
ReFrame Documentation
Release 3.10.0

CSCS

Jan 24, 2022

TABLE OF CONTENTS

1 Use Cases 3

2 Publications 5
2.1 Getting Started . 5
2.2 ReFrame Tutorials . 7
2.3 Configuring ReFrame for Your Site . 111
2.4 Advanced Topics . 127
2.5 Use Cases . 142
2.6 Migrating to ReFrame 3 . 145
2.7 ReFrame Manuals . 148
2.8 ReFrame Test Library (experimental) . 272

Python Module Index 281

Index 283

i

ii

ReFrame Documentation, Release 3.10.0

ReFrame is a powerful framework for writing system regression tests and benchmarks, specifically targeted to HPC
systems. The goal of the framework is to abstract away the complexity of the interactions with the system, separating
the logic of a test from the low-level details, which pertain to the system configuration and setup. This allows users to
write portable tests in a declarative way that describes only the test’s functionality.

Tests in ReFrame are simple Python classes that specify the basic variables and parameters of the test. ReFrame offers
an intuitive and very powerful syntax that allows users to create test libraries, test factories, as well as complete test
workflows using other tests as fixtures. ReFrame will load the tests and send them down a well-defined pipeline that will
execute them in parallel. The stages of this pipeline take care of all the system interaction details, such as programming
environment switching, compilation, job submission, job status query, sanity checking and performance assessment.

ReFrame also offers a high-level and flexible abstraction for writing sanity and performance checks for your regression
tests, without having to care about the details of parsing output files, searching for patterns and testing against reference
values for different systems.

Finally, ReFrame offers a powerful and efficient runtime for running and managing the execution of tests, as well as
integration with common logging facilities, where ReFrame can send live data from currently running performance
tests.

TABLE OF CONTENTS 1

ReFrame Documentation, Release 3.10.0

2 TABLE OF CONTENTS

CHAPTER

ONE

USE CASES

A pre-release of ReFrame has been in production at the Swiss National Supercomputing Centre since early December
2016. The first public release was in May 2017 and it is being actively developed since then. Several HPC centers around
the globe have adopted ReFrame for testing and benchmarking their systems in an easy, consistent and reproducible
way. You can read a couple of use cases here.

3

http://www.cscs.ch
https://github.com/eth-cscs/reframe/releases/tag/v2.2
usecases.html

ReFrame Documentation, Release 3.10.0

4 Chapter 1. Use Cases

CHAPTER

TWO

PUBLICATIONS

• Slides [pdf] @ 6th EasyBuild User Meeting 2021.

• Slides [pdf] @ 5th EasyBuild User Meeting 2020.

• Slides [pdf] @ HPC System Testing BoF, SC’19.

• Slides [pdf] @ HUST 2019, SC’19.

• Slides [pdf] @ HPC Knowledge Meeting ‘19.

• Slides [pdf] & Talk @ FOSDEM’19.

• Slides [pdf] @ 4th EasyBuild User Meeting.

• Slides [pdf] @ HUST 2018, SC’18.

• Slides [pdf] @ CSCS User Lab Day 2018.

• Slides [pdf] @ HPC Advisory Council 2018.

• Slides [pdf] @ SC17.

• Slides [pdf] @ CUG 2017.

2.1 Getting Started

2.1.1 Requirements

• Python 3.6 or higher. Python 2 is not supported.

• The required Python packages are the following:

archspec==0.1.3
argcomplete==1.12.3
coverage==6.2
importlib_metadata==4.0.1; python_version < '3.8'
jsonschema==3.2.0
lxml==4.7.1
pytest==6.2.5
pytest-forked==1.4.0
pytest-parallel==0.1.1
PyYAML==6.0
requests==2.26.0
semver==2.13.0

(continues on next page)

5

https://drive.google.com/file/d/1kNZu1QNBDDsbKarzwNWYjTGKgOukg-96/view?usp=sharing
https://easybuild.io/eum21/
https://drive.google.com/open?id=1W7R5lfRkXvBpVDSZ7dVBadk_d3K4dFrS
https://github.com/easybuilders/easybuild/wiki/5th-EasyBuild-User-Meeting
https://drive.google.com/open?id=1Z3faPh9OSSXvlLHL07co3MRRn443dYsY
https://sc19.supercomputing.org/session/?sess=sess324
https://drive.google.com/open?id=1JOFqY3ejbR1X5kTn_IZyp1GlCd2ZZS58
https://sc19.supercomputing.org/session/?sess=sess116
https://drive.google.com/open?id=1iwg1I48LVaWhhZCZIYPJSi3hdFLRcuhi
https://hpckp.org/
https://fosdem.org/2019/schedule/event/reframe/attachments/slides/3226/export/events/attachments/reframe/slides/3226/FOSDEM_2019.pdf
https://fosdem.org/2019/schedule/event/reframe/
https://fosdem.org/2019/
https://indico.cism.ucl.ac.be/event/4/contributions/24/attachments/30/62/ReFrame_EUM_2019.pdf
https://github.com/easybuilders/easybuild/wiki/4th-EasyBuild-User-Meeting
https://drive.google.com/open?id=1bSykDrl1e2gPflf4jFJ8kfe_SZAtrJ_Q
https://sc18.supercomputing.org/
https://github.com/eth-cscs/UserLabDay/blob/master/2018/slides/ci_and_regression/ReFrame_CI.pdf
https://github.com/eth-cscs/UserLabDay
https://drive.google.com/open?id=1sZhibvUlGlT670aOHPdMlWFffWptYzLX
http://www.hpcadvisorycouncil.com/events/2018/swiss-workshop/
https://drive.google.com/open?id=1EyJ-siupkgLeVT54A4WlFpQtrJaU0xOy
https://sc17.supercomputing.org/
https://drive.google.com/open?id=18VrCy0MTplGo67uxVbzYZicQChor9VSY
https://cug.org/cug-2017/

ReFrame Documentation, Release 3.10.0

(continued from previous page)

setuptools==59.6.0
wcwidth==0.2.5

Note: Changed in version 3.0: Support for Python 3.5 has been dropped.

2.1.2 Getting the Framework

Stable ReFrame releases are available through different channels.

Spack

ReFrame is available as a Spack package:

spack install reframe

There are the following variants available:

• +docs: This will install the man pages of ReFrame.

• +gelf: This will install the bindings for handling Graylog log messages.

EasyBuild

ReFrame is available as an EasyBuild package:

eb ReFrame-VERSION.eb -r

This will install the man pages as well as the Graylog bindings.

PyPI

ReFrame is available as a PyPI package:

pip install reframe-hpc

This is a bare installation of the framework. It will not install the documentation, the tutorial examples or the bindings
for handling Graylog log messages.

Github

Any ReFrame version can be very easily installed directly from Github:

pushd /path/to/install/prefix
git clone -q --depth 1 --branch VERSION_TAG https://github.com/eth-cscs/reframe.git
pushd reframe && ./bootstrap.sh && popd
export PATH=$(pwd)/bin:$PATH
popd

6 Chapter 2. Publications

https://spack.io/
https://docs.graylog.org/
https://easybuild.readthedocs.io/en/latest/
https://docs.graylog.org/
https://pypi.org/project/ReFrame-HPC/
https://docs.graylog.org/

ReFrame Documentation, Release 3.10.0

The VERSION_TAG is the version number prefixed by v, e.g., v3.5.0. The ./bootstrap.sh script will fetch Re-
Frame’s requirements under its installation prefix. It will not set the PYTHONPATH, so it will not affect the user’s Python
installation. The ./bootstrap.sh has two additional variant options:

• +docs: This will also build the documentation.

• +pygelf: This will install the bindings for handling Graylog log messages.

Note: New in version 3.1: The bootstrap script for ReFrame was added. For previous ReFrame versions you should
install its requirements using pip install -r requirements.txt in a Python virtual environment.

2.1.3 Enabling auto-completion

New in version 3.4.1.

You can enable auto-completion for ReFrame by sourcing in your shell the corresponding script in
<install_prefix>/share/completions/reframe.<shell>. Auto-completion is supported for Bash, Tcsh
and Fish shells.

Note: Changed in version 3.4.2: The shell completion scripts have been moved under share/completions/.

2.1.4 Where to Go from Here

The easiest way to start with ReFrame is to go through Tutorial 1: Getting Started with ReFrame, which will guide
you step-by-step in both writing your first tests and in configuring ReFrame. The Configuring ReFrame for Your Site
page provides more details on the basic configuration aspects of ReFrame. Advanced Topics explain different aspects
of the framework whereas ReFrame Manuals provide complete reference guides for the command line interface, the
configuration parameters and the programming APIs for writing tests.

2.2 ReFrame Tutorials

2.2.1 Tutorial 1: Getting Started with ReFrame

New in version 3.1.

This tutorial will give you a first overview of ReFrame and will acquaint you with its basic concepts. We will start with
a simple “Hello, World!” test running with the default configuration and we will expand the example along the way.
We will also explore performance tests and port our tests to an HPC cluster. The examples of this tutorial can be found
under tutorials/basics/.

2.2. ReFrame Tutorials 7

https://docs.graylog.org/

ReFrame Documentation, Release 3.10.0

Getting Ready

All you need to start off with this tutorial is to have installed ReFrame. If you haven’t done so yet, all you need is Python
3.6 and above and to follow the steps below:

git clone https://github.com/eth-cscs/reframe.git
cd reframe
./bootstrap.sh
./bin/reframe -V

We’re now good to go!

The “Hello, World!” test

As simple as it may sound, a series of “naive” “Hello, World!” tests can reveal lots of regressions in the programming
environment of HPC clusters, but the bare minimum of those also serves perfectly the purpose of starting this tutorial.
Here is its C version:

cat tutorials/basics/hello/src/hello.c

#include <stdio.h>

int main()
{

printf("Hello, World!\n");
return 0;

}

And here is the ReFrame version of it:

cat tutorials/basics/hello/hello1.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloTest(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello.c'

@sanity_function
def assert_hello(self):

return sn.assert_found(r'Hello, World\!', self.stdout)

Regression tests in ReFrame are specially decorated classes that ultimately derive from RegressionTest. The
@simple_test decorator registers a test class with ReFrame and makes it available to the framework. The test vari-
ables are essentially attributes of the test class and can be defined directly in the class body. Each test must always set
the valid_systems and valid_prog_environs attributes. These define the systems and/or system partitions that
this test is allowed to run on, as well as the programming environments that it is valid for. A programming environment
is essentially a compiler toolchain. We will see later on in the tutorial how a programming environment can be defined.

8 Chapter 2. Publications

started.html#getting-the-framework

ReFrame Documentation, Release 3.10.0

The generic configuration of ReFrame assumes a single programming environment named builtin which comprises
a C compiler that can be invoked with cc. In this particular test we set both these attributes to ['*'], essentially
allowing this test to run everywhere.

A ReFrame test must either define an executable to execute or a source file (or source code) to be compiled. In this
example, it is enough to define the source file of our hello program. ReFrame knows the executable that was produced
and will use that to run the test.

Finally, every regression test must always decorate a member function as the test’s @sanity_function. This decorated
function is converted into a lazily evaluated expression that asserts the sanity of the test. In this particular case, the
specified sanity function checks that the executable has produced the desired phrase into the test’s standard output
stdout. Note that ReFrame does not determine the success of a test by its exit code. Instead, the assessment of
success is responsibility of the test itself.

Before running the test let’s inspect the directory structure surrounding it:

tutorials/basics/hello
hello1.py
src

hello.c

Our test is hello1.py and its resources, i.e., the hello.c source file, are located inside the src/ subdirectory. If not
specified otherwise, the sourcepath attribute is always resolved relative to src/. There is full flexibility in organizing
the tests. Multiple tests may be defined in a single file or they may be split in multiple files. Similarly, several tests may
share the same resources directory or they can simply have their own.

Now it’s time to run our first test:

./bin/reframe -c tutorials/basics/hello/hello1.py -r

[ReFrame Setup]
version: 3.10.0-dev.3+c22440c1
command: './bin/reframe -c tutorials/basics/hello/hello1.py -r'
launched by: user@host
working directory: '/path/to/reframe'
settings file: '<builtin>'
check search path: '/path/to/reframe/tutorials/basics/hello/hello1.py'
stage directory: '/path/to/reframe/stage'
output directory: '/path/to/reframe/output'

[==========] Running 1 check(s)
[==========] Started on Sat Jan 22 13:21:50 2022

[----------] start processing checks
[RUN] HelloTest @generic:default+builtin
[OK] (1/1) HelloTest @generic:default+builtin [compile: 0.272s run: 0.359s␣
→˓total: 0.784s]
[----------] all spawned checks have finished

[PASSED] Ran 1/1 test case(s) from 1 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 13:21:51 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-8c6ybdvg.log'

Perfect! We have verified that we have a functioning C compiler in our system.

2.2. ReFrame Tutorials 9

deferrables.html

ReFrame Documentation, Release 3.10.0

When ReFrame runs a test, it copies all its resources to a stage directory and performs all test-related operations (compi-
lation, run, sanity checking etc.) from that directory. On successful outcome of the test, the stage directory is removed
by default, but interesting files are copied to an output directory for archiving and later inspection. The prefixes of these
directories are printed in the first section of the output. Let’s inspect what files ReFrame produced for this test:

ls output/generic/default/builtin/HelloTest/

rfm_HelloTest_build.err rfm_HelloTest_build.sh rfm_HelloTest_job.out
rfm_HelloTest_build.out rfm_HelloTest_job.err rfm_HelloTest_job.sh

ReFrame stores in the output directory of the test the build and run scripts it generated for building and running the
code along with their standard output and error. All these files are prefixed with rfm_.

ReFrame also generates a detailed JSON report for the whole regression testing session. By default, this is stored inside
the ${HOME}/.reframe/reports directory and a new report file is generated every time ReFrame is run, but you can
control this through the --report-file command-line option.

Here are the contents of the report file for our first ReFrame run:

cat ~/.reframe/reports/run-report.json

{
"session_info": {
"cmdline": "./bin/reframe -c tutorials/basics/hello/hello1.py -r",
"config_file": "<builtin>",
"data_version": "2.0",
"hostname": "host",
"prefix_output": "/path/to/reframe/output",
"prefix_stage": "/path/to/reframe/stage",
"user": "user",
"version": "3.10.0-dev.3+c22440c1",
"workdir": "/path/to/reframe",
"time_start": "2022-01-22T13:21:50+0100",
"time_end": "2022-01-22T13:21:51+0100",
"time_elapsed": 0.8124568462371826,
"num_cases": 1,
"num_failures": 0

},
"runs": [
{
"num_cases": 1,
"num_failures": 0,
"num_aborted": 0,
"num_skipped": 0,
"runid": 0,
"testcases": [
{
"build_stderr": "rfm_HelloTest_build.err",
"build_stdout": "rfm_HelloTest_build.out",
"dependencies_actual": [],
"dependencies_conceptual": [],
"description": "HelloTest",
"display_name": "HelloTest",
"filename": "/path/to/reframe/tutorials/basics/hello/hello1.py",

(continues on next page)

10 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

"environment": "builtin",
"fail_phase": null,
"fail_reason": null,
"jobid": "43152",
"job_stderr": "rfm_HelloTest_job.err",
"job_stdout": "rfm_HelloTest_job.out",
"maintainers": [],
"name": "HelloTest",
"nodelist": [
"tresa.local"

],
"outputdir": "/path/to/reframe/output/generic/default/builtin/HelloTest",
"perfvars": null,
"prefix": "/path/to/reframe/tutorials/basics/hello",
"result": "success",
"stagedir": "/path/to/reframe/stage/generic/default/builtin/HelloTest",
"scheduler": "local",
"system": "generic:default",
"tags": [],
"time_compile": 0.27164483070373535,
"time_performance": 0.00010180473327636719,
"time_run": 0.3764667510986328,
"time_sanity": 0.0006909370422363281,
"time_setup": 0.007919073104858398,
"time_total": 0.8006880283355713,
"unique_name": "HelloTest"

}
]

}
],
"restored_cases": []

}

More of “Hello, World!”

We want to extend our test and run a C++ “Hello, World!” as well. We could simply copy paste the hello1.py and
change the source file extension to refer to the C++ source code. But this duplication is something that we generally
want to avoid. ReFrame allows you to avoid this in several ways but the most compact is to define the new test as
follows:

cat tutorials/basics/hello/hello2.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloMultiLangTest(rfm.RegressionTest):

lang = parameter(['c', 'cpp'])

valid_systems = ['*']
(continues on next page)

2.2. ReFrame Tutorials 11

ReFrame Documentation, Release 3.10.0

(continued from previous page)

valid_prog_environs = ['*']

rfmdocstart: set_sourcepath
@run_before('compile')
def set_sourcepath(self):

self.sourcepath = f'hello.{self.lang}'
rfmdocend: set_sourcepath

@sanity_function
def assert_hello(self):

return sn.assert_found(r'Hello, World\!', self.stdout)

This test extends the hello1.py test by defining the lang parameter with the parameter() built-in. This parameter
will cause as many instantiations as parameter values available, each one setting the lang attribute to one single value.
Hence, this example will create two test instances, one with lang='c' and another with lang='cpp'. The parameter
is available as an attribute of the test instance and, in this example, we use it to set the extension of the source file.
However, at the class level, a test parameter holds all the possible values for itself, and this is only assigned a single
value after the class is instantiated. Therefore, the variable sourcepath, which depends on this parameter, also needs
to be set after the class instantiation. The simplest way to do this would be to move the sourcepath assignment into
the __init__()method as shown in the code snippet below, but this has some disadvantages when writing larger tests.

def __init__(self):
self.sourcepath = f'hello.{self.lang}'

For example, when writing a base class for a test with a large amount of code into the __init__() method, the
derived class may want to do a partial override of the code in this function. This would force us to understand the full
implementation of the base class’ __init__() despite that we may just be interested in overriding a small part of it.
Doable, but not ideal. Instead, through pipeline hooks, ReFrame provides a mechanism to attach independent functions
to execute at a given time before the data they set is required by the test. This is exactly what we want to do here, and
we know that the test sources are needed to compile the code. Hence, we move the sourcepath assignment into a
pre-compile hook.

@run_before('compile')
def set_sourcepath(self):

self.sourcepath = f'hello.{self.lang}'

The use of hooks is covered in more detail later on, but for now, let’s just think of them as a way to defer the execution
of a function to a given stage of the test’s pipeline. By using hooks, any user could now derive from this class and attach
other hooks (for example, adding some compiler flags) without having to worry about overriding the base method that
sets the sourcepath variable.

Let’s run the test now:

./bin/reframe -c tutorials/basics/hello/hello2.py -r

[ReFrame Setup]
version: 3.10.0-dev.3+c22440c1
command: './bin/reframe -c tutorials/basics/hello/hello2.py -r'
launched by: user@host
working directory: '/path/to/reframe'
settings file: '<builtin>'
check search path: '/path/to/reframe/tutorials/basics/hello/hello2.py'
stage directory: '/path/to/reframe/stage'

(continues on next page)

12 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

output directory: '/path/to/reframe/output'

[==========] Running 2 check(s)
[==========] Started on Sat Jan 22 13:21:51 2022

[----------] start processing checks
[RUN] HelloMultiLangTest %lang=cpp @generic:default+builtin
[RUN] HelloMultiLangTest %lang=c @generic:default+builtin
[FAIL] (1/2) HelloMultiLangTest %lang=cpp @generic:default+builtin [compile: 0.
→˓006s run: n/a total: 0.043s]
==> test failed during 'compile': test staged in '/path/to/reframe/stage/generic/default/
→˓builtin/HelloMultiLangTest_cpp'
[OK] (2/2) HelloMultiLangTest %lang=c @generic:default+builtin [compile: 0.268s␣
→˓run: 0.368s total: 0.813s]
[----------] all spawned checks have finished

[FAILED] Ran 2/2 test case(s) from 2 check(s) (1 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 13:21:52 2022

==
SUMMARY OF FAILURES
--
FAILURE INFO for HelloMultiLangTest_cpp
* Expanded name: HelloMultiLangTest %lang=cpp
* Description: HelloMultiLangTest %lang=cpp
* System partition: generic:default
* Environment: builtin
* Stage directory: /path/to/reframe/stage/generic/default/builtin/HelloMultiLangTest_

→˓cpp
* Node list:
* Job type: local (id=None)
* Dependencies (conceptual): []
* Dependencies (actual): []
* Maintainers: []
* Failing phase: compile
* Rerun with '-n HelloMultiLangTest_cpp -p builtin --system generic:default -r'
* Reason: build system error: I do not know how to compile a C++ program

--
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-tse_opq0.log'

Oops! The C++ test has failed. ReFrame complains that it does not know how to compile a C++ program. Remember
our discussion above that the default configuration of ReFrame defines a minimal programming environment named
builtin which only knows of a cc compiler. We will fix that in a moment, but before doing that it’s worth looking into
the failure information provided for the test. For each failed test, ReFrame will print a short summary with information
about the system partition and the programming environment that the test failed for, its job or process id (if any), the
nodes it was running on, its stage directory, the phase that failed etc.

When a test fails its stage directory is kept intact, so that users can inspect the failure and try to reproduce it manually.
In this case, the stage directory contains only the “Hello, World” source files, since ReFrame could not produce a build
script for the C++ test, as it doesn’t know to compile a C++ program for the moment.

2.2. ReFrame Tutorials 13

ReFrame Documentation, Release 3.10.0

ls stage/generic/default/builtin/HelloMultiLangTest_cpp

hello.c hello.cpp

Let’s go on and fix this failure by defining a new system and programming environments for the machine we are
running on. We start off by copying the generic configuration file that ReFrame uses. Note that you should not edit this
configuration file in place.

cp reframe/core/settings.py tutorials/config/mysettings.py

Note: You may also use edit directly the supplied tutorials/config/settings.py file, which is the actual con-
figuration file against which the various tutorials have been evaluated.

