -inf.

• upper – The upper bound. If None, it defaults to inf.

Returns True on success.

108 Chapter 3. Publications

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/compound_stmts.html#for
https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/library/functions.html#any

ReFrame Documentation, Release 2.19

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_eq(a, b, msg=None)
Assert that a == b.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_false(x, msg=None)
Assert that x is evaluated to False.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_found(patt, filename, msg=None, encoding=’utf-8’)
Assert that regex pattern patt is found in the file filename.

Parameters

• patt – The regex pattern to search. Any standard Python regular expression is accepted.

• filename – The name of the file to examine. Any OSError raised while processing the
file will be propagated as a reframe.core.exceptions.SanityError.

• encoding – The name of the encoding used to decode the file.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_ge(a, b, msg=None)
Assert that a >= b.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_gt(a, b, msg=None)
Assert that a > b.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_in(item, container, msg=None)
Assert that item is in container.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_le(a, b, msg=None)
Assert that a <= b.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_lt(a, b, msg=None)
Assert that a < b.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

3.11. Sanity Functions Reference 109

https://docs.python.org/3.6/library/re.html#regular-expression-syntax
https://docs.python.org/3/library/exceptions.html#OSError

ReFrame Documentation, Release 2.19

reframe.utility.sanity.assert_ne(a, b, msg=None)
Assert that a != b.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_not_found(patt, filename, msg=None, encoding=’utf-8’)
Assert that regex pattern patt is not found in the file filename.

This is the inverse of assert_found().

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_not_in(item, container, msg=None)
Assert that item is not in container.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_reference(val, ref, lower_thres=None, upper_thres=None,
msg=None)

Assert that value val respects the reference value ref.

Parameters

• val – The value to check.

• ref – The reference value.

• lower_thres – The lower threshold value expressed as a negative decimal fraction of the
reference value. Must be in [-1, 0] for ref >= 0.0 and in [-inf, 0] for ref < 0.0. If None, no
lower thresholds is applied.

• upper_thres – The upper threshold value expressed as a decimal fraction of the refer-
ence value. Must be in [0, inf] for ref >= 0.0 and in [0, 1] for ref < 0.0. If None, no upper
thresholds is applied.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails or if the lower and
upper thresholds do not have appropriate values.

reframe.utility.sanity.assert_true(x, msg=None)
Assert that x is evaluated to True.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.avg(iterable)
Return the average of all the elements of iterable.

reframe.utility.sanity.chain(*iterables)
Replacement for the itertools.chain() function.

reframe.utility.sanity.contains(seq, key)
Deferrable version of the in operator.

Returns key in seq.

reframe.utility.sanity.count(iterable)
Return the element count of iterable.

110 Chapter 3. Publications

https://docs.python.org/3/library/itertools.html#itertools.chain
https://docs.python.org/3/reference/expressions.html#in

ReFrame Documentation, Release 2.19

This is similar to the built-in len(), except that it can also handle any argument that supports iteration, includ-
ing generators.

reframe.utility.sanity.count_uniq(iterable)
Return the unique element count of iterable.

reframe.utility.sanity.enumerate(iterable, start=0)
Replacement for the built-in enumerate() function.

reframe.utility.sanity.extractall(patt, filename, tag=0, conv=None, encoding=’utf-8’)
Extract all values from the capturing group tag of a matching regex patt in the file filename.

Parameters

• patt – The regex pattern to search. Any standard Python regular expression is accepted.

• filename – The name of the file to examine.

• encoding – The name of the encoding used to decode the file.

• tag – The regex capturing group to be extracted. Group 0 refers always to the whole match.
Since the file is processed line by line, this means that group 0 returns the whole line that
was matched.

• conv – A callable that takes a single argument and returns a new value. If provided, it will
be used to convert the extracted values before returning them.

Returns A list of the extracted values from the matched regex.

Raises reframe.core.exceptions.SanityError – In case of errors.

reframe.utility.sanity.extractiter(patt, filename, tag=0, conv=None, encoding=’utf-8’)
Get an iterator over the values extracted from the capturing group tag of a matching regex patt in the file
filename.

This function is equivalent to extractall() except that it returns a generator object, instead of a list, which
you can use to iterate over the extracted values.

reframe.utility.sanity.extractsingle(patt, filename, tag=0, conv=None, item=0,
encoding=’utf-8’)

Extract a single value from the capturing group tag of a matching regex patt in the file filename.