Here is how the new configuration file looks like with the needed additions highlighted:

site_configuration = {
rfmdocstart: systems
'systems': [

{
'name': 'catalina',
'descr': 'My Mac',
'hostnames': ['tresa'],
'modules_system': 'nomod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['gnu', 'clang'],

}
]

},
{

'name': 'tutorials-docker',
'descr': 'Container for running the build system tutorials',
'hostnames': ['docker'],
'modules_system': 'lmod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin'],

}
]

},
{

'name': 'daint',
'descr': 'Piz Daint Supercomputer',
'hostnames': ['daint'],
'modules_system': 'tmod32',

(continues on next page)

14 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'partitions': [
{

'name': 'login',
'descr': 'Login nodes',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin', 'gnu', 'intel', 'pgi', 'cray'],

},
rfmdocstart: all-partitions
rfmdocstart: gpu-partition
{

'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
],
'container_platforms': [

{
'type': 'Sarus',
'modules': ['sarus']

},
{

'type': 'Singularity',
'modules': ['singularity']

}
]

},
rfmdocend: gpu-partition
{

'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
]

}
rfmdocend: all-partitions

(continues on next page)

2.2. ReFrame Tutorials 15

ReFrame Documentation, Release 3.10.0

(continued from previous page)

]
},
{

'name': 'generic',
'descr': 'Generic example system',
'hostnames': ['.*'],
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin']

}
]

},
],
rfmdocend: systems
rfmdocstart: environments
'environments': [

{
'name': 'gnu',
'cc': 'gcc-9',
'cxx': 'g++-9',
'ftn': 'gfortran-9'

},
{

'name': 'gnu',
'modules': ['PrgEnv-gnu'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'cray',
'modules': ['PrgEnv-cray'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'intel',
'modules': ['PrgEnv-intel'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'pgi',
'modules': ['PrgEnv-pgi'],

(continues on next page)

16 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'clang',
'cc': 'clang',
'cxx': 'clang++',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': '',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

}
],
rfmdocend: environments
rfmdocstart: logging
'logging': [

{
'level': 'debug',
'handlers': [

{
'type': 'stream',
'name': 'stdout',
'level': 'info',
'format': '%(message)s'

},
{

'type': 'file',
'level': 'debug',
'format': '[%(asctime)s] %(levelname)s: %(check_info)s: %(message)s',

→˓ # noqa: E501
'append': False

}
],
'handlers_perflog': [

{
'type': 'filelog',
'prefix': '%(check_system)s/%(check_partition)s',
'level': 'info',
'format': (

'%(check_job_completion_time)s|reframe %(version)s|'

(continues on next page)

2.2. ReFrame Tutorials 17

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'%(check_info)s|jobid=%(check_jobid)s|'
'%(check_perf_var)s=%(check_perf_value)s|'
'ref=%(check_perf_ref)s '
'(l=%(check_perf_lower_thres)s, '
'u=%(check_perf_upper_thres)s)|'
'%(check_perf_unit)s'

),
'append': True

}
]

}
],
rfmdocend: logging

}

Here we define a system named catalina that has one partition named default. This partition makes no use of
any workload manager, but instead launches any jobs locally as OS processes. Two programming environments are
relevant for that partition, namely gnu and clang, which are defined in the section environments of the configuration
file. The gnu programming environment provides GCC 9, whereas the clang one provides the Clang compiler from
the system. Notice, how you can define the actual commands for invoking the C, C++ and Fortran compilers in each
programming environment. As soon as a programming environment defines the different compilers, ReFrame will
automatically pick the right compiler based on the source file extension. In addition to C, C++ and Fortran programs,
ReFrame will recognize the .cu extension as well and will try to invoke the nvcc compiler for CUDA programs.

Finally, the new system that we defined may be identified by the hostname tresa (see the hostnames configuration
parameter) and it will not use any environment modules system (see the modules_system configuration parameter).
The hostnames attribute will help ReFrame to automatically pick the right configuration when running on it. Notice,
how the generic system matches any hostname, so that it acts as a fallback system.

Note: The different systems in the configuration file are tried in order and the first match is picked. This practically
means that the more general the selection pattern for a system is, the lower in the list of systems it should be.

The Configuring ReFrame for Your Site page describes the configuration file in more detail and the Configuration
Reference provides a complete reference guide of all the configuration options of ReFrame.

Let’s now rerun our “Hello, World!” tests:

./bin/reframe -C tutorials/config/settings.py -c tutorials/basics/hello/hello2.py -r

[ReFrame Setup]
version: 3.10.0-dev.3+c22440c1
command: './bin/reframe -C tutorials/config/settings.py -c tutorials/basics/

→˓hello/hello2.py -r'
launched by: user@host
working directory: '/path/to/reframe'
settings file: 'tutorials/config/settings.py'
check search path: '/path/to/reframe/tutorials/basics/hello/hello2.py'
stage directory: '/path/to/reframe/stage'
output directory: '/path/to/reframe/output'

[==========] Running 2 check(s)
[==========] Started on Sat Jan 22 13:21:53 2022

(continues on next page)

18 Chapter 2. Publications

config_reference.html#.systems{[}{]}.partitions{[}{]}.scheduler
config_reference.html#.environments
config_reference.html#.environments
config_reference.html#.systems{[}{]}.hostnames
config_reference.html#.systems{[}{]}.hostnames
config_reference.html#.systems{[}{]}.modules_system

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[----------] start processing checks
[RUN] HelloMultiLangTest %lang=cpp @catalina:default+gnu
[RUN] HelloMultiLangTest %lang=cpp @catalina:default+clang
[RUN] HelloMultiLangTest %lang=c @catalina:default+gnu
[RUN] HelloMultiLangTest %lang=c @catalina:default+clang
[OK] (1/4) HelloMultiLangTest %lang=c @catalina:default+gnu [compile: 0.360s␣
→˓run: 0.511s total: 1.135s]
[OK] (2/4) HelloMultiLangTest %lang=c @catalina:default+clang [compile: 0.359s␣
→˓run: 0.514s total: 1.139s]
[OK] (3/4) HelloMultiLangTest %lang=cpp @catalina:default+gnu [compile: 0.563s␣
→˓run: 0.549s total: 1.343s]
[OK] (4/4) HelloMultiLangTest %lang=cpp @catalina:default+clang [compile: 0.564s␣
→˓run: 0.551s total: 1.346s]
[----------] all spawned checks have finished

[PASSED] Ran 4/4 test case(s) from 2 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 13:21:54 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-iehz9eub.log'

Notice how the same tests are now tried with both the gnu and clang programming environments, without having to
touch them at all! That’s one of the powerful features of ReFrame and we shall see later on, how easily we can port our
tests to an HPC cluster with minimal changes. In order to instruct ReFrame to use our configuration file, we use the -C
command line option. Since we don’t want to type it throughout the tutorial, we will now set it in the environment:

export RFM_CONFIG_FILE=$(pwd)/tutorials/config/settings.py

A Multithreaded “Hello, World!”

We extend our C++ “Hello, World!” example to print the greetings from multiple threads:

cat tutorials/basics/hellomp/src/hello_threads.cpp

#include <iomanip>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>

#ifdef SYNC_MESSAGES
std::mutex hello_mutex;
#endif

void greetings(int tid)
{
#ifdef SYNC_MESSAGES

const std::lock_guard<std::mutex> lock(hello_mutex);
#endif

(continues on next page)

2.2. ReFrame Tutorials 19

ReFrame Documentation, Release 3.10.0

(continued from previous page)

std::cout << "[" << std::setw(2) << tid << "] " << "Hello, World!\n";
}

int main(int argc, char *argv[])
{

int nr_threads = 1;
if (argc > 1) {

nr_threads = std::atoi(argv[1]);
}

if (nr_threads <= 0) {
std::cerr << "thread count must a be positive integer\n";
return 1;

}

std::vector<std::thread> threads;
for (auto i = 0; i < nr_threads; ++i) {

threads.push_back(std::thread(greetings, i));
}

for (auto &t : threads) {
t.join();

}

return 0;
}

This program takes as argument the number of threads it will create and it uses std::thread, which is a C++11
addition, meaning that we will need to pass -std=c++11 to our compilers. Here is the corresponding ReFrame test,
where the new concepts introduced are highlighted:

cat tutorials/basics/hellomp/hellomp1.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloThreadedTest(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello_threads.cpp'
build_system = 'SingleSource'
executable_opts = ['16']

@run_before('compile')
def set_compilation_flags(self):

self.build_system.cxxflags = ['-std=c++11', '-Wall']
environ = self.current_environ.name
if environ in {'clang', 'gnu'}:

self.build_system.cxxflags += ['-pthread']
(continues on next page)

20 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

@sanity_function
def assert_hello(self):

return sn.assert_found(r'Hello, World\!', self.stdout)

ReFrame delegates the compilation of a test to a build_system , which is an abstraction of the steps needed to compile
the test. Build systems take also care of interactions with the programming environment if necessary. Compilation flags
are a property of the build system. If not explicitly specified, ReFrame will try to pick the correct build system (e.g.,
CMake, Autotools etc.) by inspecting the test resources, but in cases as the one presented here where we need to set
the compilation flags, we need to specify a build system explicitly. In this example, we instruct ReFrame to compile
a single source file using the -std=c++11 -pthread -Wall compilation flags. However, the flag -pthread is only
needed to compile applications using std::thread with the GCC and Clang compilers. Hence, since this flag may
not be valid for other compilers, we need to include it only in the tests that use either GCC or Clang. Similarly to the
lang parameter in the previous example, the information regarding which compiler is being used is only available after
the class is instantiated (after completion of the setup pipeline stage), so we also defer the addition of this optional
compiler flag with a pipeline hook. In this case, we set the set_compile_flags() hook to run before the ReFrame
pipeline stage compile.

Note: The pipeline hooks, as well as the regression test pipeline itself, are covered in more detail later on in the
tutorial.

In this example, the generated executable takes a single argument which sets the number of threads to be used. The
options passed to the test’s executable can be set through the executable_opts variable, which in this case is set to
'16'.

Let’s run the test now:

./bin/reframe -c tutorials/basics/hellomp/hellomp1.py -r

[ReFrame Setup]
version: 3.10.0-dev.3+c22440c1
command: './bin/reframe -c tutorials/basics/hellomp/hellomp1.py -r'
launched by: user@host
working directory: '/path/to/reframe'
settings file: '/path/to/reframe/tutorials/config/settings.py'
check search path: '/path/to/reframe/tutorials/basics/hellomp/hellomp1.py'
stage directory: '/path/to/reframe/stage'
output directory: '/path/to/reframe/output'

[==========] Running 1 check(s)
[==========] Started on Sat Jan 22 13:21:54 2022

[----------] start processing checks
[RUN] HelloThreadedTest @catalina:default+gnu
[RUN] HelloThreadedTest @catalina:default+clang
[OK] (1/2) HelloThreadedTest @catalina:default+gnu [compile: 0.963s run: 0.296s␣
→˓total: 1.418s]
[OK] (2/2) HelloThreadedTest @catalina:default+clang [compile: 0.760s run: 0.
→˓434s total: 1.421s]
[----------] all spawned checks have finished

(continues on next page)

2.2. ReFrame Tutorials 21

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[PASSED] Ran 2/2 test case(s) from 1 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 13:21:56 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-chq08zds.log'

Everything looks fine, but let’s inspect the actual output of one of the tests:

cat output/catalina/default/clang/HelloThreadedTest/rfm_HelloThreadedTest_job.out

[[[[8] Hello, World!
1] Hello, World!
5[[0[7] Hello, World!
]] Hello, World!
[Hello, World!
6[] Hello, World!
9] Hello, World!
2] Hello, World!
4] [[10 3] Hello, World!
] Hello, World!
[Hello, World!
11] Hello, World!
[12] Hello, World!
[13] Hello, World!
[14] Hello, World!
[15] Hello, World!

Not exactly what we were looking for! In the following we write a more robust sanity check that can catch this havoc.

More advanced sanity checking

So far, we have seen only a grep-like search for a string in the test’s stdout, but ReFrame’s @sanity_function are
much more capable than this. In fact, one could practically do almost any operation in the output and process it as you
would like before assessing the test’s sanity. In the following, we extend the sanity checking of the above multithreaded
“Hello, World!” to assert that all the threads produce a greetings line. See the highlighted lines below in the modified
version of the @sanity_function.

cat tutorials/basics/hellomp/hellomp2.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloThreadedExtendedTest(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello_threads.cpp'
build_system = 'SingleSource'
executable_opts = ['16']

@run_before('compile')
(continues on next page)

22 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

def set_compilation_flags(self):
self.build_system.cxxflags = ['-std=c++11', '-Wall']
environ = self.current_environ.name
if environ in {'clang', 'gnu'}:

self.build_system.cxxflags += ['-pthread']

@sanity_function
def assert_num_messages(self):

num_messages = sn.len(sn.findall(r'\[\s?\d+\] Hello, World\!',
self.stdout))

return sn.assert_eq(num_messages, 16)

This new @sanity_function counts all the pattern matches in the tests’s stdout and checks that this count matches
the expected value. The execution of the function assert_num_messages() is deferred to the sanity stage in the
test’s pipeline, after the executable has run and the stdout file has been populated. In this example, we have used the
findall() utility function from the sanity module to conveniently extract the pattern matches. This module provides
a broad range of utility functions that can be used to compose more complex sanity checks. However, note that the
utility functions in this module are lazily evaluated expressions or deferred expressions which must be evaluated either
implicitly or explicitly (see Deferrable Functions Reference).

Let’s run this version of the test now and see if it fails:

./bin/reframe -c tutorials/basics/hellomp/hellomp2.py -r

[ReFrame Setup]
version: 3.10.0-dev.3+c22440c1
command: './bin/reframe -c tutorials/basics/hellomp/hellomp2.py -r'
launched by: user@host
working directory: '/path/to/reframe'
settings file: '/path/to/reframe/tutorials/config/settings.py'
check search path: '/path/to/reframe/tutorials/basics/hellomp/hellomp2.py'
stage directory: '/path/to/reframe/stage'
output directory: '/path/to/reframe/output'

[==========] Running 1 check(s)
[==========] Started on Sat Jan 22 13:21:56 2022

[----------] start processing checks
[RUN] HelloThreadedExtendedTest @catalina:default+gnu
[RUN] HelloThreadedExtendedTest @catalina:default+clang
[FAIL] (1/2) HelloThreadedExtendedTest @catalina:default+clang [compile: 0.761s␣
→˓run: 0.413s total: 1.401s]
==> test failed during 'sanity': test staged in '/path/to/reframe/stage/catalina/default/
→˓clang/HelloThreadedExtendedTest'
[FAIL] (2/2) HelloThreadedExtendedTest @catalina:default+gnu [compile: 0.962s run:␣
→˓0.412s total: 1.538s]
==> test failed during 'sanity': test staged in '/path/to/reframe/stage/catalina/default/
→˓gnu/HelloThreadedExtendedTest'
[----------] all spawned checks have finished

[FAILED] Ran 2/2 test case(s) from 1 check(s) (2 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 13:21:58 2022

(continues on next page)

2.2. ReFrame Tutorials 23

ReFrame Documentation, Release 3.10.0

(continued from previous page)

==
SUMMARY OF FAILURES
--
FAILURE INFO for HelloThreadedExtendedTest
* Expanded name: HelloThreadedExtendedTest
* Description: HelloThreadedExtendedTest
* System partition: catalina:default
* Environment: gnu
* Stage directory: /path/to/reframe/stage/catalina/default/gnu/

→˓HelloThreadedExtendedTest
* Node list: tresa.localNone
* Job type: local (id=43387)
* Dependencies (conceptual): []
* Dependencies (actual): []
* Maintainers: []
* Failing phase: sanity
* Rerun with '-n HelloThreadedExtendedTest -p gnu --system catalina:default -r'
* Reason: sanity error: 7 != 16

--
FAILURE INFO for HelloThreadedExtendedTest
* Expanded name: HelloThreadedExtendedTest
* Description: HelloThreadedExtendedTest
* System partition: catalina:default
* Environment: clang
* Stage directory: /path/to/reframe/stage/catalina/default/clang/

→˓HelloThreadedExtendedTest
* Node list: tresa.localNone
* Job type: local (id=43384)
* Dependencies (conceptual): []
* Dependencies (actual): []
* Maintainers: []
* Failing phase: sanity
* Rerun with '-n HelloThreadedExtendedTest -p clang --system catalina:default -r'
* Reason: sanity error: 11 != 16

--
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-31lkxfie.log'

As expected, only some of lines are printed correctly which makes the test fail. To fix this test, we need to compile
with -DSYNC_MESSAGES, which will synchronize the printing of messages.

cat tutorials/basics/hellomp/hellomp3.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloThreadedExtended2Test(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['*']

(continues on next page)

24 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

sourcepath = 'hello_threads.cpp'
build_system = 'SingleSource'
executable_opts = ['16']

@run_before('compile')
def set_compilation_flags(self):

self.build_system.cppflags = ['-DSYNC_MESSAGES']
self.build_system.cxxflags = ['-std=c++11', '-Wall']
environ = self.current_environ.name
if environ in {'clang', 'gnu'}:

self.build_system.cxxflags += ['-pthread']

@sanity_function
def assert_num_messages(self):

num_messages = sn.len(sn.findall(r'\[\s?\d+\] Hello, World\!',
self.stdout))

return sn.assert_eq(num_messages, 16)

Writing A Performance Test

An important aspect of regression testing is checking for performance regressions. In this example, we write a test that
downloads the STREAM benchmark, compiles it, runs it and records its performance. In the test below, we highlight
the lines that introduce new concepts.

cat tutorials/basics/stream/stream1.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class StreamTest(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['gnu']
prebuild_cmds = [

'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #␣
→˓noqa: E501

]
build_system = 'SingleSource'
sourcepath = 'stream.c'
variables = {

'OMP_NUM_THREADS': '4',
'OMP_PLACES': 'cores'

}

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))']
self.build_system.cflags = ['-fopenmp', '-O3', '-Wall']

@sanity_function
(continues on next page)

2.2. ReFrame Tutorials 25

https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c

ReFrame Documentation, Release 3.10.0

(continued from previous page)

def validate_solution(self):
return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s', perf_key='Copy')
def extract_copy_perf(self):

return sn.extractsingle(r'Copy:\s+(\S+)\s+.*', self.stdout, 1, float)

@performance_function('MB/s', perf_key='Scale')
def extract_scale_perf(self):

return sn.extractsingle(r'Scale:\s+(\S+)\s+.*', self.stdout, 1, float)

@performance_function('MB/s', perf_key='Add')
def extract_add_perf(self):

return sn.extractsingle(r'Add:\s+(\S+)\s+.*', self.stdout, 1, float)

@performance_function('MB/s', perf_key='Triad')
def extract_triad_perf(self):

return sn.extractsingle(r'Triad:\s+(\S+)\s+.*', self.stdout, 1, float)

First of all, notice that we restrict the programming environments to gnu only, since this test requires OpenMP, which
our installation of Clang does not have. The next thing to notice is the prebuild_cmds attribute, which provides a list
of commands to be executed before the build step. These commands will be executed from the test’s stage directory.
In this case, we just fetch the source code of the benchmark. For running the benchmark, we need to set the OpenMP
number of threads and pin them to the right CPUs through the OMP_NUM_THREADS and OMP_PLACES environment
variables. You can set environment variables in a ReFrame test through the variables dictionary.

What makes a ReFrame test a performance test is the definition of at least one performance function. Similarly to a test’s
@sanity_function, a performance function is a member function decorated with the @performance_function
decorator, which binds the decorated function to a given unit. These functions can be used by the regression test to
extract, measure or compute a given quantity of interest; where in this context, the values returned by a performance
function are referred to as performance variables. Alternatively, performance functions can also be thought as tools
available to the regression test for extracting performance variables. By default, ReFrame will attempt to execute all
the available performance functions during the test’s performance stage, producing a single performance variable
out of each of the available performance functions. These default-generated performance variables are defined in the
regression test’s attribute perf_variables during class instantiation, and their default name matches the name of
their associated performance function. However, one could customize the default-generated performance variable’s
name by passing the perf-key argument to the @performance_function decorator of the associated performance
function.

In this example, we extract four performance variables, namely the memory bandwidth values for each of the
“Copy”, “Scale”, “Add” and “Triad” sub-benchmarks of STREAM, where each of the performance functions use the
extractsingle() utility function. For each of the sub-benchmarks we extract the “Best Rate MB/s” column of the
output (see below) and we convert that to a float.

Function Best Rate MB/s Avg time Min time Max time
Copy: 24939.4 0.021905 0.021527 0.022382
Scale: 16956.3 0.031957 0.031662 0.032379
Add: 18648.2 0.044277 0.043184 0.046349
Triad: 19133.4 0.042935 0.042089 0.044283

Let’s run the test now:

./bin/reframe -c tutorials/basics/stream/stream1.py -r --performance-report

26 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

The --performance-report will generate a short report at the end for each performance test that has run.

[ReFrame Setup]
version: 3.10.0-dev.2+bf404ae1
command: './bin/reframe -c tutorials/basics/stream/stream1.py -r --

→˓performance-report'
launched by: user@host
working directory: '/Users/user/Repositories/reframe'
settings file: 'tutorials/config/mysettings.py'
check search path: '/Users/user/Repositories/reframe/tutorials/basics/stream/stream1.py

→˓'
stage directory: '/Users/user/Repositories/reframe/stage'
output directory: '/Users/user/Repositories/reframe/output'

[==========] Running 1 check(s)
[==========] Started on Wed Jan 19 17:13:35 2022

[----------] started processing StreamTest (StreamTest)
[RUN] StreamTest on catalina:default using gnu
[----------] finished processing StreamTest (StreamTest)

[----------] waiting for spawned checks to finish
[OK] (1/1) StreamTest @catalina:default+gnu [compile: 1.260s run: 2.844s total:␣
→˓4.136s]
[----------] all spawned checks have finished

[PASSED] Ran 1/1 test case(s) from 1 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Wed Jan 19 17:13:39 2022
==
PERFORMANCE REPORT
--
StreamTest
- catalina:default

- gnu
* num_tasks: 1
* Copy: 23864.2 MB/s
* Scale: 16472.6 MB/s
* Add: 18265.5 MB/s
* Triad: 18632.3 MB/s

--
Run report saved in '/Users/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-o1wls55_.log'

Setting explicitly the test’s performance variables

In the above STREAM example, all four performance functions were almost identical except for a small part of the
regex pattern, which led to some code repetition. Even though the performance functions were rather simple and the
code repetition was not much in that case, this is still not a good practice and it is certainly an approach that would
not scale when using more complex performance functions. Hence, in this example, we show how to collapse all these
four performance functions into a single function and how to reuse this single performance function to create multiple
performance variables.

2.2. ReFrame Tutorials 27

ReFrame Documentation, Release 3.10.0

cat tutorials/basics/stream/stream2.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class StreamAltTest(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['gnu']
prebuild_cmds = [

'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #␣
→˓noqa: E501

]
build_system = 'SingleSource'
sourcepath = 'stream.c'
variables = {

'OMP_NUM_THREADS': '4',
'OMP_PLACES': 'cores'

}

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))']
self.build_system.cflags = ['-fopenmp', '-O3', '-Wall']

@sanity_function
def validate_solution(self):

return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s')
def extract_bw(self, kind='Copy'):

'''Generic performance extraction function.'''

if kind not in ('Copy', 'Scale', 'Add', 'Triad'):
raise ValueError(f'illegal value in argument kind ({kind!r})')

return sn.extractsingle(rf'{kind}:\s+(\S+)\s+.*',
self.stdout, 1, float)

@run_before('performance')
def set_perf_variables(self):

'''Build the dictionary with all the performance variables.'''

self.perf_variables = {
'Copy': self.extract_bw(),
'Scale': self.extract_bw('Scale'),
'Add': self.extract_bw('Add'),
'Triad': self.extract_bw('Triad'),

}

As shown in the highlighted lines, this example collapses the four performance functions from the previous example
into the extract_bw() function, which is also decorated with the @performance_function decorator with the

28 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

units set to 'MB/s'. However, the extract_bw() function now takes the optional argument kind which selects
the STREAM benchmark to extract. By default, this argument is set to 'Copy' because functions decorated with
@performance_function are only allowed to have self as a non-default argument. Thus, from this performance
function definition, ReFrame will default-generate a single performance variable during the test instantiation under
the name extract_bw, where this variable will report the performance results from the Copy benchmark. With no
further action from our side, ReFrame would just report the performance of the test based on this default-generated
performance variable, but that is not what we are after here. Therefore, we must modify these default performance
variables so that this version of the STREAM test produces the same results as in the previous example. As mentioned
before, the performance variables (also the default-generated ones) are stored in the perf_variables dictionary, so
all we need to do is to redefine this mapping with our desired performance variables as done in the pre-performance
pipeline hook set_perf_variables().

Tip: Performance functions may also be generated inline using the make_performance_function() utility as
shown below.

@run_before('performance')
def set_perf_vars(self):

self.perf_variables = {
'Copy': sn.make_performance_function(

sn.extractsingle(r'Copy:\s+(\S+)\s+.*',
self.stdout, 1, float),

'MB/s'
)

}

Adding reference values

On its current state, the above STREAM performance test will simply extract and report the performance variables
regardless of the actual performance values. However, in some situations, it might be useful to check that the extracted
performance values are within an expected range, and report a failure whenever a test performs below expectations. To
this end, ReFrame tests include the reference variable, which enables setting references for each of the performance
variables defined in a test and also set different references for different systems. In the following example, we set the
reference values for all the STREAM sub-benchmarks for the system we are currently running on.

Note: Optimizing STREAM benchmark performance is outside the scope of this tutorial.

cat tutorials/basics/stream/stream3.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class StreamWithRefTest(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['gnu']
prebuild_cmds = [

'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #␣
→˓noqa: E501

(continues on next page)

2.2. ReFrame Tutorials 29

ReFrame Documentation, Release 3.10.0

(continued from previous page)

]
build_system = 'SingleSource'
sourcepath = 'stream.c'
variables = {

'OMP_NUM_THREADS': '4',
'OMP_PLACES': 'cores'

}
reference = {

'catalina': {
'Copy': (25200, -0.05, 0.05, 'MB/s'),
'Scale': (16800, -0.05, 0.05, 'MB/s'),
'Add': (18500, -0.05, 0.05, 'MB/s'),
'Triad': (18800, -0.05, 0.05, 'MB/s')

}
}

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))']
self.build_system.cflags = ['-fopenmp', '-O3', '-Wall']

@sanity_function
def validate_solution(self):

return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s')
def extract_bw(self, kind='Copy'):

'''Generic performance extraction function.'''

if kind not in ('Copy', 'Scale', 'Add', 'Triad'):
raise ValueError(f'illegal value in argument kind ({kind!r})')

return sn.extractsingle(rf'{kind}:\s+(\S+)\s+.*',
self.stdout, 1, float)

@run_before('performance')
def set_perf_variables(self):

'''Build the dictionary with all the performance variables.'''

self.perf_variables = {
'Copy': self.extract_bw(),
'Scale': self.extract_bw('Scale'),
'Add': self.extract_bw('Add'),
'Triad': self.extract_bw('Triad'),

}

The performance reference tuple consists of the reference value, the lower and upper thresholds expressed as fractional
numbers relative to the reference value, and the unit of measurement. If any of the thresholds is not relevant, None
may be used instead. Also, the units in this reference variable are entirely optional, since they were already provided
through the @performance_function decorator.

If any obtained performance value is beyond its respective thresholds, the test will fail with a summary as shown below:

30 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

./bin/reframe -c tutorials/basics/stream/stream3.py -r --performance-report

FAILURE INFO for StreamWithRefTest
* Expanded name: StreamWithRefTest
* Description: StreamWithRefTest
* System partition: catalina:default
* Environment: gnu
* Stage directory: /Users/user/Repositories/reframe/stage/catalina/default/gnu/

→˓StreamWithRefTest
* Node list: vpn-39
* Job type: local (id=34622)
* Dependencies (conceptual): []
* Dependencies (actual): []
* Maintainers: []
* Failing phase: performance
* Rerun with '-n StreamWithRefTest -p gnu --system catalina:default -r'
* Reason: performance error: failed to meet reference: Copy=24584.3, expected 55200␣

→˓(l=52440.0, u=57960.0)

Examining the performance logs

ReFrame has a powerful mechanism for logging its activities as well as performance data. It supports different types
of log channels and it can send data simultaneously in any number of them. For example, performance data might be
logged in files and at the same time being sent to Syslog or to a centralized log management server. By default (i.e.,
starting off from the builtin configuration file), ReFrame sends performance data to files per test under the perflogs/
directory:

perflogs
catalina

default
StreamTest.log
StreamWithRefTest.log

ReFrame creates a log file per test per system and per partition and appends to it every time the test is run on that
system/partition combination. Let’s inspect the log file from our last test:

tail perflogs/catalina/default/StreamWithRefTest.log

2022-01-19T17:17:15|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34545|Copy=24672.4|ref=25200 (l=-0.05, u=0.05)|MB/s
2022-01-19T17:17:15|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34545|Scale=16834.0|ref=16800 (l=-0.05, u=0.05)|MB/s
2022-01-19T17:17:15|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34545|Add=18376.3|ref=18500 (l=-0.05, u=0.05)|MB/s
2022-01-19T17:17:15|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34545|Triad=19071.7|ref=18800 (l=-0.05, u=0.05)|MB/s
2022-01-19T17:18:52|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34622|Copy=24584.3|ref=55200 (l=-0.05, u=0.05)|MB/s
2022-01-19T17:18:52|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34622|Scale=16767.3|ref=16800 (l=-0.05, u=0.05)|MB/s
2022-01-19T17:18:52|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34622|Add=18409.5|ref=18500 (l=-0.05, u=0.05)|MB/s(continues on next page)

2.2. ReFrame Tutorials 31

ReFrame Documentation, Release 3.10.0

(continued from previous page)

2022-01-19T17:18:52|reframe 3.10.0-dev.2+bf404ae1|StreamWithRefTest␣
→˓@catalina:default+gnu|jobid=34622|Triad=18959.5|ref=18800 (l=-0.05, u=0.05)|MB/s

Several information are printed for each run, such as the performance variables, their value, their references and thresh-
olds etc. The default format is in a form suitable for easy parsing, but you may fully control not only the format, but
also what is being logged from the configuration file. Configuring ReFrame for Your Site and Configuration Reference
cover logging in ReFrame in much more detail.

Porting The Tests to an HPC cluster

It’s now time to port our tests to an HPC cluster. Obviously, HPC clusters are much more complex than our laptop or
PC. Usually there are many more compilers, the user environment is handled in a different way, and the way to launch
the tests varies significantly, since you have to go through a workload manager in order to access the actual compute
nodes. Besides that, there might be multiple types of compute nodes that we would like to run our tests on, but each
type might be accessed in a different way. It is already apparent that porting even an as simple as a “Hello, World” test
to such a system is not that straightforward. As we shall see in this section, ReFrame makes that pretty easy.

Adapting the configuration

Our target system is the Piz Daint supercomputer at CSCS, but you can adapt the process to your target HPC system.
In ReFrame, all the details of the various interactions of a test with the system environment are handled transparently
and are set up in its configuration file. Let’s extend our configuration file for Piz Daint.

site_configuration = {
rfmdocstart: systems
'systems': [

{
'name': 'catalina',
'descr': 'My Mac',
'hostnames': ['tresa'],
'modules_system': 'nomod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['gnu', 'clang'],

}
]

},
{

'name': 'tutorials-docker',
'descr': 'Container for running the build system tutorials',
'hostnames': ['docker'],
'modules_system': 'lmod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',

(continues on next page)

32 Chapter 2. Publications

https://www.cscs.ch/computers/piz-daint/

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'environs': ['builtin'],
}

]
},
{

'name': 'daint',
'descr': 'Piz Daint Supercomputer',
'hostnames': ['daint'],
'modules_system': 'tmod32',
'partitions': [

{
'name': 'login',
'descr': 'Login nodes',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin', 'gnu', 'intel', 'pgi', 'cray'],

},
rfmdocstart: all-partitions
rfmdocstart: gpu-partition
{

'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
],
'container_platforms': [

{
'type': 'Sarus',
'modules': ['sarus']

},
{

'type': 'Singularity',
'modules': ['singularity']

}
]

},
rfmdocend: gpu-partition
{

'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],

(continues on next page)

2.2. ReFrame Tutorials 33

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
]

}
rfmdocend: all-partitions

]
},
{

'name': 'generic',
'descr': 'Generic example system',
'hostnames': ['.*'],
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin']

}
]

},
],
rfmdocend: systems
rfmdocstart: environments
'environments': [

{
'name': 'gnu',
'cc': 'gcc-9',
'cxx': 'g++-9',
'ftn': 'gfortran-9'

},
{

'name': 'gnu',
'modules': ['PrgEnv-gnu'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'cray',
'modules': ['PrgEnv-cray'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'intel',

(continues on next page)

34 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'modules': ['PrgEnv-intel'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'pgi',
'modules': ['PrgEnv-pgi'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'clang',
'cc': 'clang',
'cxx': 'clang++',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': '',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

}
],
rfmdocend: environments
rfmdocstart: logging
'logging': [

{
'level': 'debug',
'handlers': [

{
'type': 'stream',
'name': 'stdout',
'level': 'info',
'format': '%(message)s'

},
{

'type': 'file',
'level': 'debug',
'format': '[%(asctime)s] %(levelname)s: %(check_info)s: %(message)s',

→˓ # noqa: E501
'append': False

(continues on next page)

2.2. ReFrame Tutorials 35

ReFrame Documentation, Release 3.10.0

(continued from previous page)

}
],
'handlers_perflog': [

{
'type': 'filelog',
'prefix': '%(check_system)s/%(check_partition)s',
'level': 'info',
'format': (

'%(check_job_completion_time)s|reframe %(version)s|'
'%(check_info)s|jobid=%(check_jobid)s|'
'%(check_perf_var)s=%(check_perf_value)s|'
'ref=%(check_perf_ref)s '
'(l=%(check_perf_lower_thres)s, '
'u=%(check_perf_upper_thres)s)|'
'%(check_perf_unit)s'

),
'append': True

}
]

}
],
rfmdocend: logging

}

First of all, we need to define a new system and set the list of hostnames that will help ReFrame identify it. We also
set the modules_system configuration parameter to instruct ReFrame that this system makes use of the environment
modules for managing the user environment. Then we define the system partitions that we want to test. In this case,
we define three partitions:

1. the login nodes,

2. the multicore partition (2x Broadwell CPUs per node) and

3. the hybrid partition (1x Haswell CPU + 1x Pascal GPU).

The login nodes are pretty much similar to the catalina:default partition which corresponded to our laptop: tests
will be launched and run locally. The other two partitions are handled by Slurm and parallel jobs are launched using
the srun command. Additionally, in order to access the different types of nodes represented by those partitions, users
have to specify either -C mc or -C gpu options along with their account. This is what we do exactly with the access
partition configuration option.

Note: System partitions in ReFrame do not necessarily correspond to real job scheduler partitions.

Piz Daint’s programming environment offers four compilers: Cray, GNU, Intel and PGI. We want to test all of them,
so we include them in the environs lists. Notice that we do not include Clang in the list, since there is no such
compiler on this particular system. On the other hand, we include a different version of the builtin environment,
which corresponds to the default login environment without loading any modules. It is generally useful to define such
an environment so as to use it for tests that are running simple utilities and don’t need to compile anything.

Before looking into the definition of the new environments for the four compilers, it is worth mentioning the max_jobs
parameter. This parameter specifies the maximum number of ReFrame test jobs that can be simultaneously in flight.
ReFrame will try to keep concurrency close to this limit (but not exceeding it). By default, this is set to 8, so you are
advised to set it to a higher number if you want to increase the throughput of completed tests.

The new environments are defined similarly to the ones we had for our local system, except that now we set two more

36 Chapter 2. Publications

config_reference.html#.systems{[}{]}.modules_system
http://modules.sourceforge.net/
http://modules.sourceforge.net/
https://slurm.schedmd.com/
https://slurm.schedmd.com/srun.html

ReFrame Documentation, Release 3.10.0

parameters: the modules and the target_systems. The modules parameter is a list of environment modules that
needs to be loaded, in order to make available this compiler. The target_systems parameter restricts the environment
definition to a list of specific systems or system partitions. This allows us to redefine environments for different systems,
as for example the gnu environment in this case. ReFrame will always pick the definition that is a closest match for
the current system. In this example, it will pick the second definition for gnu whenever it runs on the system named
daint, and the first in every other occasion.

Running the tests

We are now ready to run our tests on Piz Daint. We will only do so with the final versions of the tests from the previous
section, which we will select using -n option.

export RFM_CONFIG_FILE=$(pwd)/tutorials/config/settings.py
./bin/reframe -c tutorials/basics/ -R -n
→˓'HelloMultiLangTest|HelloThreadedExtended2Test|StreamWithRefTest' --performance-report␣
→˓-r

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/basics/ -R -n␣

→˓HelloMultiLangTest|HelloThreadedExtended2Test|StreamWithRefTest --performance-report -r
→˓'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: (R) '/home/user/Devel/reframe/tutorials/basics'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[==========] Running 4 check(s)
[==========] Started on Sat Jan 22 22:43:38 2022

[----------] start processing checks
[RUN] HelloMultiLangTest %lang=cpp @daint:login+builtin
[RUN] HelloMultiLangTest %lang=cpp @daint:login+gnu
[RUN] HelloMultiLangTest %lang=cpp @daint:login+intel
[RUN] HelloMultiLangTest %lang=cpp @daint:login+pgi
[RUN] HelloMultiLangTest %lang=cpp @daint:login+cray
[RUN] HelloMultiLangTest %lang=cpp @daint:gpu+gnu
[RUN] HelloMultiLangTest %lang=cpp @daint:gpu+intel
[RUN] HelloMultiLangTest %lang=cpp @daint:gpu+pgi
[RUN] HelloMultiLangTest %lang=cpp @daint:gpu+cray
[RUN] HelloMultiLangTest %lang=cpp @daint:mc+gnu
[RUN] HelloMultiLangTest %lang=cpp @daint:mc+intel
[RUN] HelloMultiLangTest %lang=cpp @daint:mc+pgi
[RUN] HelloMultiLangTest %lang=cpp @daint:mc+cray
[RUN] HelloMultiLangTest %lang=c @daint:login+builtin
[RUN] HelloMultiLangTest %lang=c @daint:login+gnu
[RUN] HelloMultiLangTest %lang=c @daint:login+intel
[RUN] HelloMultiLangTest %lang=c @daint:login+pgi
[RUN] HelloMultiLangTest %lang=c @daint:login+cray
[RUN] HelloMultiLangTest %lang=c @daint:gpu+gnu

(continues on next page)

2.2. ReFrame Tutorials 37

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[RUN] HelloMultiLangTest %lang=c @daint:gpu+intel
[RUN] HelloMultiLangTest %lang=c @daint:gpu+pgi
[RUN] HelloMultiLangTest %lang=c @daint:gpu+cray
[RUN] HelloMultiLangTest %lang=c @daint:mc+gnu
[RUN] HelloMultiLangTest %lang=c @daint:mc+intel
[RUN] HelloMultiLangTest %lang=c @daint:mc+pgi
[RUN] HelloMultiLangTest %lang=c @daint:mc+cray
[RUN] HelloThreadedExtended2Test @daint:login+builtin
[RUN] HelloThreadedExtended2Test @daint:login+gnu
[RUN] HelloThreadedExtended2Test @daint:login+intel
[RUN] HelloThreadedExtended2Test @daint:login+pgi
[RUN] HelloThreadedExtended2Test @daint:login+cray
[RUN] HelloThreadedExtended2Test @daint:gpu+gnu
[RUN] HelloThreadedExtended2Test @daint:gpu+intel
[RUN] HelloThreadedExtended2Test @daint:gpu+pgi
[RUN] HelloThreadedExtended2Test @daint:gpu+cray
[RUN] HelloThreadedExtended2Test @daint:mc+gnu
[RUN] HelloThreadedExtended2Test @daint:mc+intel
[RUN] HelloThreadedExtended2Test @daint:mc+pgi
[RUN] HelloThreadedExtended2Test @daint:mc+cray
[RUN] StreamWithRefTest @daint:login+gnu
[RUN] StreamWithRefTest @daint:gpu+gnu
[RUN] StreamWithRefTest @daint:mc+gnu
[OK] (1/42) HelloMultiLangTest %lang=cpp @daint:login+builtin [compile: 4.053s␣
→˓run: 36.016s total: 43.208s]
[OK] (2/42) HelloMultiLangTest %lang=cpp @daint:login+gnu [compile: 4.047s run:␣
→˓36.009s total: 43.203s]
[OK] (3/42) HelloMultiLangTest %lang=cpp @daint:login+intel [compile: 3.431s␣
→˓run: 35.376s total: 43.206s]
[OK] (4/42) HelloMultiLangTest %lang=cpp @daint:login+pgi [compile: 2.758s run:␣
→˓34.675s total: 43.208s]
[OK] (5/42) HelloMultiLangTest %lang=cpp @daint:login+cray [compile: 2.149s␣
→˓run: 34.052s total: 43.211s]
[OK] (6/42) HelloMultiLangTest %lang=cpp @daint:gpu+gnu [compile: 2.139s run:␣
→˓60.830s total: 69.995s]
[OK] (7/42) HelloMultiLangTest %lang=cpp @daint:gpu+intel [compile: 8.863s run:␣
→˓55.184s total: 70.004s]
[OK] (8/42) HelloMultiLangTest %lang=c @daint:login+builtin [compile: 32.460s␣
→˓run: 18.053s total: 69.949s]
[OK] (9/42) HelloMultiLangTest %lang=c @daint:login+gnu [compile: 27.081s run:␣
→˓18.051s total: 69.954s]
[OK] (10/42) HelloMultiLangTest %lang=c @daint:login+intel [compile: 39.615s␣
→˓run: 32.065s total: 87.922s]
[OK] (11/42) HelloMultiLangTest %lang=c @daint:login+pgi [compile: 38.873s run:␣
→˓31.356s total: 87.926s]
[OK] (12/42) HelloMultiLangTest %lang=c @daint:login+cray [compile: 38.265s run:␣
→˓30.731s total: 87.931s]
[OK] (13/42) HelloThreadedExtended2Test @daint:login+builtin [compile: 12.837s␣
→˓run: 7.254s total: 92.404s]
[OK] (14/42) HelloThreadedExtended2Test @daint:login+gnu [compile: 31.377s run:␣
→˓31.894s total: 119.747s]
[OK] (15/42) HelloThreadedExtended2Test @daint:login+intel [compile: 30.708s␣
→˓run: 31.252s total: 119.749s] (continues on next page)