This function is equivalent to extractall(patt, filename, tag, conv)[item], except that it
raises a SanityError if item is out of bounds.

Parameters

• patt – as in extractall().

• filename – as in extractall().

• encoding – as in extractall().

• tag – as in extractall().

• conv – as in extractall().

• item – the specific element to extract.

Returns The extracted value.

Raises reframe.core.exceptions.SanityError – In case of errors.

reframe.utility.sanity.filter(function, iterable)
Replacement for the built-in filter() function.

3.11. Sanity Functions Reference 111

https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3.6/library/re.html#regular-expression-syntax
https://docs.python.org/3/library/functions.html#filter

ReFrame Documentation, Release 2.19

reframe.utility.sanity.findall(patt, filename, encoding=’utf-8’)
Get all matches of regex patt in filename.

Parameters

• patt – The regex pattern to search. Any standard Python regular expression is accepted.

• filename – The name of the file to examine.

• encoding – The name of the encoding used to decode the file.

Returns A list of raw regex match objects.

Raises reframe.core.exceptions.SanityError – In case an OSError is raised while
processing filename.

reframe.utility.sanity.finditer(patt, filename, encoding=’utf-8’)
Get an iterator over the matches of the regex patt in filename.

This function is equivalent to findall() except that it returns a generator object instead of a list, which you
can use to iterate over the raw matches.

reframe.utility.sanity.getattr(obj, attr, *args)
Replacement for the built-in getattr() function.

reframe.utility.sanity.getitem(container, item)
Get item from container.

container may refer to any container that can be indexed.

Raises reframe.core.exceptions.SanityError – In case item cannot be retrieved
from container.

reframe.utility.sanity.glob(pathname, *, recursive=False)
Replacement for the glob.glob() function.

reframe.utility.sanity.hasattr(obj, name)
Replacement for the built-in hasattr() function.

reframe.utility.sanity.iglob(pathname, recursive=False)
Replacement for the glob.iglob() function.

reframe.utility.sanity.len(s)
Replacement for the built-in len() function.

reframe.utility.sanity.map(function, *iterables)
Replacement for the built-in map() function.

reframe.utility.sanity.max(*args)
Replacement for the built-in max() function.

reframe.utility.sanity.min(*args)
Replacement for the built-in min() function.

reframe.utility.sanity.not_(a)
Deferrable version of the not operator.

Returns not a.

reframe.utility.sanity.or_(a, b)
Deferrable version of the or operator.

Returns a or b.

reframe.utility.sanity.reversed(seq)
Replacement for the built-in reversed() function.

112 Chapter 3. Publications

https://docs.python.org/3.6/library/re.html#regular-expression-syntax
https://docs.python.org/3.6/library/re.html#match-objects
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/functions.html#getattr
https://docs.python.org/3/library/glob.html#glob.glob
https://docs.python.org/3/library/functions.html#hasattr
https://docs.python.org/3/library/glob.html#glob.iglob
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/library/functions.html#reversed

ReFrame Documentation, Release 2.19

reframe.utility.sanity.round(number, *args)
Replacement for the built-in round() function.

reframe.utility.sanity.sanity_function(func)

Decorator Sanity function decorator.

Decorate any function to be used in sanity and/or performance patterns with this decorator:

@sanity_function
def myfunc(*args):

do_sth()

This decorator is an alias to the reframe.core.deferrable.deferrable() decorator. The following
function definition is equivalent to the above:

@deferrable
def myfunc(*args):

do_sth()

reframe.utility.sanity.setattr(obj, name, value)
Replacement for the built-in setattr() function.

reframe.utility.sanity.sorted(iterable, *args)
Replacement for the built-in sorted() function.

reframe.utility.sanity.sum(iterable, *args)
Replacement for the built-in sum() function.

reframe.utility.sanity.zip(*iterables)
Replacement for the built-in zip() function.