38 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[OK] (16/42) HelloThreadedExtended2Test @daint:login+pgi [compile: 18.581s run:␣
→˓30.571s total: 119.753s]
[OK] (17/42) HelloThreadedExtended2Test @daint:login+cray [compile: 17.981s run:␣
→˓29.963s total: 119.756s]
[OK] (18/42) HelloMultiLangTest %lang=cpp @daint:mc+intel [compile: 33.792s run:␣
→˓87.427s total: 130.572s]
[OK] (19/42) HelloMultiLangTest %lang=cpp @daint:mc+pgi [compile: 33.120s run:␣
→˓84.192s total: 130.591s]
[OK] (20/42) HelloMultiLangTest %lang=cpp @daint:mc+cray [compile: 32.474s run:␣
→˓81.119s total: 130.609s]
[OK] (21/42) HelloMultiLangTest %lang=c @daint:mc+pgi [compile: 13.468s run: 51.
→˓389s total: 130.540s]
[OK] (22/42) HelloMultiLangTest %lang=c @daint:mc+cray [compile: 12.847s run: 48.
→˓146s total: 130.559s]
[OK] (23/42) HelloMultiLangTest %lang=cpp @daint:gpu+pgi [compile: 8.167s run:␣
→˓120.870s total: 138.874s]
[OK] (24/42) HelloMultiLangTest %lang=cpp @daint:gpu+cray [compile: 7.412s run:␣
→˓109.470s total: 138.883s]
[OK] (25/42) HelloMultiLangTest %lang=c @daint:gpu+gnu [compile: 13.293s run: 81.
→˓519s total: 138.729s]
[OK] (26/42) HelloMultiLangTest %lang=c @daint:gpu+cray [compile: 11.378s run:␣
→˓74.651s total: 138.736s]
[OK] (27/42) HelloMultiLangTest %lang=c @daint:mc+gnu [compile: 25.399s run: 65.
→˓789s total: 138.749s]
[OK] (28/42) HelloMultiLangTest %lang=c @daint:gpu+intel [compile: 12.677s run:␣
→˓79.097s total: 139.421s]
[OK] (29/42) HelloMultiLangTest %lang=c @daint:gpu+pgi [compile: 23.579s run: 69.
→˓505s total: 139.432s]
[OK] (30/42) HelloThreadedExtended2Test @daint:gpu+gnu [compile: 22.616s run: 46.
→˓878s total: 139.268s]
[OK] (31/42) HelloThreadedExtended2Test @daint:gpu+pgi [compile: 21.265s run: 40.
→˓181s total: 139.267s]
[OK] (32/42) HelloThreadedExtended2Test @daint:gpu+cray [compile: 20.642s run:␣
→˓37.158s total: 139.275s]
[OK] (33/42) HelloThreadedExtended2Test @daint:mc+gnu [compile: 4.691s run: 30.
→˓273s total: 139.280s]
[OK] (34/42) HelloThreadedExtended2Test @daint:mc+intel [compile: 28.304s run:␣
→˓19.597s total: 139.281s]
[OK] (35/42) StreamWithRefTest @daint:login+gnu [compile: 24.257s run: 10.594s␣
→˓total: 139.286s]
[OK] (36/42) HelloMultiLangTest %lang=c @daint:mc+intel [compile: 14.135s run:␣
→˓70.976s total: 146.961s]
[OK] (37/42) HelloMultiLangTest %lang=cpp @daint:mc+gnu [compile: 7.397s run:␣
→˓194.065s total: 229.737s]
[OK] (38/42) HelloThreadedExtended2Test @daint:gpu+intel [compile: 21.956s run:␣
→˓133.885s total: 229.342s]
[OK] (39/42) HelloThreadedExtended2Test @daint:mc+pgi [compile: 27.596s run: 106.
→˓403s total: 229.264s]
[OK] (40/42) HelloThreadedExtended2Test @daint:mc+cray [compile: 26.958s run:␣
→˓103.318s total: 229.274s]
[OK] (41/42) StreamWithRefTest @daint:gpu+gnu [compile: 38.940s run: 98.873s␣
→˓total: 229.279s]

(continues on next page)

2.2. ReFrame Tutorials 39

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[OK] (42/42) StreamWithRefTest @daint:mc+gnu [compile: 38.304s run: 94.811s␣
→˓total: 229.299s]
[----------] all spawned checks have finished

[PASSED] Ran 42/42 test case(s) from 4 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 22:47:28 2022
==
PERFORMANCE REPORT
--
StreamWithRefTest
- daint:login

- gnu
* num_tasks: 1
* Copy: 67915.3 MB/s
* Scale: 37485.6 MB/s
* Add: 39545.5 MB/s
* Triad: 39906.2 MB/s

- daint:gpu
- gnu

* num_tasks: 1
* Copy: 50553.4 MB/s
* Scale: 34780.1 MB/s
* Add: 38043.6 MB/s
* Triad: 38522.2 MB/s

- daint:mc
- gnu

* num_tasks: 1
* Copy: 48200.9 MB/s
* Scale: 31370.4 MB/s
* Add: 33000.2 MB/s
* Triad: 33205.5 MB/s

--
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/tmp/rfm-n3d18lq9.log'

There it is! Without any change in our tests, we could simply run them in a HPC cluster with all of its intricacies. Notice
how our original four tests expanded to more than 40 test cases on that particular HPC cluster! One reason we could
run immediately our tests on a new system was that we have not been restricting neither the valid system they can run
nor the valid programming environments they can run with (except for the STREAM test). Otherwise we would have
to add daint and its corresponding programming environments in valid_systems and valid_prog_environs lists
respectively.

Tip: A quick way to try a test on a new system, if it’s not generic, is to pass the --skip-system-check and the
--skip-prgenv-check command line options which will cause ReFrame to skip any test validity checks for systems
or programming environments.

Although the tests remain the same, ReFrame has generated completely different job scripts for each test depending on
where it was going to run. Let’s check the job script generated for the StreamWithRefTest:

cat output/daint/gpu/gnu/StreamWithRefTest/rfm_StreamWithRefTest_job.sh

40 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

#!/bin/bash
#SBATCH --job-name="rfm_StreamWithRefTest_job"
#SBATCH --ntasks=1
#SBATCH --output=rfm_StreamWithRefTest_job.out
#SBATCH --error=rfm_StreamWithRefTest_job.err
#SBATCH --time=0:10:0
#SBATCH -A csstaff
#SBATCH --constraint=gpu
module unload PrgEnv-cray
module load PrgEnv-gnu
export OMP_NUM_THREADS=4
export OMP_PLACES=cores
srun ./StreamWithRefTest

Whereas the exact same test running on our laptop was as simple as the following:

#!/bin/bash
export OMP_NUM_THREADS=4
export OMP_PLACES=cores
./StreamWithRefTest

In ReFrame, you don’t have to care about all the system interaction details, but rather about the logic of your tests as
we shall see in the next section.

Adapting a test to new systems and programming environments

Unless a test is rather generic, you will need to make some adaptations for the system that you port it to. In this case, we
will adapt the STREAM benchmark so as to run it with multiple compiler and adjust its execution based on the target
architecture of each partition. Let’s see and comment the changes:

cat tutorials/basics/stream/stream4.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class StreamMultiSysTest(rfm.RegressionTest):

valid_systems = ['*']
valid_prog_environs = ['cray', 'gnu', 'intel', 'pgi']
prebuild_cmds = [

'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #␣
→˓noqa: E501

]
build_system = 'SingleSource'
sourcepath = 'stream.c'
variables = {

'OMP_NUM_THREADS': '4',
'OMP_PLACES': 'cores'

}
reference = {

'catalina': {
(continues on next page)

2.2. ReFrame Tutorials 41

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'Copy': (25200, -0.05, 0.05, 'MB/s'),
'Scale': (16800, -0.05, 0.05, 'MB/s'),
'Add': (18500, -0.05, 0.05, 'MB/s'),
'Triad': (18800, -0.05, 0.05, 'MB/s')

}
}

Flags per programming environment
flags = variable(dict, value={

'cray': ['-fopenmp', '-O3', '-Wall'],
'gnu': ['-fopenmp', '-O3', '-Wall'],
'intel': ['-qopenmp', '-O3', '-Wall'],
'pgi': ['-mp', '-O3']

})

Number of cores for each system
cores = variable(dict, value={

'catalina:default': 4,
'daint:gpu': 12,
'daint:mc': 36,
'daint:login': 10

})

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))']
environ = self.current_environ.name
self.build_system.cflags = self.flags.get(environ, [])

@run_before('run')
def set_num_threads(self):

num_threads = self.cores.get(self.current_partition.fullname, 1)
self.num_cpus_per_task = num_threads
self.variables = {

'OMP_NUM_THREADS': str(num_threads),
'OMP_PLACES': 'cores'

}

@sanity_function
def validate_solution(self):

return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s')
def extract_bw(self, kind='Copy'):

if kind not in {'Copy', 'Scale', 'Add', 'Triad'}:
raise ValueError(f'illegal value in argument kind ({kind!r})')

return sn.extractsingle(rf'{kind}:\s+(\S+)\s+.*',
self.stdout, 1, float)

@run_before('performance')
def set_perf_variables(self):

(continues on next page)

42 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

self.perf_variables = {
'Copy': self.extract_bw(),
'Scale': self.extract_bw('Scale'),
'Add': self.extract_bw('Add'),
'Triad': self.extract_bw('Triad'),

}

First of all, we need to add the new programming environments in the list of the supported ones. Now there is the
problem that each compiler has its own flags for enabling OpenMP, so we need to differentiate the behavior of the test
based on the programming environment. For this reason, we define the flags for each compiler in a separate dictionary
(flags variable) and we set them in the set_compiler_flags() pipeline hook. We have first seen the pipeline hooks
in the multithreaded “Hello, World!” example and now we explain them in more detail. When ReFrame loads a test
file, it instantiates all the tests it finds in it. Based on the system ReFrame runs on and the supported environments of
the tests, it will generate different test cases for each system partition and environment combination and it will finally
send the test cases for execution. During its execution, a test case goes through the regression test pipeline, which
is a series of well defined phases. Users can attach arbitrary functions to run before or after any pipeline stage and
this is exactly what the set_compiler_flags() function is. We instruct ReFrame to run this function before the
test enters the compile stage and set accordingly the compilation flags. The system partition and the programming
environment of the currently running test case are available to a ReFrame test through the current_partition and
current_environ attributes respectively. These attributes, however, are only set after the first stage (setup) of the
pipeline is executed, so we can’t use them inside the test’s constructor.

We do exactly the same for setting the OMP_NUM_THREADS environment variables depending on the system partition
we are running on, by attaching the set_num_threads() pipeline hook to the run phase of the test. In that same
hook we also set the num_cpus_per_task attribute of the test, so as to instruct the backend job scheduler to properly
assign CPU cores to the test. In ReFrame tests you can set a series of task allocation attributes that will be used by the
backend schedulers to emit the right job submission script. The section Mapping of Test Attributes to Job Scheduler
Backends of the Regression Test API summarizes these attributes and the actual backend scheduler options that they
correspond to.

For more information about the regression test pipeline and how ReFrame executes the tests in general, have a look at
How ReFrame Executes Tests.

Note: ReFrame tests are ordinary Python classes so you can define your own attributes as we do with flags and
cores in this example.

Let’s run our adapted test now:

./bin/reframe -c tutorials/basics/stream/stream4.py -r --performance-report

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/basics/stream/stream4.py -r --

→˓performance-report'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/basics/stream/stream4.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[==========] Running 1 check(s)
(continues on next page)

2.2. ReFrame Tutorials 43

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[==========] Started on Sat Jan 22 22:47:28 2022

[----------] start processing checks
[RUN] StreamMultiSysTest @daint:login+gnu
[RUN] StreamMultiSysTest @daint:login+intel
[RUN] StreamMultiSysTest @daint:login+pgi
[RUN] StreamMultiSysTest @daint:login+cray
[RUN] StreamMultiSysTest @daint:gpu+gnu
[RUN] StreamMultiSysTest @daint:gpu+intel
[RUN] StreamMultiSysTest @daint:gpu+pgi
[RUN] StreamMultiSysTest @daint:gpu+cray
[RUN] StreamMultiSysTest @daint:mc+gnu
[RUN] StreamMultiSysTest @daint:mc+intel
[RUN] StreamMultiSysTest @daint:mc+pgi
[RUN] StreamMultiSysTest @daint:mc+cray
[OK] (1/12) StreamMultiSysTest @daint:login+gnu [compile: 4.024s run: 21.615s␣
→˓total: 28.185s]
[OK] (2/12) StreamMultiSysTest @daint:login+intel [compile: 3.410s run: 20.976s␣
→˓total: 28.208s]
[OK] (3/12) StreamMultiSysTest @daint:login+pgi [compile: 2.734s run: 20.235s␣
→˓total: 28.226s]
[OK] (4/12) StreamMultiSysTest @daint:login+cray [compile: 2.104s run: 19.571s␣
→˓total: 28.242s]
[OK] (5/12) StreamMultiSysTest @daint:gpu+gnu [compile: 2.102s run: 30.129s␣
→˓total: 38.813s]
[OK] (6/12) StreamMultiSysTest @daint:gpu+pgi [compile: 8.695s run: 22.117s␣
→˓total: 38.826s]
[OK] (7/12) StreamMultiSysTest @daint:gpu+cray [compile: 8.083s run: 19.050s␣
→˓total: 38.852s]
[OK] (8/12) StreamMultiSysTest @daint:gpu+intel [compile: 9.369s run: 37.641s␣
→˓total: 50.212s]
[OK] (9/12) StreamMultiSysTest @daint:mc+gnu [compile: 7.970s run: 28.955s␣
→˓total: 52.297s]
[OK] (10/12) StreamMultiSysTest @daint:mc+cray [compile: 20.508s run: 30.812s␣
→˓total: 65.951s]
[OK] (11/12) StreamMultiSysTest @daint:mc+pgi [compile: 21.186s run: 34.898s␣
→˓total: 66.325s]
[OK] (12/12) StreamMultiSysTest @daint:mc+intel [compile: 21.890s run: 62.451s␣
→˓total: 90.626s]
[----------] all spawned checks have finished

[PASSED] Ran 12/12 test case(s) from 1 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 22:48:59 2022
==
PERFORMANCE REPORT
--
StreamMultiSysTest
- daint:login

- gnu
* num_tasks: 1
* Copy: 108525.7 MB/s
* Scale: 76882.1 MB/s

(continues on next page)

44 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

* Add: 81155.7 MB/s
* Triad: 82433.2 MB/s

- intel
* num_tasks: 1
* Copy: 82341.7 MB/s
* Scale: 81330.6 MB/s
* Add: 72076.0 MB/s
* Triad: 101808.5 MB/s

- pgi
* num_tasks: 1
* Copy: 94336.0 MB/s
* Scale: 69096.9 MB/s
* Add: 73484.2 MB/s
* Triad: 73243.6 MB/s

- cray
* num_tasks: 1
* Copy: 114374.2 MB/s
* Scale: 76205.6 MB/s
* Add: 82184.5 MB/s
* Triad: 76086.3 MB/s

- daint:gpu
- gnu

* num_tasks: 1
* Copy: 42963.4 MB/s
* Scale: 38504.8 MB/s
* Add: 43650.2 MB/s
* Triad: 43876.5 MB/s

- intel
* num_tasks: 1
* Copy: 52505.4 MB/s
* Scale: 54131.1 MB/s
* Add: 58918.8 MB/s
* Triad: 59048.6 MB/s

- pgi
* num_tasks: 1
* Copy: 50472.9 MB/s
* Scale: 39545.5 MB/s
* Add: 43881.6 MB/s
* Triad: 43972.4 MB/s

- cray
* num_tasks: 1
* Copy: 50610.2 MB/s
* Scale: 38990.9 MB/s
* Add: 43158.9 MB/s
* Triad: 43792.9 MB/s

- daint:mc
- gnu

* num_tasks: 1
* Copy: 48650.7 MB/s
* Scale: 38618.4 MB/s
* Add: 43504.1 MB/s
* Triad: 44044.1 MB/s

(continues on next page)

2.2. ReFrame Tutorials 45

ReFrame Documentation, Release 3.10.0

(continued from previous page)

- intel
* num_tasks: 1
* Copy: 52500.5 MB/s
* Scale: 48545.9 MB/s
* Add: 57150.3 MB/s
* Triad: 57272.4 MB/s

- pgi
* num_tasks: 1
* Copy: 46123.6 MB/s
* Scale: 40552.5 MB/s
* Add: 44147.7 MB/s
* Triad: 44521.9 MB/s

- cray
* num_tasks: 1
* Copy: 47094.0 MB/s
* Scale: 40080.4 MB/s
* Add: 43659.8 MB/s
* Triad: 44078.0 MB/s

--
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/tmp/rfm-sua0bogo.log'

Notice the improved performance of the benchmark in all partitions and the differences in performance between the
different compilers.

This concludes our introductory tutorial to ReFrame!

2.2.2 Tutorial 2: Customizing Further a Regression Test

In this tutorial we will present common patterns that can come up when writing regression tests with ReFrame. All
examples use the configuration file presented in Tutorial 1: Getting Started with ReFrame, which you can find in
tutorials/config/settings.py. We also assume that the reader is already familiar with the concepts presented
in the basic tutorial. Finally, to avoid specifying the tutorial configuration file each time, make sure to export it here:

export RFM_CONFIG_FILE=$(pwd)/tutorials/config/settings.py

Parameterizing a Regression Test

We have briefly looked into parameterized tests in Tutorial 1: Getting Started with ReFrame where we parameterized
the “Hello, World!” test based on the programming language. Test parameterization in ReFrame is quite powerful since
it allows you to create a multitude of similar tests automatically. In this example, we will parameterize the last version
of the STREAM test from the Tutorial 1: Getting Started with ReFrame by changing the array size, so as to check the
bandwidth of the different cache levels. Here is the adapted code with the relevant parts highlighted (for simplicity, we
are interested only in the “Triad” benchmark):

cat tutorials/advanced/parameterized/stream.py

import reframe as rfm
import reframe.utility.sanity as sn

(continues on next page)

46 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

@rfm.simple_test
class StreamMultiSysTest(rfm.RegressionTest):

num_bytes = parameter(1 << pow for pow in range(19, 30))
array_size = variable(int)
ntimes = variable(int)

valid_systems = ['*']
valid_prog_environs = ['cray', 'gnu', 'intel', 'pgi']
prebuild_cmds = [

'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #␣
→˓noqa: E501

]
build_system = 'SingleSource'
sourcepath = 'stream.c'
variables = {

'OMP_NUM_THREADS': '4',
'OMP_PLACES': 'cores'

}
reference = {

'*': {
'Triad': (0, None, None, 'MB/s'),

}
}

Flags per programming environment
flags = variable(dict, value={

'cray': ['-fopenmp', '-O3', '-Wall'],
'gnu': ['-fopenmp', '-O3', '-Wall'],
'intel': ['-qopenmp', '-O3', '-Wall'],
'pgi': ['-mp', '-O3']

})

Number of cores for each system
cores = variable(dict, value={

'catalina:default': 4,
'daint:gpu': 12,
'daint:mc': 36,
'daint:login': 10

})

@run_after('init')
def set_variables(self):

self.array_size = (self.num_bytes >> 3) // 3
self.ntimes = 100*1024*1024 // self.array_size
self.descr = (

f'STREAM test (array size: {self.array_size}, '
f'ntimes: {self.ntimes})'

)

@run_before('compile')
def set_compiler_flags(self):

(continues on next page)

2.2. ReFrame Tutorials 47

ReFrame Documentation, Release 3.10.0

(continued from previous page)

self.build_system.cppflags = [f'-DSTREAM_ARRAY_SIZE={self.array_size}',
f'-DNTIMES={self.ntimes}']

environ = self.current_environ.name
self.build_system.cflags = self.flags.get(environ, [])

@run_before('run')
def set_num_threads(self):

num_threads = self.cores.get(self.current_partition.fullname, 1)
self.num_cpus_per_task = num_threads
self.variables = {

'OMP_NUM_THREADS': str(num_threads),
'OMP_PLACES': 'cores'

}

@sanity_function
def validate_solution(self):

return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s', perf_key='Triad')
def extract_triad_bw(self):

return sn.extractsingle(r'Triad:\s+(\S+)\s+.*', self.stdout, 1, float)

Any ordinary ReFrame test becomes a parameterized one if the user defines parameters inside the class body of the
test. This is done using the parameter() ReFrame built-in function, which accepts the list of parameter values. For
each parameter value ReFrame will instantiate a different regression test by assigning the corresponding value to an
attribute named after the parameter. So in this example, ReFrame will generate automatically 11 tests with different
values for their num_bytes attribute. From this point on, you can adapt the test based on the parameter values, as we
do in this case, where we compute the STREAM array sizes, as well as the number of iterations to be performed on
each benchmark, and we also compile the code accordingly.

Let’s try listing the generated tests:

./bin/reframe -c tutorials/advanced/parameterized/stream.py -l

[ReFrame Setup]
version: 3.10.0-dev.3+4fc5b12c
command: './bin/reframe -c tutorials/advanced/parameterized/stream.py -l'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: '/home/user/Repositories/reframe/tutorials/config/settings.py'
check search path: '/home/user/Repositories/reframe/tutorials/advanced/parameterized/

→˓stream.py'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

[List of matched checks]
- StreamMultiSysTest %num_bytes=536870912
- StreamMultiSysTest %num_bytes=268435456
- StreamMultiSysTest %num_bytes=134217728
- StreamMultiSysTest %num_bytes=67108864
- StreamMultiSysTest %num_bytes=33554432
- StreamMultiSysTest %num_bytes=16777216

(continues on next page)

48 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

- StreamMultiSysTest %num_bytes=8388608
- StreamMultiSysTest %num_bytes=4194304
- StreamMultiSysTest %num_bytes=2097152
- StreamMultiSysTest %num_bytes=1048576
- StreamMultiSysTest %num_bytes=524288
Found 11 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-ka9llk6d.log'

ReFrame generates 11 tests from the single parameterized test. When listing parameterized tests, ReFrame adds the list
of parameters after the base test name using the notation %<param>=<value>. Each generated test gets also a unique
name. For more details on how the test names are generated for various types of tests, please refer to Test Naming
Scheme.