3.11. Sanity Functions Reference 113

https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#setattr
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#zip

ReFrame Documentation, Release 2.19

114 Chapter 3. Publications

Python Module Index

r
reframe.core.buildsystems, 102
reframe.core.decorators, 82
reframe.core.environments, 93
reframe.core.launchers, 97
reframe.core.launchers.registry, 98
reframe.core.pipeline, 82
reframe.core.runtime, 99
reframe.core.systems, 94
reframe.utility.sanity, 107

115

ReFrame Documentation, Release 2.19

116 Python Module Index

Index

A
abs() (in module reframe.utility.sanity), 108
all() (in module reframe.utility.sanity), 108
allx() (in module reframe.utility.sanity), 108
and_() (in module reframe.utility.sanity), 108
any() (in module reframe.utility.sanity), 108
assert_bounded() (in module re-

frame.utility.sanity), 108
assert_eq() (in module reframe.utility.sanity), 109
assert_false() (in module reframe.utility.sanity),

109
assert_found() (in module reframe.utility.sanity),

109
assert_ge() (in module reframe.utility.sanity), 109
assert_gt() (in module reframe.utility.sanity), 109
assert_in() (in module reframe.utility.sanity), 109
assert_le() (in module reframe.utility.sanity), 109
assert_lt() (in module reframe.utility.sanity), 109
assert_ne() (in module reframe.utility.sanity), 109
assert_not_found() (in module re-

frame.utility.sanity), 110
assert_not_in() (in module reframe.utility.sanity),

110
assert_reference() (in module re-

frame.utility.sanity), 110
assert_true() (in module reframe.utility.sanity), 110
Autotools (class in reframe.core.buildsystems), 102
avg() (in module reframe.utility.sanity), 110

B
build_system (reframe.core.pipeline.RegressionTest

attribute), 83
builddir (reframe.core.buildsystems.ConfigureBasedBuildSystem

attribute), 104
BuildSystem (class in reframe.core.buildsystems), 102

C
cc (reframe.core.buildsystems.BuildSystem attribute),

102

cc (reframe.core.environments.ProgEnvironment at-
tribute), 94

cflags (reframe.core.buildsystems.BuildSystem at-
tribute), 102

cflags (reframe.core.environments.ProgEnvironment
attribute), 94

chain() (in module reframe.utility.sanity), 110
check_performance() (re-

frame.core.pipeline.RegressionTest method),
83

check_sanity() (re-
frame.core.pipeline.RegressionTest method),
83

cleanup() (reframe.core.pipeline.RegressionTest
method), 83

CMake (class in reframe.core.buildsystems), 104
command() (reframe.core.launchers.JobLauncher

method), 97
command() (reframe.core.launchers.LauncherWrapper

method), 98
compile() (reframe.core.pipeline.RegressionTest

method), 83
compile() (reframe.core.pipeline.RunOnlyRegressionTest

method), 92
compile_wait() (re-

frame.core.pipeline.RegressionTest method),
83

compile_wait() (re-
frame.core.pipeline.RunOnlyRegressionTest
method), 92

CompileOnlyRegressionTest (class in re-
frame.core.pipeline), 92

config_opts (reframe.core.buildsystems.ConfigureBasedBuildSystem
attribute), 104

ConfigureBasedBuildSystem (class in re-
frame.core.buildsystems), 104

conflicted_modules() (re-
frame.core.modules.ModulesSystem method),
100

contains() (in module reframe.utility.sanity), 110

117

ReFrame Documentation, Release 2.19

count() (in module reframe.utility.sanity), 110
count_uniq() (in module reframe.utility.sanity), 111
cppflags (reframe.core.buildsystems.BuildSystem at-

tribute), 103
cppflags (reframe.core.environments.ProgEnvironment

attribute), 94
current_environ (re-

frame.core.pipeline.RegressionTest attribute),
83

current_partition (re-
frame.core.pipeline.RegressionTest attribute),
84

current_system (re-
frame.core.pipeline.RegressionTest attribute),
84

cxx (reframe.core.buildsystems.BuildSystem attribute),
103

cxx (reframe.core.environments.ProgEnvironment
attribute), 94

cxxflags (reframe.core.buildsystems.BuildSystem at-
tribute), 103

cxxflags (reframe.core.environments.ProgEnvironment
attribute), 94

D
descr (reframe.core.pipeline.RegressionTest attribute),

84
descr (reframe.core.systems.System attribute), 94
descr (reframe.core.systems.SystemPartition attribute),