Test parameterization in ReFrame is very powerful since you can parameterize your tests on anything and you can
create complex parameterization spaces. A common pattern is to parameterize a test on the environment module that
loads a software in order to test different versions of it. For this reason, ReFrame offers the find_modules() function,
which allows you to parameterize a test on the available modules for a given programming environment and partition
combination. The following example will create a test for each GROMACS module found on the software stack associated
with a system partition and programming environment (toolchain):

import reframe as rfm
import reframe.utility as util

@rfm.simple_test
class MyTest(rfm.RegressionTest):

module_info = parameter(util.find_modules('GROMACS'))

@run_after('init')
def process_module_info(self):

s, e, m = self.module_info
self.valid_systems = [s]
self.valid_prog_environs = [e]
self.modules = [m]

More On Building Tests

We have already seen how ReFrame can compile a test with a single source file. However, ReFrame can also build tests
that use Make or a configure-Make approach. We are going to demonstrate this through a simple C++ program that
computes a dot-product of two vectors and is being compiled through a Makefile. Additionally, we can select the type
of elements for the vectors at compilation time. Here is the C++ program:

cat tutorials/advanced/makefiles/src/dotprod.cpp

#include <cassert>
#include <iostream>
#include <random>
#include <vector>

#ifndef ELEM_TYPE
(continues on next page)

2.2. ReFrame Tutorials 49

ReFrame Documentation, Release 3.10.0

(continued from previous page)

#define ELEM_TYPE double
#endif

using elem_t = ELEM_TYPE;

template<typename T>
T dotprod(const std::vector<T> &x, const std::vector<T> &y)
{

assert(x.size() == y.size());
T sum = 0;
for (std::size_t i = 0; i < x.size(); ++i) {

sum += x[i] * y[i];
}

return sum;
}

template<typename T>
struct type_name {

static constexpr const char *value = nullptr;
};

template<>
struct type_name<float> {

static constexpr const char *value = "float";
};

template<>
struct type_name<double> {

static constexpr const char *value = "double";
};

int main(int argc, char *argv[])
{

if (argc < 2) {
std::cerr << argv[0] << ": too few arguments\n";
std::cerr << "Usage: " << argv[0] << " DIM\n";
return 1;

}

std::size_t N = std::atoi(argv[1]);
if (N < 0) {

std::cerr << argv[0]
<< ": array dimension must a positive integer: " << argv[1]
<< "\n";

return 1;
}

std::vector<elem_t> x(N), y(N);
std::random_device seed;
std::mt19937 rand(seed());
std::uniform_real_distribution<> dist(-1, 1);

(continues on next page)

50 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

for (std::size_t i = 0; i < N; ++i) {
x[i] = dist(rand);
y[i] = dist(rand);

}

std::cout << "Result (" << type_name<elem_t>::value << "): "
<< dotprod(x, y) << "\n";

return 0;
}

The directory structure for this test is the following:

tutorials/makefiles/
maketest.py
src

Makefile
dotprod.cpp

Let’s have a look at the test itself:

cat tutorials/advanced/makefiles/maketest.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class MakefileTest(rfm.RegressionTest):

elem_type = parameter(['float', 'double'])

descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']
valid_prog_environs = ['clang', 'gnu']
executable = './dotprod'
executable_opts = ['100000']
build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

@sanity_function
def validate_test(self):

return sn.assert_found(rf'Result \({self.elem_type}\):', self.stdout)

First, if you’re using any build system other than SingleSource, you must set the executable attribute of the test,
because ReFrame cannot know what is the actual executable to be run. We then set the build system to Make and set
the preprocessor flags as we would do with the SingleSource build system.

Let’s inspect the build script generated by ReFrame:

./bin/reframe -c tutorials/advanced/makefiles/maketest.py -r
cat output/catalina/default/clang/MakefileTest_float/rfm_MakefileTest_build.sh

2.2. ReFrame Tutorials 51

ReFrame Documentation, Release 3.10.0

#!/bin/bash

_onerror()
{

exitcode=$?
echo "-reframe: command \`$BASH_COMMAND' failed (exit code: $exitcode)"
exit $exitcode

}

trap _onerror ERR

make -j 1 CC="cc" CXX="CC" FC="ftn" NVCC="nvcc" CPPFLAGS="-DELEM_TYPE=float"

The compiler variables (CC, CXX etc.) are set based on the corresponding values specified in the configuration of the
current environment. We can instruct the build system to ignore the default values from the environment by setting its
flags_from_environ attribute to false:

self.build_system.flags_from_environ = False

In this case, make will be invoked as follows:

make -j 1 CPPFLAGS="-DELEM_TYPE=float"

Notice that the -j 1 option is always generated. We can increase the build concurrency by setting the
max_concurrency attribute. Finally, we may even use a custom Makefile by setting the makefile attribute:

self.build_system.max_concurrency = 4
self.build_system.makefile = 'Makefile_custom'

As a final note, as with the SingleSource build system, it wouldn’t have been necessary to specify one in this test, if we
wouldn’t have to set the CPPFLAGS. ReFrame could automatically figure out the correct build system if sourcepath
refers to a directory. ReFrame will inspect the directory and it will first try to determine whether this is a CMake or
Autotools-based project.

More details on ReFrame’s build systems can be found here.

Retrieving the source code from a Git repository

It might be the case that a regression test needs to clone its source code from a remote repository. This can be achieved
in two ways with ReFrame. One way is to set the sourcesdir attribute to None and explicitly clone a repository using
the prebuild_cmds:

self.sourcesdir = None
self.prebuild_cmds = ['git clone https://github.com/me/myrepo .']

Alternatively, we can retrieve specifically a Git repository by assigning its URL directly to the sourcesdir attribute:

self.sourcesdir = 'https://github.com/me/myrepo'

ReFrame will attempt to clone this repository inside the stage directory by executing git clone <repo> . and will
then proceed with the build procedure as usual.

Note: ReFrame recognizes only URLs in the sourcesdir attribute and requires passwordless access to the repository.

52 Chapter 2. Publications

config_reference.html#environment-configuration
regression_test_api.html#build-systems

ReFrame Documentation, Release 3.10.0

This means that the SCP-style repository specification will not be accepted. You will have to specify it as URL using
the ssh:// protocol (see Git documentation page).

Adding a configuration step before compiling the code

It is often the case that a configuration step is needed before compiling a code with make. To address this kind of
projects, ReFrame aims to offer specific abstractions for “configure-make” style of build systems. It supports CMake-
based projects through the CMake build system, as well as Autotools-based projects through the Autotools build
system.

For other build systems, you can achieve the same effect using the Make build system and the prebuild_cmds for
performing the configuration step. The following code snippet will configure a code with ./custom_configure
before invoking make:

self.prebuild_cmds = ['./custom_configure -with-mylib']
self.build_system = 'Make'
self.build_system.cppflags = ['-DHAVE_FOO']
self.build_system.flags_from_environ = False

The generated build script will then have the following lines:

./custom_configure -with-mylib
make -j 1 CPPFLAGS='-DHAVE_FOO'

Writing a Run-Only Regression Test

There are cases when it is desirable to perform regression testing for an already built executable. In the following test
we use simply the echo Bash shell command to print a random integer between specific lower and upper bounds. Here
is the full regression test:

cat tutorials/advanced/runonly/echorand.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class EchoRandTest(rfm.RunOnlyRegressionTest):

descr = 'A simple test that echoes a random number'
valid_systems = ['*']
valid_prog_environs = ['*']
lower = variable(int, value=90)
upper = variable(int, value=100)
executable = 'echo'
executable_opts = [

'Random: ',
f'$((RANDOM%({upper}+1-{lower})+{lower}))'

]

@sanity_function
def assert_solution(self):

(continues on next page)

2.2. ReFrame Tutorials 53

https://git-scm.com/docs/git-clone#_git_urls
https://cmake.org/
https://cmake.org/
https://www.gnu.org/software/automake/

ReFrame Documentation, Release 3.10.0

(continued from previous page)

return sn.assert_bounded(
sn.extractsingle(

r'Random: (?P<number>\S+)', self.stdout, 'number', float
),
self.lower, self.upper

)

There is nothing special for this test compared to those presented so far except that it derives from the
RunOnlyRegressionTest class. Note that setting the executable in this type of test is always required. Run-
only regression tests may also have resources, as for instance a pre-compiled executable or some input data. These
resources may reside under the src/ directory or under any directory specified in the sourcesdir attribute. These
resources will be copied to the stage directory at the beginning of the run phase.

Writing a Compile-Only Regression Test

ReFrame provides the option to write compile-only tests which consist only of a compilation phase without a specified
executable. This kind of tests must derive from the CompileOnlyRegressionTest class provided by the framework.
The following test is a compile-only version of the MakefileTest presented previously which checks that no warnings
are issued by the compiler:

cat tutorials/advanced/makefiles/maketest.py

@rfm.simple_test
class MakeOnlyTest(rfm.CompileOnlyRegressionTest):

elem_type = parameter(['float', 'double'])
descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']
valid_prog_environs = ['clang', 'gnu']
build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

@sanity_function
def validate_compilation(self):

return sn.assert_not_found(r'warning', self.stdout)

What is worth noting here is that the standard output and standard error of the test, which are accessible through
the stdout and stderr attributes, correspond now to the standard output and error of the compilation command.
Therefore sanity checking can be done in exactly the same way as with a normal test.

54 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Grouping parameter packs

New in version 3.4.2.

In the dot product example shown above, we had two independent tests that defined the same elem_type parameter.
And the two tests cannot have a parent-child relationship, since one of them is a run-only test and the other is a compile-
only one. ReFrame offers the RegressionMixin class that allows you to group parameters and other builtins that are
meant to be reused over otherwise unrelated tests. In the example below, we create an ElemTypeParam mixin that
holds the definition of the elem_type parameter which is inherited by both the concrete test classes:

import reframe as rfm
import reframe.utility.sanity as sn

class ElemTypeParam(rfm.RegressionMixin):
elem_type = parameter(['float', 'double'])

@rfm.simple_test
class MakefileTestAlt(rfm.RegressionTest, ElemTypeParam):

descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']
valid_prog_environs = ['clang', 'gnu']
executable = './dotprod'
executable_opts = ['100000']
build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

@sanity_function
def validate_test(self):

return sn.assert_found(
rf'Result \({self.elem_type}\):', self.stdout

)

@rfm.simple_test
class MakeOnlyTestAlt(rfm.CompileOnlyRegressionTest, ElemTypeParam):

descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']
valid_prog_environs = ['clang', 'gnu']
build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

@sanity_function
def validate_build(self):

return sn.assert_not_found(r'warning', self.stdout)

Notice how the parameters are expanded in each of the individual tests:

2.2. ReFrame Tutorials 55

regression_test_api.html#builtins

ReFrame Documentation, Release 3.10.0

./bin/reframe -c tutorials/advanced/makefiles/maketest_mixin.py -l

[ReFrame Setup]
version: 3.10.0-dev.3+4fc5b12c
command: './bin/reframe -c tutorials/advanced/makefiles/maketest_mixin.py -l'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: '/home/user/Repositories/reframe/tutorials/config/settings.py'
check search path: '/home/user/Repositories/reframe/tutorials/advanced/makefiles/

→˓maketest_mixin.py'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

[List of matched checks]
- MakeOnlyTestAlt %elem_type=double
- MakeOnlyTestAlt %elem_type=float
- MakefileTestAlt %elem_type=double
- MakefileTestAlt %elem_type=float
Found 4 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-4w95t2wt.log'

Applying a Sanity Function Iteratively

It is often the case that a common sanity function has to be applied many times. The following script prints 100 random
integers between the limits given by the environment variables LOWER and UPPER.

cat tutorials/advanced/random/src/random_numbers.sh

if [-z $LOWER]; then
export LOWER=90

fi

if [-z $UPPER]; then
export UPPER=100

fi

for i in {1..100}; do
echo Random: $((RANDOM%($UPPER+1-$LOWER)+$LOWER))

done

In the corresponding regression test we want to check that all the random numbers generated lie between the two limits,
which means that a common sanity check has to be applied to all the printed random numbers. Here is the corresponding
regression test:

cat tutorials/advanced/random/randint.py

import reframe as rfm
import reframe.utility.sanity as sn

(continues on next page)

56 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

@rfm.simple_test
class DeferredIterationTest(rfm.RunOnlyRegressionTest):

descr = 'Apply a sanity function iteratively'
valid_systems = ['*']
valid_prog_environs = ['*']
executable = './random_numbers.sh'

@sanity_function
def validate_test(self):

numbers = sn.extractall(
r'Random: (?P<number>\S+)', self.stdout, 'number', float

)
return sn.all([

sn.assert_eq(sn.count(numbers), 100),
sn.all(sn.map(lambda x: sn.assert_bounded(x, 90, 100), numbers))

])

First, we extract all the generated random numbers from the output. What we want to do is to apply iteratively the
assert_bounded() sanity function for each number. The problem here is that we cannot simply iterate over the
numbers list, because that would trigger prematurely the evaluation of the extractall(). We want to defer also
the iteration. This can be achieved by using the map() ReFrame sanity function, which is a replacement of Python’s
built-in map() function and does exactly what we want: it applies a function on all the elements of an iterable and
returns another iterable with the transformed elements. Passing the result of the map() function to the all() sanity
function ensures that all the elements lie between the desired bounds.

There is still a small complication that needs to be addressed. As a direct replacement of the built-in all() function,
ReFrame’s all() sanity function returns True for empty iterables, which is not what we want. So we must make sure
that all 100 numbers are generated. This is achieved by the sn.assert_eq(sn.count(numbers), 100) statement,
which uses the count() sanity function for counting the generated numbers. Finally, we need to combine these two
conditions to a single deferred expression that will be returned by the test’s @sanity_function. We accomplish this
by using the all() sanity function.

For more information about how exactly sanity functions work and how their execution is deferred, please refer to
Understanding the Mechanism of Deferrable Functions.

Note: New in version 2.13: ReFrame offers also the allx() sanity function which, conversely to the builtin all()
function, will return False if its iterable argument is empty.

Customizing the Test Job Script

It is often the case that we need to run some commands before or after the parallel launch of our executable. This can
be easily achieved by using the prerun_cmds and postrun_cmds attributes of a ReFrame test.

The following example is a slightly modified version of the random numbers test presented above. The lower and upper
limits for the random numbers are now set inside a helper shell script in limits.sh located in the test’s resources,
which we need to source before running our tests. Additionally, we want also to print FINISHED after our executable
has finished. Here is the modified test file:

cat tutorials/advanced/random/prepostrun.py

2.2. ReFrame Tutorials 57

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/functions.html#all

ReFrame Documentation, Release 3.10.0

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class PrepostRunTest(rfm.RunOnlyRegressionTest):

descr = 'Pre- and post-run demo test'
valid_systems = ['*']
valid_prog_environs = ['*']
prerun_cmds = ['source limits.sh']
postrun_cmds = ['echo FINISHED']
executable = './random_numbers.sh'

@sanity_function
def validate_test(self):

numbers = sn.extractall(
r'Random: (?P<number>\S+)', self.stdout, 'number', float

)
return sn.all([

sn.assert_eq(sn.count(numbers), 100),
sn.all(sn.map(lambda x: sn.assert_bounded(x, 90, 100), numbers)),
sn.assert_found(r'FINISHED', self.stdout)

])

The prerun_cmds and postrun_cmds are lists of commands to be emitted in the generated job script before and after
the parallel launch of the executable. Obviously, the working directory for these commands is that of the job script
itself, which is the stage directory of the test. The generated job script for this test looks like the following:

./bin/reframe -c tutorials/advanced/random/prepostrun.py -r
cat output/catalina/default/gnu/PrepostRunTest/rfm_PrepostRunTest_job.sh

#!/bin/bash
source limits.sh
./random_numbers.sh
echo FINISHED

Generally, ReFrame generates the job shell scripts using the following pattern:

#!/bin/bash -l
{job_scheduler_preamble}
{prepare_cmds}
{env_load_cmds}
{prerun_cmds}
{parallel_launcher} {executable} {executable_opts}
{postrun_cmds}

The job_scheduler_preamble contains the backend job scheduler directives that control the job allocation. The
prepare_cmds are commands that can be emitted before the test environment commands. These can be specified with
the prepare_cmds partition configuration option. The env_load_cmds are the necessary commands for setting up
the environment of the test. These include any modules or environment variables set at the system partition level or any
modules or environment variables set at the test level. Then the commands specified in prerun_cmds follow, while
those specified in the postrun_cmds come after the launch of the parallel job. The parallel launch itself consists of
three parts:

58 Chapter 2. Publications

config_reference.html#system-partition-configuration
regression_test_api.html#reframe.core.pipeline.RegressionTest.modules
regression_test_api.html#reframe.core.pipeline.RegressionTest.variables

ReFrame Documentation, Release 3.10.0

1. The parallel launcher program (e.g., srun, mpirun etc.) with its options,

2. the regression test executable as specified in the executable attribute and

3. the options to be passed to the executable as specified in the executable_opts attribute.

Adding job scheduler options per test

Sometimes a test needs to pass additional job scheduler options to the automatically generated job script. This is fairly
easy to achieve with ReFrame. In the following test we want to test whether the --mem option of Slurm works as
expected. We compiled and ran a program that consumes all the available memory of the node, but we want to restrict
the available memory with the --mem option. Here is the test:

cat tutorials/advanced/jobopts/eatmemory.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class MemoryLimitTest(rfm.RegressionTest):

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['gnu']
sourcepath = 'eatmemory.c'
executable_opts = ['2000M']

@run_before('run')
def set_memory_limit(self):

self.job.options = ['--mem=1000']

@sanity_function
def validate_test(self):

return sn.assert_found(
r'(exceeded memory limit)|(Out Of Memory)', self.stderr

)

Each ReFrame test has an associated run job descriptor which represents the scheduler job that will be used to run
this test. This object has an options attribute, which can be used to pass arbitrary options to the scheduler. The job
descriptor is initialized by the framework during the setup pipeline phase. For this reason, we cannot directly set the
job options inside the test constructor and we have to use a pipeline hook that runs before running (i.e., submitting the
test).

Let’s run the test and inspect the generated job script:

./bin/reframe -c tutorials/advanced/jobopts/eatmemory.py -n MemoryLimitTest -r
cat output/daint/gpu/gnu/MemoryLimitTest/rfm_MemoryLimitTest_job.sh

#!/bin/bash
#SBATCH --job-name="rfm_MemoryLimitTest_job"
#SBATCH --ntasks=1
#SBATCH --output=rfm_MemoryLimitTest_job.out
#SBATCH --error=rfm_MemoryLimitTest_job.err
#SBATCH --time=0:10:0

(continues on next page)

2.2. ReFrame Tutorials 59

regression_test_api.html#reframe.core.pipeline.RegressionTest.job
pipeline.html#the-regression-test-pipeline

ReFrame Documentation, Release 3.10.0

(continued from previous page)

#SBATCH -A csstaff
#SBATCH --constraint=gpu
#SBATCH --mem=1000
module unload PrgEnv-cray
module load PrgEnv-gnu
srun ./MemoryLimitTest 2000M

The job options specified inside a ReFrame test are always the last to be emitted in the job script preamble and do not
affect the options that are passed implicitly through other test attributes or configuration options.

There is a small problem with this test though. What if we change the job scheduler in that partition or what if we want
to port the test to a different system that does not use Slurm and another option is needed to achieve the same result.
The obvious answer is to adapt the test, but is there a more portable way? The answer is yes and this can be achieved
through so-called extra resources. ReFrame gives you the possibility to associate scheduler options to a “resource”
managed by the partition scheduler. You can then use those resources transparently from within your test.

To achieve this in our case, we first need to define a memory resource in the configuration:

rfmdocstart: gpu-partition
{

'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
],
'container_platforms': [

{
'type': 'Sarus',
'modules': ['sarus']

},
{

'type': 'Singularity',
'modules': ['singularity']

}
]

},
rfmdocend: gpu-partition
{

'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,

(continues on next page)

60 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'resources': [
{

'name': 'memory',
'options': ['--mem={size}']

}
]

}

Notice that we do not define the resource for all the partitions, but only for those that it makes sense. Each resource
has a name and a set of scheduler options that will be passed to the scheduler when this resource will be requested
by the test. The options specification can contain placeholders, whose value will also be set from the test. Let’s see
how we can rewrite the MemoryLimitTest using the memory resource instead of passing the --mem scheduler option
explicitly.

cat tutorials/advanced/jobopts/eatmemory.py

@rfm.simple_test
class MemoryLimitWithResourcesTest(rfm.RegressionTest):

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['gnu']
sourcepath = 'eatmemory.c'
executable_opts = ['2000M']
extra_resources = {

'memory': {'size': '1000'}
}

@sanity_function
def validate_test(self):

return sn.assert_found(
r'(exceeded memory limit)|(Out Of Memory)', self.stderr

)

The extra resources that the test needs to obtain through its scheduler are specified in the extra_resources attribute,
which is a dictionary with the resource names as its keys and another dictionary assigning values to the resource
placeholders as its values. As you can see, this syntax is completely scheduler-agnostic. If the requested resource is
not defined for the current partition, it will be simply ignored.

You can now run and verify that the generated job script contains the --mem option:

./bin/reframe -c tutorials/advanced/jobopts/eatmemory.py -n MemoryLimitWithResourcesTest␣
→˓-r
cat output/daint/gpu/gnu/MemoryLimitWithResourcesTest/rfm_MemoryLimitWithResourcesTest_
→˓job.sh

2.2. ReFrame Tutorials 61

ReFrame Documentation, Release 3.10.0

Modifying the parallel launcher command

Another relatively common need is to modify the parallel launcher command. ReFrame gives the ability to do that and
we will see some examples in this section.

The most common case is to pass arguments to the launcher command that you cannot normally pass as job options.
The --cpu-bind of srun is such an example. Inside a ReFrame test, you can access the parallel launcher through the
launcher of the job descriptor. This object handles all the details of how the parallel launch command will be emitted.
In the following test we run a CPU affinity test using this utility and we will pin the threads using the --cpu-bind
option:

cat tutorials/advanced/affinity/affinity.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class AffinityTest(rfm.RegressionTest):

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['*']
sourcesdir = 'https://github.com/vkarak/affinity.git'
build_system = 'Make'
executable = './affinity'

@run_before('compile')
def set_build_system_options(self):

self.build_system.options = ['OPENMP=1']

@run_before('run')
def set_cpu_binding(self):

self.job.launcher.options = ['--cpu-bind=cores']

@sanity_function
def validate_test(self):

return sn.assert_found(r'CPU affinity', self.stdout)

The approach is identical to the approach we took in the MemoryLimitTest test above, except that we now set the
launcher options.

Note: The sanity checking in a real affinity checking test would be much more complex than this.