95
details() (reframe.core.environments.Environment

method), 93

E
emit_build_commands() (re-

frame.core.buildsystems.Autotools method),
102

emit_build_commands() (re-
frame.core.buildsystems.BuildSystem method),
103

emit_build_commands() (re-
frame.core.buildsystems.CMake method),
104

emit_build_commands() (re-
frame.core.buildsystems.Make method),
105

emit_build_commands() (re-
frame.core.buildsystems.SingleSource method),
106

emit_load_commands() (re-
frame.core.modules.ModulesSystem method),
100

emit_unload_commands() (re-
frame.core.modules.ModulesSystem method),

100
enumerate() (in module reframe.utility.sanity), 111
Environment (class in reframe.core.environments), 93
EnvironmentSnapshot (class in re-

frame.core.environments), 93
exclusive_access (re-

frame.core.pipeline.RegressionTest attribute),
84

executable (reframe.core.buildsystems.SingleSource
attribute), 107

executable (reframe.core.pipeline.RegressionTest at-
tribute), 84

executable_opts (re-
frame.core.pipeline.RegressionTest attribute),
84

extra_resources (re-
frame.core.pipeline.RegressionTest attribute),
84

extractall() (in module reframe.utility.sanity), 111
extractiter() (in module reframe.utility.sanity), 111
extractsingle() (in module reframe.utility.sanity),

111

F
fflags (reframe.core.buildsystems.BuildSystem at-

tribute), 103
fflags (reframe.core.environments.ProgEnvironment

attribute), 94
filter() (in module reframe.utility.sanity), 111
findall() (in module reframe.utility.sanity), 111
finditer() (in module reframe.utility.sanity), 112
flags_from_environ (re-

frame.core.buildsystems.BuildSystem at-
tribute), 103

ftn (reframe.core.buildsystems.BuildSystem attribute),
103

ftn (reframe.core.environments.ProgEnvironment
attribute), 94

fullname (reframe.core.systems.SystemPartition
attribute), 95

G
getattr() (in module reframe.utility.sanity), 112
getitem() (in module reframe.utility.sanity), 112
getlauncher() (in module re-

frame.core.launchers.registry), 98
glob() (in module reframe.utility.sanity), 112

H
hasattr() (in module reframe.utility.sanity), 112
hostnames (reframe.core.systems.System attribute), 94
HostResources (class in reframe.core.runtime), 99
HostSystem (class in reframe.core.runtime), 99

118 Index

ReFrame Documentation, Release 2.19

I
iglob() (in module reframe.utility.sanity), 112
include_path (reframe.core.buildsystems.SingleSource

attribute), 107
info() (reframe.core.pipeline.RegressionTest method),

85
is_loaded (reframe.core.environments.Environment

attribute), 93
is_loaded (reframe.core.environments.EnvironmentSnapshot

attribute), 93
is_local() (reframe.core.pipeline.RegressionTest

method), 85
is_module_loaded() (re-

frame.core.modules.ModulesSystem method),
100

J
Job (class in reframe.core.schedulers), 96
job (reframe.core.pipeline.RegressionTest attribute), 85
JobLauncher (class in reframe.core.launchers), 97

K
keep_files (reframe.core.pipeline.RegressionTest at-

tribute), 86

L
lang (reframe.core.buildsystems.SingleSource at-

tribute), 107
launcher (reframe.core.schedulers.Job attribute), 96
launcher (reframe.core.systems.SystemPartition

attribute), 95
LauncherWrapper (class in reframe.core.launchers),

97
ldflags (reframe.core.buildsystems.BuildSystem at-

tribute), 103
ldflags (reframe.core.environments.ProgEnvironment

attribute), 94
len() (in module reframe.utility.sanity), 112
load_mapping() (re-

frame.core.modules.ModulesSystem method),
101

load_mapping_from_file() (re-
frame.core.modules.ModulesSystem method),
101

load_module() (re-
frame.core.modules.ModulesSystem method),
101

loaded_modules() (re-
frame.core.modules.ModulesSystem method),
101

local (reframe.core.pipeline.RegressionTest attribute),
86

logger (reframe.core.pipeline.RegressionTest at-
tribute), 86

M
maintainers (reframe.core.pipeline.RegressionTest

attribute), 86
Make (class in reframe.core.buildsystems), 105
make_opts (reframe.core.buildsystems.ConfigureBasedBuildSystem

attribute), 104
makefile (reframe.core.buildsystems.Make attribute),

105
map() (in module reframe.utility.sanity), 112
max() (in module reframe.utility.sanity), 112
max_concurrency (re-