Another scenario that might often arise when testing parallel debuggers is the need to wrap the launcher command
with the debugger command. For example, in order to debug a parallel program with ARM DDT, you would need to
invoke the program like this: ddt [OPTIONS] srun [OPTIONS]. ReFrame allows you to wrap the launcher command
without the test needing to know which is the actual parallel launcher command for the current partition. This can be
achieved with the following pipeline hook:

import reframe as rfm
from reframe.core.launchers import LauncherWrapper

class DebuggerTest(rfm.RunOnlyRegressionTest):
(continues on next page)

62 Chapter 2. Publications

https://github.com/vkarak/affinity
https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt

ReFrame Documentation, Release 3.10.0

(continued from previous page)

...

@run_before('run')
def set_launcher(self):

self.job.launcher = LauncherWrapper(self.job.launcher, 'ddt',
['--offline'])

The LauncherWrapper is a pseudo-launcher that wraps another one and allows you to prepend anything to it. In this
case the resulting parallel launch command, if the current partition uses native Slurm, will be ddt --offline srun
[OPTIONS].

Replacing the parallel launcher

Sometimes you might need to replace completely the partition’s launcher command, because the software you are
testing might use its own parallel launcher. Examples are ipyparallel, the GREASY high-throughput scheduler, as well
as some visualization software. The trick here is to replace the parallel launcher with the local one, which practically
does not emit any launch command, and by now you should almost be able to do it all by yourself:

import reframe as rfm
from reframe.core.backends import getlauncher

class CustomLauncherTest(rfm.RunOnlyRegressionTest):
...
executable = 'custom_scheduler'
executable_opts = [...]

@run_before('run')
def replace_launcher(self):

self.job.launcher = getlauncher('local')()

The getlauncher() function takes the registered name of a launcher and returns the class that implements it. You
then instantiate the launcher and assign to the launcher attribute of the job descriptor.

An alternative to this approach would be to define your own custom parallel launcher and register it with the framework.
You could then use it as the scheduler of a system partition in the configuration, but this approach is less test-specific.

Adding more parallel launch commands

ReFrame uses a parallel launcher by default for anything defined explicitly or implicitly in the executable test at-
tribute. But what if we want to generate multiple parallel launch commands? One straightforward solution is to hard-
code the parallel launch command inside the prerun_cmds or postrun_cmds, but this is not so portable. The best
way is to ask ReFrame to emit the parallel launch command for you. The following is a simple test for demonstration
purposes that runs the hostname command several times using a parallel launcher. It resembles a scaling test, except
that all happens inside a single ReFrame test, instead of launching multiple instances of a parameterized test.

cat tutorials/advanced/multilaunch/multilaunch.py

import reframe as rfm
import reframe.utility.sanity as sn

(continues on next page)

2.2. ReFrame Tutorials 63

https://ipyparallel.readthedocs.io/en/latest/
https://github.com/BSC-Support-Team/GREASY
config_reference.html#systems-.partitions-.launcher

ReFrame Documentation, Release 3.10.0

(continued from previous page)

@rfm.simple_test
class MultiLaunchTest(rfm.RunOnlyRegressionTest):

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['builtin']
executable = 'hostname'
num_tasks = 4
num_tasks_per_node = 1

@run_before('run')
def pre_launch(self):

cmd = self.job.launcher.run_command(self.job)
self.prerun_cmds = [

f'{cmd} -n {n} {self.executable}'
for n in range(1, self.num_tasks)

]

@sanity_function
def validate_test(self):

return sn.assert_eq(
sn.count(sn.extractall(r'^nid\d+', self.stdout)), 10

)

The additional parallel launch commands are inserted in either the prerun_cmds or postrun_cmds lists. To retrieve
the actual parallel launch command for the current partition that the test is running on, you can use the run_command()
method of the launcher object. Let’s see how the generated job script looks like:

./bin/reframe -c tutorials/advanced/multilaunch/multilaunch.py -r
cat output/daint/gpu/builtin/MultiLaunchTest/rfm_MultiLaunchTest_job.sh

#!/bin/bash
#SBATCH --job-name="rfm_MultiLaunchTest_job"
#SBATCH --ntasks=4
#SBATCH --ntasks-per-node=1
#SBATCH --output=rfm_MultiLaunchTest_job.out
#SBATCH --error=rfm_MultiLaunchTest_job.err
#SBATCH --time=0:10:0
#SBATCH -A csstaff
#SBATCH --constraint=gpu
srun -n 1 hostname
srun -n 2 hostname
srun -n 3 hostname
srun hostname

The first three srun commands are emitted through the prerun_cmds whereas the last one comes from the test’s
executable attribute.

64 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Flexible Regression Tests

New in version 2.15.

ReFrame can automatically set the number of tasks of a particular test, if its num_tasks attribute is set to a negative
value or zero. In ReFrame’s terminology, such tests are called flexible. Negative values indicate the minimum number
of tasks that are acceptable for this test (a value of -4 indicates that at least 4 tasks are required). A zero value indicates
the default minimum number of tasks which is equal to num_tasks_per_node.

By default, ReFrame will spawn such a test on all the idle nodes of the current system partition, but this behavior can
be adjusted with the --flex-alloc-nodes command-line option. Flexible tests are very useful for diagnostics tests,
e.g., tests for checking the health of a whole set nodes. In this example, we demonstrate this feature through a simple
test that runs hostname. The test will verify that all the nodes print the expected host name:

cat tutorials/advanced/flexnodes/flextest.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HostnameCheck(rfm.RunOnlyRegressionTest):

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['cray']
executable = 'hostname'
num_tasks = 0
num_tasks_per_node = 1

@sanity_function
def validate_test(self):

return sn.assert_eq(
self.num_tasks,
sn.count(sn.findall(r'^nid\d+$', self.stdout))

)

The first thing to notice in this test is that num_tasks is set to zero as default, which is a requirement for flexible tests.
However, with flexible tests, this value is updated right after the job completes to the actual number of tasks that were
used. Consequently, this allows the sanity function of the test to assert that the number host names printed matches
num_tasks.

Tip: If you want to run multiple flexible tests at once, it’s better to run them using the serial execution policy, because
the first test might take all the available nodes and will cause the rest to fail immediately, since there will be no available
nodes for them.

2.2. ReFrame Tutorials 65

manpage.html#cmdoption-flex-alloc-nodes

ReFrame Documentation, Release 3.10.0

Testing containerized applications

New in version 2.20.

ReFrame can be used also to test applications that run inside a container. First, we need to enable the container platform
support in ReFrame’s configuration and, specifically, at the partition configuration level:

{
'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
],
'container_platforms': [

{
'type': 'Sarus',
'modules': ['sarus']

},
{

'type': 'Singularity',
'modules': ['singularity']

}
]

},

For each partition, users can define a list of container platforms supported using the container_platforms configu-
ration parameter. In this case, we define the Sarus platform for which we set the modules parameter in order to instruct
ReFrame to load the sarus module, whenever it needs to run with this container platform. Similarly, we add an entry
for the Singularity platform.

The following parameterized test, will create two tests, one for each of the supported container platforms:

cat tutorials/advanced/containers/container_test.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class ContainerTest(rfm.RunOnlyRegressionTest):

platform = parameter(['Sarus', 'Singularity'])
valid_systems = ['daint:gpu']
valid_prog_environs = ['builtin']

@run_before('run')
def set_container_variables(self):

(continues on next page)

66 Chapter 2. Publications

config_reference.html#.systems{[}{]}.partitions{[}{]}.container_platforms
config_reference.html#.systems{[}{]}.partitions{[}{]}.container_platforms
https://github.com/eth-cscs/sarus
https://sylabs.io

ReFrame Documentation, Release 3.10.0

(continued from previous page)

self.descr = f'Run commands inside a container using {self.platform}'
image_prefix = 'docker://' if self.platform == 'Singularity' else ''
self.container_platform = self.platform
self.container_platform.image = f'{image_prefix}ubuntu:18.04'
self.container_platform.command = (

"bash -c 'cat /etc/os-release | tee /rfm_workdir/release.txt'"
)

rfmdocstart: assert_release
@sanity_function
def assert_release(self):

os_release_pattern = r'18.04.\d+ LTS \(Bionic Beaver\)'
return sn.assert_found(os_release_pattern, 'release.txt')

rfmdocend: assert_release

A container-based test can be written as RunOnlyRegressionTest that sets the container_platform attribute. This
attribute accepts a string that corresponds to the name of the container platform that will be used to run the container
for this test. If such a platform is not configured for the current system, the test will fail.

As soon as the container platform to be used is defined, you need to specify the container image to use by setting
the image. In the Singularity test variant, we add the docker:// prefix to the image name, in order to instruct
Singularity to pull the image from DockerHub. The default command that the container runs can be overwritten by
setting the command attribute of the container platform.

The image is the only mandatory attribute for container-based checks. It is important to note that the executable and
executable_opts attributes of the actual test are ignored in case of container-based tests.

ReFrame will run the container according to the given platform as follows:

Sarus
sarus run --mount=type=bind,source="/path/to/test/stagedir",destination="/rfm_workdir"␣
→˓ubuntu:18.04 bash -c 'cat /etc/os-release | tee /rfm_workdir/release.txt'

Singularity
singularity exec -B"/path/to/test/stagedir:/rfm_workdir" docker://ubuntu:18.04 bash -c
→˓'cat /etc/os-release | tee /rfm_workdir/release.txt'

In the Sarus case, ReFrame will prepend the following command in order to pull the container image before running
the container:

sarus pull ubuntu:18.04

This is the default behavior of ReFrame, which can be changed if pulling the image is not desired by setting the
pull_image attribute to False. By default ReFrame will mount the stage directory of the test under /rfm_workdir
inside the container. Once the commands are executed, the container is stopped and ReFrame goes on with the sanity and
performance checks. Besides the stage directory, additional mount points can be specified through the mount_points
attribute:

self.container_platform.mount_points = [('/path/to/host/dir1', '/path/to/container/mount_
→˓point1'),

('/path/to/host/dir2', '/path/to/container/mount_
→˓point2')]

The container filesystem is ephemeral, therefore, ReFrame mounts the stage directory under /rfm_workdir inside the
container where the user can copy artifacts as needed. These artifacts will therefore be available inside the stage direc-

2.2. ReFrame Tutorials 67

config_reference.html#container-platform-configuration
https://hub.docker.com/

ReFrame Documentation, Release 3.10.0

tory after the container execution finishes. This is very useful if the artifacts are needed for the sanity or performance
checks. If the copy is not performed by the default container command, the user can override this command by settings
the command attribute such as to include the appropriate copy commands. In the current test, the output of the cat
/etc/os-release is available both in the standard output as well as in the release.txt file, since we have used the
command:

bash -c 'cat /etc/os-release | tee /rfm_workdir/release.txt'

and /rfm_workdir corresponds to the stage directory on the host system. Therefore, the release.txt file can now
be used in the subsequent sanity checks:

@sanity_function
def assert_release(self):

os_release_pattern = r'18.04.\d+ LTS \(Bionic Beaver\)'
return sn.assert_found(os_release_pattern, 'release.txt')

For a complete list of the available attributes of a specific container platform, please have a look at the Container
Platforms section of the Regression Test API guide. On how to configure ReFrame for running containerized tests,
please have a look at the Container Platform Configuration section of the Configuration Reference.

Writing reusable tests

New in version 3.5.0.

So far, all the examples shown above were tight to a particular system or configuration, which makes reusing these
tests in other systems not straightforward. However, the introduction of the parameter() and variable() ReFrame
built-ins solves this problem, eliminating the need to specify any of the test variables in the __init__() method and
simplifying code reuse. Hence, readers who are not familiar with these built-in functions are encouraged to read their
basic use examples (see parameter() and variable()) before delving any deeper into this tutorial.

In essence, parameters and variables can be treated as simple class attributes, which allows us to leverage Python’s class
inheritance and write more modular tests. For simplicity, we illustrate this concept with the above ContainerTest
example, where the goal here is to re-write this test as a library that users can simply import from and derive their tests
without having to rewrite the bulk of the test. Also, for illustrative purposes, we parameterize this library test on a few
different image tags (the above example just used ubuntu:18.04) and throw the container commands into a separate
bash script just to create some source files. Thus, removing all the system and configuration specific variables, and
moving as many assignments as possible into the class body, the system agnostic library test looks as follows:

cat tutorials/advanced/library/lib/__init__.py

import reframe as rfm
import reframe.utility.sanity as sn

class ContainerBase(rfm.RunOnlyRegressionTest, pin_prefix=True):
'''Test that asserts the ubuntu version of the image.'''

Derived tests must override this parameter
platform = parameter()
image_prefix = variable(str, value='')

Parametrize the test on two different versions of ubuntu.
dist = parameter(['18.04', '20.04'])
dist_name = variable(dict, value={

(continues on next page)

68 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'18.04': 'Bionic Beaver',
'20.04': 'Focal Fossa',

})

@run_after('setup')
def set_description(self):

self.descr = (
f'Run commands inside a container using ubuntu {self.dist}'

)

@run_before('run')
def set_container_platform(self):

self.container_platform = self.platform
self.container_platform.image = (

f'{self.image_prefix}ubuntu:{self.dist}'
)
self.container_platform.command = (

"bash -c /rfm_workdir/get_os_release.sh"
)

@property
def os_release_pattern(self):

name = self.dist_name[self.dist]
return rf'{self.dist}.\d+ LTS \({name}\)'

@sanity_function
def assert_release(self):

return sn.all([
sn.assert_found(self.os_release_pattern, 'release.txt'),
sn.assert_found(self.os_release_pattern, self.stdout)

])

Note that the class ContainerBase is not decorated since it does not specify the required variables valid_systems
and valid_prog_environs, and it declares the platform parameter without any defined values assigned. Hence,
the user can simply derive from this test and specialize it to use the desired container platforms. Since the parameters
are defined directly in the class body, the user is also free to override or extend any of the other parameters in a derived
test. In this example, we have parameterized the base test to run with the ubuntu:18.04 and ubuntu:20.04 images,
but these values from dist (and also the dist_name variable) could be modified by the derived class if needed.

On the other hand, the rest of the test depends on the values from the test parameters, and a parameter is only assigned
a specific value after the class has been instantiated. Thus, the rest of the test is expressed as hooks, without the need
to write anything in the __init__() method. In fact, writing the test in this way permits having hooks that depend
on undefined variables or parameters. This is the case with the set_container_platform() hook, which depends
on the undefined parameter platform. Hence, the derived test must define all the required parameters and variables;
otherwise ReFrame will notice that the test is not well defined and will raise an error accordingly.

Before moving ahead with the derived test, note that the ContainerBase class takes the additional argument
pin_prefix=True, which locks the prefix of all derived tests to this base test. This will allow the retrieval of the
sources located in the library by any derived test, regardless of what their containing directory is.

cat tutorials/advanced/library/lib/src/get_os_release.sh

2.2. ReFrame Tutorials 69

ReFrame Documentation, Release 3.10.0

#!/bin/bash
cat /etc/os-release | tee /rfm_workdir/release.txt

Now from the user’s perspective, the only thing to do is to import the above base test and specify the required variables
and parameters. For consistency with the above example, we set the platform parameter to use Sarus and Singu-
larity, and we configure the test to run on Piz Daint with the built-in programming environment. Hence, the above
ContainerTest is now reduced to the following:

cat tutorials/advanced/library/usr/container_test.py

import reframe as rfm
import tutorials.advanced.library.lib as lib

@rfm.simple_test
class ContainerTest(lib.ContainerBase):

platform = parameter(['Sarus', 'Singularity'])
valid_systems = ['daint:gpu']
valid_prog_environs = ['builtin']

@run_after('setup')
def set_image_prefix(self):

if self.platform == 'Singularity':
self.image_prefix = 'docker://'

In a similar fashion, any other user could reuse the above ContainerBase class and write the test for their own system
with a few lines of code.

Happy test sharing!

2.2.3 Tutorial 3: Using Dependencies in ReFrame Tests

New in version 2.21.

A ReFrame test may define dependencies to other tests. An example scenario is to test different runtime configurations
of a benchmark that you need to compile, or run a scaling analysis of a code. In such cases, you don’t want to download
and rebuild your test for each runtime configuration. You could have a test where only the sources are fetched, and
which all build tests would depend on. And, similarly, all the runtime tests would depend on their corresponding build
test. This is the approach we take with the following example, that fetches, builds and runs several OSU benchmarks.
We first create a basic run-only test, that fetches the benchmarks:

cat tutorials/deps/osu_benchmarks.py

@rfm.simple_test
class OSUDownloadTest(rfm.RunOnlyRegressionTest):

descr = 'OSU benchmarks download sources'
valid_systems = ['daint:login']
valid_prog_environs = ['builtin']
executable = 'wget'
executable_opts = [

'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.6.2.
→˓tar.gz' # noqa: E501

]
(continues on next page)

70 Chapter 2. Publications

http://mvapich.cse.ohio-state.edu/benchmarks/

ReFrame Documentation, Release 3.10.0

(continued from previous page)

postrun_cmds = [
'tar xzf osu-micro-benchmarks-5.6.2.tar.gz'

]

@sanity_function
def validate_download(self):

return sn.assert_true(os.path.exists('osu-micro-benchmarks-5.6.2'))

This test doesn’t need any specific programming environment, so we simply pick the builtin environment in the
login partition. The build tests would then copy the benchmark code and build it for the different programming
environments:

@rfm.simple_test
class OSUBuildTest(rfm.CompileOnlyRegressionTest):

descr = 'OSU benchmarks build test'
valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'pgi', 'intel']
build_system = 'Autotools'

rfmdocstart: inject_deps
@run_after('init')
def inject_dependencies(self):

self.depends_on('OSUDownloadTest', udeps.fully)
rfmdocend: inject_deps

rfmdocstart: set_sourcedir
@require_deps
def set_sourcedir(self, OSUDownloadTest):

self.sourcesdir = os.path.join(
OSUDownloadTest(part='login', environ='builtin').stagedir,
'osu-micro-benchmarks-5.6.2'

)
rfmdocend: set_sourcedir

@run_before('compile')
def set_build_system_attrs(self):

self.build_system.max_concurrency = 8

@sanity_function
def validate_build(self):

return sn.assert_not_found('error', self.stderr)

The only new thing that comes in with the OSUBuildTest test is the following:

@run_after('init')
def inject_dependencies(self):

self.depends_on('OSUDownloadTest', udeps.fully)

Here we tell ReFrame that this test depends on a test named OSUDownloadTest. This test may or may not be de-
fined in the same test file; all ReFrame needs is the test name. The depends_on() function will create dependencies
between the individual test cases of the OSUBuildTest and the OSUDownloadTest, such that all the test cases of
OSUBuildTest will depend on the outcome of the OSUDownloadTest. This behaviour can be changed, but it is cov-
ered in detail in How Test Dependencies Work In ReFrame. You can create arbitrary test dependency graphs, but they

2.2. ReFrame Tutorials 71

ReFrame Documentation, Release 3.10.0

need to be acyclic. If ReFrame detects cyclic dependencies, it will refuse to execute the set of tests and will issue an
error pointing out the cycle.

A ReFrame test with dependencies will execute, i.e., enter its “setup” stage, only after all of its dependencies have
succeeded. If any of its dependencies fails, the current test will be marked as failure as well.

The next step for the OSUBuildTest is to set its sourcesdir to point to the source code that was fetched by the
OSUDownloadTest. This is achieved with the following specially decorated function:

@require_deps
def set_sourcedir(self, OSUDownloadTest):

self.sourcesdir = os.path.join(
OSUDownloadTest(part='login', environ='builtin').stagedir,
'osu-micro-benchmarks-5.6.2'

)

The @require_deps decorator binds each argument of the decorated function to the corresponding target depen-
dency. In order for the binding to work correctly the function arguments must be named after the target dependencies.
Referring to a dependency only by the test’s name is not enough, since a test might be associated with multiple pro-
gramming environments. For this reason, each dependency argument is actually bound to a function that accepts as
argument the name of the target partition and target programming environment. If no arguments are passed, the current
programming environment is implied, such that OSUDownloadTest() is equivalent to OSUDownloadTest(self.
current_environ.name, self.current_partition.name). In this case, since both the partition and environ-
ment of the target dependency do not much those of the current test, we need to specify both.

This call returns the actual test case of the dependency that has been executed. This allows you to access any attribute
from the target test, as we do in this example by accessing the target test’s stage directory, which we use to construct
the sourcesdir of the test.

For the next test we need to use the OSU benchmark binaries that we just built, so as to run the MPI ping-pong
benchmark. Here is the relevant part:

class OSUBenchmarkTestBase(rfm.RunOnlyRegressionTest):
'''Base class of OSU benchmarks runtime tests'''

valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'pgi', 'intel']
sourcesdir = None
num_tasks = 2
num_tasks_per_node = 1

rfmdocstart: set_deps
@run_after('init')
def set_dependencies(self):

self.depends_on('OSUBuildTest', udeps.by_env)
rfmdocend: set_deps

@sanity_function
def validate_test(self):

return sn.assert_found(r'^8', self.stdout)

@rfm.simple_test
class OSULatencyTest(OSUBenchmarkTestBase):

descr = 'OSU latency test'

(continues on next page)

72 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

rfmdocstart: set_exec
@require_deps
def set_executable(self, OSUBuildTest):

self.executable = os.path.join(
OSUBuildTest().stagedir,
'mpi', 'pt2pt', 'osu_latency'

)
self.executable_opts = ['-x', '100', '-i', '1000']

rfmdocend: set_exec

@performance_function('us')
def latency(self):

return sn.extractsingle(r'^8\s+(\S+)', self.stdout, 1, float)

First, since we will have multiple similar benchmarks, we move all the common functionality to the
OSUBenchmarkTestBase base class. Again nothing new here; we are going to use two nodes for the benchmark and
we set sourcesdir to None, since none of the benchmark tests will use any additional resources. As done previously,
we define the dependencies with the following:

@run_after('init')
def set_dependencies(self):

self.depends_on('OSUBuildTest', udeps.by_env)

Here we tell ReFrame that this test depends on a test named OSUBuildTest “by environment.” This means that the
test cases of this test will only depend on the test cases of the OSUBuildTest that use the same environment; partitions
may be different.

The next step for the OSULatencyTest is to set its executable to point to the binary produced by the OSUBuildTest.
This is achieved with the following specially decorated function:

@require_deps
def set_executable(self, OSUBuildTest):

self.executable = os.path.join(
OSUBuildTest().stagedir,
'mpi', 'pt2pt', 'osu_latency'

)
self.executable_opts = ['-x', '100', '-i', '1000']

This concludes the presentation of the OSULatencyTest test. The OSUBandwidthTest is completely analogous.

The OSUAllreduceTest shown below is similar to the other two, except that it is parameterized. It is essentially a
scalability test that is running the osu_allreduce executable created by the OSUBuildTest for 2, 4, 8 and 16 nodes.

@rfm.simple_test
class OSUAllreduceTest(OSUBenchmarkTestBase):

mpi_tasks = parameter(1 << i for i in range(1, 5))
descr = 'OSU Allreduce test'

@run_after('init')
def set_num_tasks(self):

self.num_tasks = self.mpi_tasks

@require_deps
def set_executable(self, OSUBuildTest):

(continues on next page)

2.2. ReFrame Tutorials 73

ReFrame Documentation, Release 3.10.0

(continued from previous page)

self.executable = os.path.join(
OSUBuildTest().stagedir,
'mpi', 'collective', 'osu_allreduce'

)
self.executable_opts = ['-m', '8', '-x', '1000', '-i', '20000']

@performance_function('us')
def latency(self):

return sn.extractsingle(r'^8\s+(\S+)', self.stdout, 1, float)

The full set of OSU example tests is shown below:

Copyright 2016-2022 Swiss National Supercomputing Centre (CSCS/ETH Zurich)
ReFrame Project Developers. See the top-level LICENSE file for details.
#
SPDX-License-Identifier: BSD-3-Clause

import os

import reframe as rfm
import reframe.utility.sanity as sn
import reframe.utility.udeps as udeps

rfmdocstart: osupingpong
class OSUBenchmarkTestBase(rfm.RunOnlyRegressionTest):

'''Base class of OSU benchmarks runtime tests'''

valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'pgi', 'intel']
sourcesdir = None
num_tasks = 2
num_tasks_per_node = 1

rfmdocstart: set_deps
@run_after('init')
def set_dependencies(self):

self.depends_on('OSUBuildTest', udeps.by_env)
rfmdocend: set_deps

@sanity_function
def validate_test(self):

return sn.assert_found(r'^8', self.stdout)

@rfm.simple_test
class OSULatencyTest(OSUBenchmarkTestBase):

descr = 'OSU latency test'

rfmdocstart: set_exec
@require_deps
def set_executable(self, OSUBuildTest):

(continues on next page)

74 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

self.executable = os.path.join(
OSUBuildTest().stagedir,
'mpi', 'pt2pt', 'osu_latency'

)
self.executable_opts = ['-x', '100', '-i', '1000']

rfmdocend: set_exec

@performance_function('us')
def latency(self):

return sn.extractsingle(r'^8\s+(\S+)', self.stdout, 1, float)
rfmdocend: osupingpong

@rfm.simple_test
class OSUBandwidthTest(OSUBenchmarkTestBase):

descr = 'OSU bandwidth test'

@require_deps
def set_executable(self, OSUBuildTest):

self.executable = os.path.join(
OSUBuildTest().stagedir,
'mpi', 'pt2pt', 'osu_bw'

)
self.executable_opts = ['-x', '100', '-i', '1000']

@performance_function('MB/s')
def bandwidth(self):

return sn.extractsingle(r'^4194304\s+(\S+)',
self.stdout, 1, float)

rfmdocstart: osuallreduce
@rfm.simple_test
class OSUAllreduceTest(OSUBenchmarkTestBase):

mpi_tasks = parameter(1 << i for i in range(1, 5))
descr = 'OSU Allreduce test'

@run_after('init')
def set_num_tasks(self):

self.num_tasks = self.mpi_tasks

@require_deps
def set_executable(self, OSUBuildTest):

self.executable = os.path.join(
OSUBuildTest().stagedir,
'mpi', 'collective', 'osu_allreduce'

)
self.executable_opts = ['-m', '8', '-x', '1000', '-i', '20000']

@performance_function('us')
def latency(self):

return sn.extractsingle(r'^8\s+(\S+)', self.stdout, 1, float)

(continues on next page)

2.2. ReFrame Tutorials 75

ReFrame Documentation, Release 3.10.0

(continued from previous page)

rfmdocend: osuallreduce

rfmdocstart: osubuild
@rfm.simple_test
class OSUBuildTest(rfm.CompileOnlyRegressionTest):

descr = 'OSU benchmarks build test'
valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'pgi', 'intel']
build_system = 'Autotools'

rfmdocstart: inject_deps
@run_after('init')
def inject_dependencies(self):

self.depends_on('OSUDownloadTest', udeps.fully)
rfmdocend: inject_deps

rfmdocstart: set_sourcedir
@require_deps
def set_sourcedir(self, OSUDownloadTest):

self.sourcesdir = os.path.join(
OSUDownloadTest(part='login', environ='builtin').stagedir,
'osu-micro-benchmarks-5.6.2'

)
rfmdocend: set_sourcedir

@run_before('compile')
def set_build_system_attrs(self):

self.build_system.max_concurrency = 8

@sanity_function
def validate_build(self):

return sn.assert_not_found('error', self.stderr)
rfmdocend: osubuild

rfmdocstart: osudownload
@rfm.simple_test
class OSUDownloadTest(rfm.RunOnlyRegressionTest):

descr = 'OSU benchmarks download sources'
valid_systems = ['daint:login']
valid_prog_environs = ['builtin']
executable = 'wget'
executable_opts = [

'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.6.2.
→˓tar.gz' # noqa: E501

]
postrun_cmds = [

'tar xzf osu-micro-benchmarks-5.6.2.tar.gz'
]

@sanity_function
(continues on next page)

76 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

def validate_download(self):
return sn.assert_true(os.path.exists('osu-micro-benchmarks-5.6.2'))

rfmdocend: osudownload

Notice that the order in which dependencies are defined in a test file is irrelevant. In this case, we define OSUBuildTest
at the end. ReFrame will make sure to properly sort the tests and execute them.

Here is the output when running the OSU tests with the asynchronous execution policy:

./bin/reframe -c tutorials/deps/osu_benchmarks.py -r

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/deps/osu_benchmarks.py -r'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[==========] Running 8 check(s)
[==========] Started on Sat Jan 22 22:49:00 2022

[----------] start processing checks
[RUN] OSUDownloadTest @daint:login+builtin
[OK] (1/22) OSUDownloadTest @daint:login+builtin [compile: 0.017s run: 1.547s␣
→˓total: 1.594s]
[RUN] OSUBuildTest @daint:gpu+gnu
[RUN] OSUBuildTest @daint:gpu+intel
[RUN] OSUBuildTest @daint:gpu+pgi
[OK] (2/22) OSUBuildTest @daint:gpu+gnu [compile: 28.351s run: 2.614s total: 31.
→˓045s]
[RUN] OSUAllreduceTest %mpi_tasks=16 @daint:gpu+gnu
[RUN] OSUAllreduceTest %mpi_tasks=8 @daint:gpu+gnu
[RUN] OSUAllreduceTest %mpi_tasks=4 @daint:gpu+gnu
[RUN] OSUAllreduceTest %mpi_tasks=2 @daint:gpu+gnu
[RUN] OSUBandwidthTest @daint:gpu+gnu
[RUN] OSULatencyTest @daint:gpu+gnu
[OK] (3/22) OSUBuildTest @daint:gpu+intel [compile: 56.259s run: 0.294s total:␣
→˓57.548s]
[OK] (4/22) OSUBuildTest @daint:gpu+pgi [compile: 55.287s run: 0.274s total: 57.
→˓549s]
[RUN] OSUAllreduceTest %mpi_tasks=16 @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=16 @daint:gpu+pgi
[RUN] OSUAllreduceTest %mpi_tasks=8 @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=8 @daint:gpu+pgi
[RUN] OSUAllreduceTest %mpi_tasks=4 @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=4 @daint:gpu+pgi
[RUN] OSUAllreduceTest %mpi_tasks=2 @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=2 @daint:gpu+pgi
[RUN] OSUBandwidthTest @daint:gpu+intel

(continues on next page)

2.2. ReFrame Tutorials 77

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[RUN] OSUBandwidthTest @daint:gpu+pgi
[RUN] OSULatencyTest @daint:gpu+intel
[RUN] OSULatencyTest @daint:gpu+pgi
[OK] (5/22) OSUAllreduceTest %mpi_tasks=8 @daint:gpu+gnu [compile: 0.019s run:␣
→˓62.714s total: 66.672s]
[OK] (6/22) OSUAllreduceTest %mpi_tasks=16 @daint:gpu+gnu [compile: 0.021s run:␣
→˓66.653s total: 67.092s]
[OK] (7/22) OSUAllreduceTest %mpi_tasks=4 @daint:gpu+gnu [compile: 0.019s run:␣
→˓59.875s total: 67.058s]
[OK] (8/22) OSULatencyTest @daint:gpu+gnu [compile: 0.022s run: 81.297s total:␣
→˓102.720s]
[OK] (9/22) OSUAllreduceTest %mpi_tasks=2 @daint:gpu+gnu [compile: 0.023s run:␣
→˓97.213s total: 107.661s]
[OK] (10/22) OSUAllreduceTest %mpi_tasks=16 @daint:gpu+intel [compile: 0.017s␣
→˓run: 80.743s total: 81.586s]
[OK] (11/22) OSUAllreduceTest %mpi_tasks=16 @daint:gpu+pgi [compile: 0.017s run:␣
→˓141.746s total: 145.957s]
[OK] (12/22) OSUAllreduceTest %mpi_tasks=8 @daint:gpu+intel [compile: 0.016s␣
→˓run: 138.667s total: 145.944s]
[OK] (13/22) OSUAllreduceTest %mpi_tasks=8 @daint:gpu+pgi [compile: 0.017s run:␣
→˓135.257s total: 145.938s]
[OK] (14/22) OSUBandwidthTest @daint:gpu+gnu [compile: 0.034s run: 156.112s␣
→˓total: 172.474s]
[OK] (15/22) OSUAllreduceTest %mpi_tasks=4 @daint:gpu+intel [compile: 0.017s␣
→˓run: 173.876s total: 187.629s]
[OK] (16/22) OSUAllreduceTest %mpi_tasks=2 @daint:gpu+pgi [compile: 0.016s run:␣
→˓171.544s total: 194.752s]
[OK] (17/22) OSUAllreduceTest %mpi_tasks=2 @daint:gpu+intel [compile: 0.017s␣
→˓run: 175.095s total: 195.082s]
[OK] (18/22) OSULatencyTest @daint:gpu+pgi [compile: 0.017s run: 159.422s total:␣
→˓195.672s]
[OK] (19/22) OSULatencyTest @daint:gpu+intel [compile: 0.017s run: 163.070s␣
→˓total: 196.207s]
[OK] (20/22) OSUAllreduceTest %mpi_tasks=4 @daint:gpu+pgi [compile: 0.016s run:␣
→˓180.370s total: 197.379s]
[OK] (21/22) OSUBandwidthTest @daint:gpu+intel [compile: 0.017s run: 240.385s␣
→˓total: 266.772s]
[OK] (22/22) OSUBandwidthTest @daint:gpu+pgi [compile: 0.018s run: 236.944s␣
→˓total: 266.766s]
[----------] all spawned checks have finished

[PASSED] Ran 22/22 test case(s) from 8 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 22:54:26 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/tmp/rfm-15ghvao1.log'

Before starting running the tests, ReFrame topologically sorts them based on their dependencies and schedules them
for running using the selected execution policy. With the serial execution policy, ReFrame simply executes the tests
to completion as they “arrive,” since the tests are already topologically sorted. In the asynchronous execution policy,
tests are spawned and not waited for. If a test’s dependencies have not yet completed, it will not start its execution
immediately.

ReFrame’s runtime takes care of properly cleaning up the resources of the tests respecting dependencies. Normally

78 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

when an individual test finishes successfully, its stage directory is cleaned up. However, if other tests are depending
on this one, this would be catastrophic, since most probably the dependent tests would need the outcome of this test.
ReFrame fixes that by not cleaning up the stage directory of a test until all its dependent tests have finished successfully.

When selecting tests using the test filtering options, such as the -t, -n etc., ReFrame will automatically select any
dependencies of these tests as well. For example, if we select only the OSULatencyTest for running, ReFrame will
also select the OSUBuildTest and the OSUDownloadTest:

./bin/reframe -c tutorials/deps/osu_benchmarks.py -n OSULatencyTest -l

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/deps/osu_benchmarks.py -n␣

→˓OSULatencyTest -l'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[List of matched checks]
- OSULatencyTest

^OSUBuildTest
^OSUDownloadTest

Found 3 check(s)

Log file(s) saved in '/tmp/rfm-zc483csf.log'

Finally, when ReFrame cannot resolve a dependency of a test, it will issue a warning and skip completely all the test
cases that recursively depend on this one. In the following example, we restrict the run of the OSULatencyTest to
the daint:gpu partition. This is problematic, since its dependencies cannot run on this partition and, particularly,
the OSUDownloadTest. As a result, its immediate dependency OSUBuildTest will be skipped, which will eventually
cause all combinations of the OSULatencyTest to be skipped.

./bin/reframe -c tutorials/deps/osu_benchmarks.py --system=daint:gpu -n OSULatencyTest -l

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/deps/osu_benchmarks.py -n␣

→˓OSULatencyTest --system=daint:gpu -l'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

./bin/reframe: could not resolve dependency: ('OSUBuildTest', 'daint:gpu', 'gnu') ->
→˓'OSUDownloadTest'
./bin/reframe: could not resolve dependency: ('OSUBuildTest', 'daint:gpu', 'intel') ->
→˓'OSUDownloadTest'
./bin/reframe: could not resolve dependency: ('OSUBuildTest', 'daint:gpu', 'pgi') ->
→˓'OSUDownloadTest'

(continues on next page)

2.2. ReFrame Tutorials 79

ReFrame Documentation, Release 3.10.0

(continued from previous page)

./bin/reframe: skipping all dependent test cases
- ('OSUBuildTest', 'daint:gpu', 'pgi')
- ('OSUBuildTest', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_8', 'daint:gpu', 'pgi')
- ('OSUAllreduceTest_16', 'daint:gpu', 'pgi')
- ('OSUBuildTest', 'daint:gpu', 'gnu')
- ('OSUAllreduceTest_4', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_8', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_4', 'daint:gpu', 'pgi')
- ('OSUAllreduceTest_16', 'daint:gpu', 'intel')
- ('OSULatencyTest', 'daint:gpu', 'pgi')
- ('OSUAllreduceTest_8', 'daint:gpu', 'gnu')
- ('OSUAllreduceTest_2', 'daint:gpu', 'pgi')
- ('OSUBandwidthTest', 'daint:gpu', 'pgi')
- ('OSUAllreduceTest_16', 'daint:gpu', 'gnu')
- ('OSUBandwidthTest', 'daint:gpu', 'intel')
- ('OSULatencyTest', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_2', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_4', 'daint:gpu', 'gnu')
- ('OSUAllreduceTest_2', 'daint:gpu', 'gnu')
- ('OSUBandwidthTest', 'daint:gpu', 'gnu')
- ('OSULatencyTest', 'daint:gpu', 'gnu')

[List of matched checks]
Found 0 check(s)

Log file(s) saved in '/tmp/rfm-k1w20m9z.log'

Listing Dependencies

As shown in the listing of OSULatencyTest before, the full dependency chain of the test is listed along with the test.
Each target dependency is printed in a new line prefixed by the ^ character and indented proportionally to its level. If
a target dependency appears in multiple paths, it will only be listed once.

The default test listing will list the dependencies at the test level or the conceptual dependencies. ReFrame generates
multiple test cases from each test depending on the target system configuration. We have seen in the Tutorial 1: Getting
Started with ReFrame already how the STREAM benchmark generated many more test cases when it was run in a HPC
system with multiple partitions and programming environments. These are the actual depedencies and form the actual
test case graph that will be executed by the runtime. The mapping of a test to its concrete test cases that will be
executed on a system is called test concretization. You can view the exact concretization of the selected tests with
--list=concretized or simply -lC. Here is how the OSU benchmarks of this tutorial are concretized on the system
daint:

./bin/reframe -c tutorials/deps/osu_benchmarks.py -lC

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/deps/osu_benchmarks.py -lC'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'

(continues on next page)

80 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[List of matched checks]
- OSUAllreduceTest %mpi_tasks=16 @daint:gpu+gnu

^OSUBuildTest @daint:gpu+gnu
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=16 @daint:gpu+intel
^OSUBuildTest @daint:gpu+intel
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=16 @daint:gpu+pgi
^OSUBuildTest @daint:gpu+pgi
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=8 @daint:gpu+gnu
^OSUBuildTest @daint:gpu+gnu
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=8 @daint:gpu+intel
^OSUBuildTest @daint:gpu+intel
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=8 @daint:gpu+pgi
^OSUBuildTest @daint:gpu+pgi
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=4 @daint:gpu+gnu
^OSUBuildTest @daint:gpu+gnu
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=4 @daint:gpu+intel
^OSUBuildTest @daint:gpu+intel
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=4 @daint:gpu+pgi
^OSUBuildTest @daint:gpu+pgi
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=2 @daint:gpu+gnu
^OSUBuildTest @daint:gpu+gnu
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=2 @daint:gpu+intel
^OSUBuildTest @daint:gpu+intel
^OSUDownloadTest @daint:login+builtin

- OSUAllreduceTest %mpi_tasks=2 @daint:gpu+pgi
^OSUBuildTest @daint:gpu+pgi
^OSUDownloadTest @daint:login+builtin

- OSUBandwidthTest @daint:gpu+gnu
^OSUBuildTest @daint:gpu+gnu
^OSUDownloadTest @daint:login+builtin

- OSUBandwidthTest @daint:gpu+intel
^OSUBuildTest @daint:gpu+intel
^OSUDownloadTest @daint:login+builtin

- OSUBandwidthTest @daint:gpu+pgi
^OSUBuildTest @daint:gpu+pgi
^OSUDownloadTest @daint:login+builtin

- OSULatencyTest @daint:gpu+gnu
^OSUBuildTest @daint:gpu+gnu

(continues on next page)

2.2. ReFrame Tutorials 81

ReFrame Documentation, Release 3.10.0

(continued from previous page)

^OSUDownloadTest @daint:login+builtin
- OSULatencyTest @daint:gpu+intel

^OSUBuildTest @daint:gpu+intel
^OSUDownloadTest @daint:login+builtin

- OSULatencyTest @daint:gpu+pgi
^OSUBuildTest @daint:gpu+pgi
^OSUDownloadTest @daint:login+builtin

Concretized 22 test case(s)

Log file(s) saved in '/tmp/rfm-l3eamaiy.log'

Notice how the various test cases of the run benchmarks depend on the corresponding test cases of the build tests.

The concretization of test cases changes if a specifc partition or programming environment is passed from the command
line or, of course, if the test is run on a different system. If we scope our programming environments to gnu and builtin
only, ReFrame will generate 8 test cases only instead of 22:

Note: If we do not select the builtin environment, we will end up with a dangling dependency as in the example
above and ReFrame will skip all the dependent test cases.

./bin/reframe -c tutorials/deps/osu_benchmarks.py -n OSULatencyTest -L -p builtin -p gnu

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/deps/osu_benchmarks.py -n␣

→˓OSULatencyTest -L -p builtin -p gnu'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[List of matched checks]
- OSULatencyTest [id: OSULatencyTest, file: '/home/user/Devel/reframe/tutorials/deps/osu_
→˓benchmarks.py']

^OSUBuildTest [id: OSUBuildTest, file: '/home/user/Devel/reframe/tutorials/deps/osu_
→˓benchmarks.py']

^OSUDownloadTest [id: OSUDownloadTest, file: '/home/user/Devel/reframe/tutorials/
→˓deps/osu_benchmarks.py']
Found 3 check(s)

Log file(s) saved in '/tmp/rfm-klltwsex.log'

To gain a deeper understanding on how test dependencies work in Reframe, please refer to How Test Dependencies
Work In ReFrame.

82 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Depending on Parameterized Tests

As shown earlier in this section, tests define their dependencies by referencing the target tests by their unique name. This
is straightforward when referring to regular tests, where their name matches the class name, but it becomes cumbersome
trying to refer to a parameterized tests, since no safe assumption should be made as of the variant number of the test or
how the parameters are encoded in the name. In order to safely and reliably refer to a parameterized test, you should
use the get_variant_nums() and variant_name() class methods as shown in the following example:

Copyright 2016-2022 Swiss National Supercomputing Centre (CSCS/ETH Zurich)
ReFrame Project Developers. See the top-level LICENSE file for details.
#
SPDX-License-Identifier: BSD-3-Clause

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class TestA(rfm.RunOnlyRegressionTest):

z = parameter(range(10))
executable = 'echo'
valid_systems = ['*']
valid_prog_environs = ['*']

@run_after('init')
def set_exec_opts(self):

self.executable_opts = [str(self.z)]

@sanity_function
def validate(self):

return sn.assert_eq(
sn.extractsingle(r'\d+', self.stdout, 0, int), self.z

)

@rfm.simple_test
class TestB(rfm.RunOnlyRegressionTest):

executable = 'echo'
valid_systems = ['*']
valid_prog_environs = ['*']
sanity_patterns = sn.assert_true(1)

@run_after('init')
def setdeps(self):

variants = TestA.get_variant_nums(z=lambda x: x > 5)
for v in variants:

self.depends_on(TestA.variant_name(v))

In this example, TestB depends only on selected variants of TestA. The get_variant_nums() method accepts a
set of key-value pairs representing the target test parameters and selector functions and returns the list of the variant
numbers that correspond to these variants. Using the variant_name() subsequently, we can get the actual name of
the variant.