frame.core.buildsystems.ConfigureBasedBuildSystem
attribute), 105

max_concurrency (reframe.core.buildsystems.Make
attribute), 105

min() (in module reframe.utility.sanity), 112
modules (reframe.core.environments.Environment at-

tribute), 93
modules (reframe.core.pipeline.RegressionTest at-

tribute), 86
modules_system (re-

frame.core.runtime.RuntimeContext attribute),
100

modules_system (reframe.core.systems.System at-
tribute), 94

ModulesSystem (class in reframe.core.modules), 100

N
name (reframe.core.environments.Environment at-

tribute), 93
name (reframe.core.modules.ModulesSystem attribute),

101
name (reframe.core.pipeline.RegressionTest attribute),

86
name (reframe.core.systems.System attribute), 95
name (reframe.core.systems.SystemPartition attribute),

95
nodelist (reframe.core.schedulers.Job attribute), 96
not_() (in module reframe.utility.sanity), 112
num_cpus_per_task (re-

frame.core.pipeline.RegressionTest attribute),
86

num_gpus_per_node (re-
frame.core.pipeline.RegressionTest attribute),
86

num_tasks (reframe.core.pipeline.RegressionTest at-
tribute), 87

num_tasks (reframe.core.schedulers.Job attribute), 96
num_tasks_per_core (re-

frame.core.pipeline.RegressionTest attribute),
87

num_tasks_per_node (re-
frame.core.pipeline.RegressionTest attribute),
87

Index 119

ReFrame Documentation, Release 2.19

num_tasks_per_socket (re-
frame.core.pipeline.RegressionTest attribute),
87

nvcc (reframe.core.buildsystems.BuildSystem attribute),
104

O
options (reframe.core.buildsystems.Make attribute),

106
options (reframe.core.launchers.JobLauncher at-

tribute), 97
options (reframe.core.schedulers.Job attribute), 97
or_() (in module reframe.utility.sanity), 112
output_prefix (reframe.core.runtime.HostResources

attribute), 99
outputdir (reframe.core.pipeline.RegressionTest at-

tribute), 87
outputdir (reframe.core.systems.System attribute), 95

P
parameterized_test() (in module re-

frame.core.decorators), 82
partition() (reframe.core.runtime.HostSystem

method), 99
partitions (reframe.core.runtime.HostSystem at-

tribute), 99
partitions (reframe.core.systems.System attribute),

95
perf_patterns (re-

frame.core.pipeline.RegressionTest attribute),
87

perflogdir (reframe.core.systems.System attribute),
95

poll() (reframe.core.pipeline.RegressionTest method),
88

post_run (reframe.core.pipeline.RegressionTest
attribute), 88

postbuild_cmd (re-
frame.core.pipeline.RegressionTest attribute),
88

pre_run (reframe.core.pipeline.RegressionTest at-
tribute), 88

prebuild_cmd (reframe.core.pipeline.RegressionTest
attribute), 88

prefix (reframe.core.pipeline.RegressionTest at-
tribute), 88

prefix (reframe.core.runtime.HostResources attribute),
99

prefix (reframe.core.systems.System attribute), 95
preload_environ (reframe.core.systems.System at-

tribute), 95
ProgEnvironment (class in re-

frame.core.environments), 93

R
readonly_files (re-

frame.core.pipeline.RegressionTest attribute),
88

reference (reframe.core.pipeline.RegressionTest at-
tribute), 89

reframe.CompileOnlyRegressionTest (built-
in class), 81

reframe.core.buildsystems (module), 102
reframe.core.decorators (module), 82
reframe.core.environments (module), 93
reframe.core.launchers (module), 97
reframe.core.launchers.registry (module),

98
reframe.core.pipeline (module), 82
reframe.core.runtime (module), 99
reframe.core.systems (module), 94
reframe.parameterized_test() (built-in func-

tion), 82
reframe.RegressionTest (built-in class), 81
reframe.RunOnlyRegressionTest (built-in

class), 81
reframe.simple_test() (built-in function), 81
reframe.utility.sanity (module), 107
register_launcher() (in module re-

frame.core.launchers.registry), 98
RegressionTest (class in reframe.core.pipeline), 82
required_version() (in module re-

frame.core.decorators), 82
resolve_module() (re-

frame.core.modules.ModulesSystem method),
101

resources (reframe.core.runtime.RuntimeContext at-
tribute), 100

resourcesdir (reframe.core.systems.System at-
tribute), 95

reversed() (in module reframe.utility.sanity), 112
round() (in module reframe.utility.sanity), 112
run() (reframe.core.pipeline.CompileOnlyRegressionTest

method), 92
run() (reframe.core.pipeline.RegressionTest method),

89
run() (reframe.core.pipeline.RunOnlyRegressionTest

method), 92
RunOnlyRegressionTest (class in re-

frame.core.pipeline), 92
runtime() (in module reframe.core.runtime), 100
RuntimeContext (class in reframe.core.runtime), 99

S
sanity_function() (in module re-

frame.utility.sanity), 113
sanity_patterns (re-

frame.core.pipeline.RegressionTest attribute),

120 Index

ReFrame Documentation, Release 2.19

89
save_environment (class in re-

frame.core.environments), 94
scheduler (reframe.core.systems.SystemPartition at-

tribute), 96
searchpath (reframe.core.modules.ModulesSystem at-

tribute), 101
searchpath_add() (re-

frame.core.modules.ModulesSystem method),
101

searchpath_remove() (re-
frame.core.modules.ModulesSystem method),
101

setattr() (in module reframe.utility.sanity), 113
setup() (reframe.core.pipeline.CompileOnlyRegressionTest

method), 92
setup() (reframe.core.pipeline.RegressionTest

method), 89
show_config() (re-

frame.core.runtime.RuntimeContext method),
100

simple_test() (in module reframe.core.decorators),
82

SingleSource (class in reframe.core.buildsystems),
106

sorted() (in module reframe.utility.sanity), 113
sourcepath (reframe.core.pipeline.RegressionTest at-

tribute), 90
sourcesdir (reframe.core.pipeline.RegressionTest at-

tribute), 90
srcdir (reframe.core.buildsystems.ConfigureBasedBuildSystem

attribute), 105
srcdir (reframe.core.buildsystems.Make attribute), 106
srcfile (reframe.core.buildsystems.SingleSource at-

tribute), 107
stage_prefix (reframe.core.runtime.HostResources

attribute), 99
stagedir (reframe.core.pipeline.RegressionTest

attribute), 90
stagedir (reframe.core.systems.System attribute), 95
stderr (reframe.core.pipeline.CompileOnlyRegressionTest

attribute), 92
stderr (reframe.core.pipeline.RegressionTest at-

tribute), 90
stdout (reframe.core.pipeline.CompileOnlyRegressionTest

attribute), 92
stdout (reframe.core.pipeline.RegressionTest at-

tribute), 90
strict_check (reframe.core.pipeline.RegressionTest

attribute), 90
sum() (in module reframe.utility.sanity), 113
System (class in reframe.core.systems), 94
system (reframe.core.runtime.RuntimeContext at-

tribute), 100

SystemPartition (class in reframe.core.systems), 95

T
tags (reframe.core.pipeline.RegressionTest attribute),

91
time_limit (reframe.core.pipeline.RegressionTest at-

tribute), 91

U
unload_all() (reframe.core.modules.ModulesSystem

method), 101
unload_module() (re-

frame.core.modules.ModulesSystem method),
101

use_multithreading (re-
frame.core.pipeline.RegressionTest attribute),
91

V
valid_prog_environs (re-

frame.core.pipeline.RegressionTest attribute),
91

valid_systems (re-
frame.core.pipeline.RegressionTest attribute),
91

variables (reframe.core.environments.Environment
attribute), 93

variables (reframe.core.pipeline.RegressionTest at-
tribute), 91

version (reframe.core.modules.ModulesSystem at-
tribute), 101

W
wait() (reframe.core.pipeline.CompileOnlyRegressionTest

method), 93
wait() (reframe.core.pipeline.RegressionTest method),

92

Z
zip() (in module reframe.utility.sanity), 113

Index 121

	Use Cases
	Latest Release
	Publications
	Getting Started
	Configuring ReFrame for Your Site
	The Regression Test Pipeline
	ReFrame Tutorial
	Customizing Further a Regression Test
	Understanding the Mechanism of Sanity Functions
	Running ReFrame
	Use Cases
	About ReFrame
	Reference Guide
	Sanity Functions Reference

	Python Module Index
	Index