2.2. ReFrame Tutorials 83

ReFrame Documentation, Release 3.10.0

./bin/reframe -c tutorials/deps/parameterized.py -l

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/deps/parameterized.py -l'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/deps/parameterized.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[List of matched checks]
- TestB

^TestA %z=9
^TestA %z=8
^TestA %z=7
^TestA %z=6

- TestA %z=5
- TestA %z=4
- TestA %z=3
- TestA %z=2
- TestA %z=1
- TestA %z=0
Found 11 check(s)

Log file(s) saved in '/tmp/rfm-iey58chw.log'

2.2.4 Tutorial 4: Using Test Fixtures

New in version 3.9.0.

A fixture in ReFrame is a test that manages a resource of another test. Fixtures can be chained to create essentially a
graph of dependencies. Similarly to test dependencies, the test that uses the fixture will not execute until its fixture has
executed. In this tutorial, we will rewrite the OSU benchmarks example presented in Tutorial 3: Using Dependencies
in ReFrame Tests using fixtures. We will cover only the basic concepts of fixtures that will allow you to start using them
in your tests. For the full documentation of the test fixtures, you should refer to the Regression Test API documentation.

The full example of the OSU benchmarks using test fixtures is shown below with the relevant parts highlighted:

import os
import reframe as rfm
import reframe.utility.sanity as sn

rfmdocstart: fetch-osu-benchmarks
class fetch_osu_benchmarks(rfm.RunOnlyRegressionTest):

descr = 'Fetch OSU benchmarks'
version = variable(str, value='5.6.2')
executable = 'wget'
executable_opts = [

f'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-
→˓{version}.tar.gz' # noqa: E501 (continues on next page)

84 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

]
local = True

@sanity_function
def validate_download(self):

return sn.assert_eq(self.job.exitcode, 0)
rfmdocend: fetch-osu-benchmarks

rfmdocstart: build-osu-benchmarks
class build_osu_benchmarks(rfm.CompileOnlyRegressionTest):

descr = 'Build OSU benchmarks'
build_system = 'Autotools'
build_prefix = variable(str)
rfmdocstart: osu-benchmarks
osu_benchmarks = fixture(fetch_osu_benchmarks, scope='session')
rfmdocend: osu-benchmarks

@run_before('compile')
def prepare_build(self):

tarball = f'osu-micro-benchmarks-{self.osu_benchmarks.version}.tar.gz'
self.build_prefix = tarball[:-7] # remove .tar.gz extension

fullpath = os.path.join(self.osu_benchmarks.stagedir, tarball)
self.prebuild_cmds = [

f'cp {fullpath} {self.stagedir}',
f'tar xzf {tarball}',
f'cd {self.build_prefix}'

]
self.build_system.max_concurrency = 8

@sanity_function
def validate_build(self):

If compilation fails, the test would fail in any case, so nothing to
further validate here.
return True

rfmdocend: build-osu-benchmarks

class OSUBenchmarkTestBase(rfm.RunOnlyRegressionTest):
'''Base class of OSU benchmarks runtime tests'''

valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'pgi', 'intel']
num_tasks = 2
num_tasks_per_node = 1
rfmdocstart: osu-binaries
osu_binaries = fixture(build_osu_benchmarks, scope='environment')
rfmdocend: osu-binaries

@sanity_function
def validate_test(self):

(continues on next page)

2.2. ReFrame Tutorials 85

ReFrame Documentation, Release 3.10.0

(continued from previous page)

return sn.assert_found(r'^8', self.stdout)

@rfm.simple_test
class osu_latency_test(OSUBenchmarkTestBase):

descr = 'OSU latency test'

rfmdocstart: prepare-run
@run_before('run')
def prepare_run(self):

self.executable = os.path.join(
self.osu_binaries.stagedir,
self.osu_binaries.build_prefix,
'mpi', 'pt2pt', 'osu_latency'

)
self.executable_opts = ['-x', '100', '-i', '1000']

rfmdocend: prepare-run

@performance_function('us')
def latency(self):

return sn.extractsingle(r'^8\s+(\S+)', self.stdout, 1, float)

@rfm.simple_test
class osu_bandwidth_test(OSUBenchmarkTestBase):

descr = 'OSU bandwidth test'

@run_before('run')
def prepare_run(self):

self.executable = os.path.join(
self.osu_binaries.stagedir,
self.osu_binaries.build_prefix,
'mpi', 'pt2pt', 'osu_bw'

)
self.executable_opts = ['-x', '100', '-i', '1000']

@performance_function('MB/s')
def bandwidth(self):

return sn.extractsingle(r'^4194304\s+(\S+)',
self.stdout, 1, float)

@rfm.simple_test
class osu_allreduce_test(OSUBenchmarkTestBase):

mpi_tasks = parameter(1 << i for i in range(1, 5))
descr = 'OSU Allreduce test'

@run_before('run')
def set_executable(self):

self.num_tasks = self.mpi_tasks
self.executable = os.path.join(

self.osu_binaries.stagedir,

(continues on next page)

86 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

self.osu_binaries.build_prefix,
'mpi', 'collective', 'osu_allreduce'

)
self.executable_opts = ['-m', '8', '-x', '1000', '-i', '20000']

@performance_function('us')
def latency(self):

return sn.extractsingle(r'^8\s+(\S+)', self.stdout, 1, float)

Let’s start from the leaf tests, i.e. the tests that execute the benchmarks (osu_latency_test,
osu_bandwidth_test and osu_allreduce_test). As in the dependencies example, all these tests derive
from the OSUBenchmarkTestBase, where we define a fixture that will take care of generating the binaries of the tests:

osu_binaries = fixture(build_osu_benchmarks, scope='environment')

A test defines a fixture using the fixture() builtin and assigns it a name by assigning the return value of the builtin
to a test variable, here osu_binaries. This name will be used later to access the resource managed by the fixture.

As stated previously, a fixture is another full-fledged ReFrame test, here the build_osu_benchmarks which will take
care of building the OSU benchmarks. Each fixture is associated with a scope. This practically indicates at which
level a fixture is shared with other tests. There are four fixture scopes, which are listed below in decreasing order of
generality:

• session: A fixture with this scope will be executed once per ReFrame run session and will be shared across the
whole run.

• partition: A fixture with this scope will be executed once per partition and will be shared across all tests that
run in that partition.

• environment: A fixture with this scope will be executed once per partition and environment combination and
will be shared across all tests that run with this partition and environment combination.

• test: A fixture with this scope is private to the test and will be executed for each test case.

In this example, we need to build once the OSU benchmarks for each partition and environment combination, so we
use the environment scope.

Accessing the fixture is very straightforward. The fixture’s result is accessible after the setup pipeline stage through
the corresponding variable in the test that is defining it. Since a fixture is a standard ReFrame test, you can access any
information of the test. The individual benchmarks do exactly that:

@run_before('run')
def prepare_run(self):

self.executable = os.path.join(
self.osu_binaries.stagedir,
self.osu_binaries.build_prefix,
'mpi', 'pt2pt', 'osu_latency'

)
self.executable_opts = ['-x', '100', '-i', '1000']

Here we construct the final executable path by accessing the standard stagedir attribute of the test as well as the
custom-defined build_prefix variable of the build_osu_benchmarks fixture.

Let’s inspect now the build_osu_benchmarks fixture:

2.2. ReFrame Tutorials 87

ReFrame Documentation, Release 3.10.0

class build_osu_benchmarks(rfm.CompileOnlyRegressionTest):
descr = 'Build OSU benchmarks'
build_system = 'Autotools'
build_prefix = variable(str)
rfmdocstart: osu-benchmarks
osu_benchmarks = fixture(fetch_osu_benchmarks, scope='session')
rfmdocend: osu-benchmarks

@run_before('compile')
def prepare_build(self):

tarball = f'osu-micro-benchmarks-{self.osu_benchmarks.version}.tar.gz'
self.build_prefix = tarball[:-7] # remove .tar.gz extension

fullpath = os.path.join(self.osu_benchmarks.stagedir, tarball)
self.prebuild_cmds = [

f'cp {fullpath} {self.stagedir}',
f'tar xzf {tarball}',
f'cd {self.build_prefix}'

]
self.build_system.max_concurrency = 8

@sanity_function
def validate_build(self):

If compilation fails, the test would fail in any case, so nothing to
further validate here.
return True

It is obvious that it is a normal ReFrame test except that it does not need to be decorated with the @simple_test
decorator. This means that the test will only be executed if it is a fixture of another test. If it was decorated, it would
be executed both as a standalone test and as a fixture of another test. Another detail is that this test does not define the
valid_systems and valid_prog_environs variables. Fixtures inherit those variables from the test that owns them
depending on the scope.

Similarly to OSUBenchmarkTestBase, this test uses a fixture that fetches the OSU benchmarks sources. We could
fetch the OSU benchmarks in this test, but we choose to separate the two primarily for demonstration purposes, but it
would also make sense in cases that the data fetch is too slow.

The osu_benchmarks fixture is defined at session scope, since we only need to download the benchmarks once for the
whole session:

osu_benchmarks = fixture(fetch_osu_benchmarks, scope='session')

The rest of the test is very straightforward.

Let’s inspect the last fixture, the fetch_osu_benchmarks:

class fetch_osu_benchmarks(rfm.RunOnlyRegressionTest):
descr = 'Fetch OSU benchmarks'
version = variable(str, value='5.6.2')
executable = 'wget'
executable_opts = [

f'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-
→˓{version}.tar.gz' # noqa: E501

]
(continues on next page)

88 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

local = True

@sanity_function
def validate_download(self):

return sn.assert_eq(self.job.exitcode, 0)

There is nothing special to this test – it is just an ordinary test – except that we force it to execute locally by setting
its local variable. The reason for that is that a fixture at session scope can execute with any partition/environment
combination, so ReFrame could have to spawn a job in case it has chosen a remote partition to launch this fixture on.
For this reason, we simply force it to execute locally regardless of the chosen partition.

It is now time to run the new tests, but let us first list them:

reframe -c tutorials/fixtures/osu_benchmarks.py -l

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -l'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[List of matched checks]
- osu_allreduce_test %mpi_tasks=16

^build_osu_benchmarks ~daint:gpu+gnu
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+intel
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+pgi
^fetch_osu_benchmarks ~daint

- osu_allreduce_test %mpi_tasks=8
^build_osu_benchmarks ~daint:gpu+gnu
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+intel
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+pgi
^fetch_osu_benchmarks ~daint

- osu_allreduce_test %mpi_tasks=4
^build_osu_benchmarks ~daint:gpu+gnu
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+intel
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+pgi
^fetch_osu_benchmarks ~daint

- osu_allreduce_test %mpi_tasks=2
^build_osu_benchmarks ~daint:gpu+gnu
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+intel
^fetch_osu_benchmarks ~daint

(continues on next page)

2.2. ReFrame Tutorials 89

ReFrame Documentation, Release 3.10.0

(continued from previous page)

^build_osu_benchmarks ~daint:gpu+pgi
^fetch_osu_benchmarks ~daint

- osu_bandwidth_test
^build_osu_benchmarks ~daint:gpu+gnu
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+intel
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+pgi
^fetch_osu_benchmarks ~daint

- osu_latency_test
^build_osu_benchmarks ~daint:gpu+gnu
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+intel
^fetch_osu_benchmarks ~daint

^build_osu_benchmarks ~daint:gpu+pgi
^fetch_osu_benchmarks ~daint

Found 6 check(s)

Log file(s) saved in '/tmp/rfm-eopdze64.log'

Notice how the build_osu_benchmarks fixture is populated three times, once for each partition and environment
combination, and the fetch_osu_benchmarks is generated only once. The following figure shows visually the con-
ceptual dependencies of the osu_bandwidth_test.

Fig. 1: Expanded fixtures and dependencies for the OSU benchmarks example.

A scope part is added to the base name of the fixture, which in this figure is indicated with red color.

Under the hood, fixtures use the test dependency mechanism which is described in How Test Dependencies Work In
ReFrame. The dependencies listed by default and shown in the previous figure are conceptual. Depending on the
available partitions and environments, tests and fixtures can be concretized differently. Fixtures in particular are also
more flexible in the way they can be concretized depending on their scope. The following listing and figure show the
concretization of the osu_bandwidth_test:

reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_bandwidth_test -lC

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_

→˓bandwidth_test -lC'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[List of matched checks]
- osu_bandwidth_test @daint:gpu+gnu

^build_osu_benchmarks ~daint:gpu+gnu @daint:gpu+gnu
^fetch_osu_benchmarks ~daint @daint:gpu+gnu

(continues on next page)

90 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

- osu_bandwidth_test @daint:gpu+intel
^build_osu_benchmarks ~daint:gpu+intel @daint:gpu+intel
^fetch_osu_benchmarks ~daint @daint:gpu+gnu

- osu_bandwidth_test @daint:gpu+pgi
^build_osu_benchmarks ~daint:gpu+pgi @daint:gpu+pgi
^fetch_osu_benchmarks ~daint @daint:gpu+gnu

Concretized 7 test case(s)

Log file(s) saved in '/tmp/rfm-uza91jj1.log'

Fig. 2: The actual dependencies for the OSU benchmarks example using fixtures.

The first thing to notice here is how the individual test cases of osu_bandwidth_test depend only the specific
fixtures for their scope: when osu_bandwidth_test runs on the daint:gpu partition using the gnu compiler it
will only depend on the build_osu_benchmarks~daint:gpu+gnu fixture. The second thing to notice is where the
fetch_osu_benchmarks~daint fixture will run. Since this is a session fixture, ReFrame has arbitrarily chosen to
run it on daint:gpu using the gnu environment. A session fixture can run on any combination of valid partitions and
environments. The following listing and figure show how the test dependency DAG is concretized when we scope the
valid programming environments from the command line using -p pgi.

reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_bandwidth_test -lC -p pgi

[ReFrame Setup]
version: 3.10.0-dev.3+605af31a
command: './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_

→˓bandwidth_test -lC -p pgi'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[List of matched checks]
- osu_bandwidth_test @daint:gpu+pgi

^build_osu_benchmarks ~daint:gpu+pgi @daint:gpu+pgi
^fetch_osu_benchmarks ~daint @daint:gpu+pgi

Concretized 3 test case(s)

Log file(s) saved in '/tmp/rfm-dnfdagj8.log'

Fig. 3: The dependency graph concretized for the ‘pgi’ environment only.

Notice how the fetch_osu_benchmarks~daint fixture is selected to run in the only valid partition/environment
combination. This is an important difference compared to the same example written using raw dependencies in How
Test Dependencies Work In ReFrame, in which case in order not to have unresolved dependencies, we would need to
specify the valid programming environment of the test that fetches the sources. Fixtures do not need that, since you
can impose less strict constraints by setting their scope accordingly.

Finally, let’s run all the benchmarks at once:

2.2. ReFrame Tutorials 91

ReFrame Documentation, Release 3.10.0

[ReFrame Setup]
version: 3.10.0-dev.3+76e02667
command: './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -r'
launched by: user@host
working directory: '/home/user/Devel/reframe'
settings file: '/home/user/Devel/reframe/tutorials/config/settings.py'
check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'
stage directory: '/home/user/Devel/reframe/stage'
output directory: '/home/user/Devel/reframe/output'

[==========] Running 10 check(s)
[==========] Started on Sat Jan 22 23:08:13 2022

[----------] start processing checks
[RUN] fetch_osu_benchmarks ~daint @daint:gpu+gnu
[OK] (1/22) fetch_osu_benchmarks ~daint @daint:gpu+gnu [compile: 0.016s run: 2.
→˓757s total: 2.807s]
[RUN] build_osu_benchmarks ~daint:gpu+gnu @daint:gpu+gnu
[RUN] build_osu_benchmarks ~daint:gpu+intel @daint:gpu+intel
[RUN] build_osu_benchmarks ~daint:gpu+pgi @daint:gpu+pgi
[OK] (2/22) build_osu_benchmarks ~daint:gpu+gnu @daint:gpu+gnu [compile: 25.
→˓384s run: 2.389s total: 27.839s]
[RUN] osu_allreduce_test %mpi_tasks=16 @daint:gpu+gnu
[RUN] osu_allreduce_test %mpi_tasks=8 @daint:gpu+gnu
[RUN] osu_allreduce_test %mpi_tasks=4 @daint:gpu+gnu
[RUN] osu_allreduce_test %mpi_tasks=2 @daint:gpu+gnu
[RUN] osu_bandwidth_test @daint:gpu+gnu
[RUN] osu_latency_test @daint:gpu+gnu
[OK] (3/22) build_osu_benchmarks ~daint:gpu+intel @daint:gpu+intel [compile: 47.
→˓774s run: 0.313s total: 48.758s]
[OK] (4/22) build_osu_benchmarks ~daint:gpu+pgi @daint:gpu+pgi [compile: 47.
→˓127s run: 0.297s total: 48.765s]
[RUN] osu_allreduce_test %mpi_tasks=16 @daint:gpu+intel
[RUN] osu_allreduce_test %mpi_tasks=16 @daint:gpu+pgi
[RUN] osu_allreduce_test %mpi_tasks=8 @daint:gpu+intel
[RUN] osu_allreduce_test %mpi_tasks=8 @daint:gpu+pgi
[RUN] osu_allreduce_test %mpi_tasks=4 @daint:gpu+intel
[RUN] osu_allreduce_test %mpi_tasks=4 @daint:gpu+pgi
[RUN] osu_allreduce_test %mpi_tasks=2 @daint:gpu+intel
[RUN] osu_allreduce_test %mpi_tasks=2 @daint:gpu+pgi
[RUN] osu_bandwidth_test @daint:gpu+intel
[RUN] osu_bandwidth_test @daint:gpu+pgi
[RUN] osu_latency_test @daint:gpu+intel
[RUN] osu_latency_test @daint:gpu+pgi
[OK] (5/22) osu_allreduce_test %mpi_tasks=16 @daint:gpu+gnu [compile: 0.022s␣
→˓run: 63.846s total: 64.319s]
[OK] (6/22) osu_allreduce_test %mpi_tasks=4 @daint:gpu+gnu [compile: 0.024s␣
→˓run: 56.997s total: 64.302s]
[OK] (7/22) osu_allreduce_test %mpi_tasks=2 @daint:gpu+gnu [compile: 0.024s␣
→˓run: 56.187s total: 66.616s]
[OK] (8/22) osu_allreduce_test %mpi_tasks=8 @daint:gpu+gnu [compile: 0.026s␣
→˓run: 82.220s total: 86.255s]
[OK] (9/22) osu_bandwidth_test @daint:gpu+gnu [compile: 0.023s run: 128.535s␣
→˓total: 142.154s] (continues on next page)

92 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[OK] (10/22) osu_allreduce_test %mpi_tasks=4 @daint:gpu+pgi [compile: 0.023s␣
→˓run: 168.876s total: 185.476s]
[OK] (11/22) osu_allreduce_test %mpi_tasks=2 @daint:gpu+intel [compile: 0.020s␣
→˓run: 165.312s total: 185.461s]
[OK] (12/22) osu_allreduce_test %mpi_tasks=4 @daint:gpu+intel [compile: 0.019s␣
→˓run: 172.593s total: 186.044s]
[OK] (13/22) osu_allreduce_test %mpi_tasks=2 @daint:gpu+pgi [compile: 0.019s␣
→˓run: 162.499s total: 185.942s]
[OK] (14/22) osu_latency_test @daint:gpu+intel [compile: 0.020s run: 152.867s␣
→˓total: 185.853s]
[OK] (15/22) osu_latency_test @daint:gpu+pgi [compile: 0.020s run: 149.662s␣
→˓total: 185.853s]
[OK] (16/22) osu_allreduce_test %mpi_tasks=16 @daint:gpu+intel [compile: 0.020s␣
→˓run: 207.009s total: 207.831s]
[OK] (17/22) osu_allreduce_test %mpi_tasks=16 @daint:gpu+pgi [compile: 0.019s␣
→˓run: 203.753s total: 207.829s]
[OK] (18/22) osu_allreduce_test %mpi_tasks=8 @daint:gpu+pgi [compile: 0.019s␣
→˓run: 197.421s total: 207.783s]
[OK] (19/22) osu_latency_test @daint:gpu+gnu [compile: 0.024s run: 218.130s␣
→˓total: 234.892s]
[OK] (20/22) osu_bandwidth_test @daint:gpu+intel [compile: 0.020s run: 218.457s␣
→˓total: 244.995s]
[OK] (21/22) osu_bandwidth_test @daint:gpu+pgi [compile: 0.020s run: 215.273s␣
→˓total: 244.992s]
[OK] (22/22) osu_allreduce_test %mpi_tasks=8 @daint:gpu+intel [compile: 0.020s␣
→˓run: 267.367s total: 274.584s]
[----------] all spawned checks have finished

[PASSED] Ran 22/22 test case(s) from 10 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 23:13:40 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/tmp/rfm-6gbw7qzs.log'

Tip: A reasonable question is how to choose between fixtures and dependencies?

The rule of thumb is use fixtures if your test needs to use any resource of the target test and use dependencies if you
simply want to impose an order of execution for your tests.

2.2. ReFrame Tutorials 93

ReFrame Documentation, Release 3.10.0

2.2.5 Tutorial 5: Using Build Automation Tools As a Build System

In this tutorial we will present how to use Easybuild and Spack as a build system for a ReFrame test. The example
uses the configuration file presented in Tutorial 1: Getting Started with ReFrame, which you can find in tutorials/
config/settings.py. We also assume that the reader is already familiar with the concepts presented in the basic
tutorial and has a working knowledge of EasyBuild and Spack.

Using EasyBuild to Build the Test Code

New in version 3.5.0.

Let’s consider a simple ReFrame test that installs bzip2-1.0.6 given the easyconfig bzip2-1.0.6.eb and checks that the
installed version is correct. The following code block shows the check, highlighting the lines specific to this tutorial:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class BZip2EBCheck(rfm.RegressionTest):

descr = 'Demo test using EasyBuild to build the test code'
valid_systems = ['*']
valid_prog_environs = ['builtin']
executable = 'bzip2'
executable_opts = ['--help']
build_system = 'EasyBuild'

@run_before('compile')
def setup_build_system(self):

self.build_system.easyconfigs = ['bzip2-1.0.6.eb']
self.build_system.options = ['-f']

@run_before('run')
def prepare_run(self):

self.modules = self.build_system.generated_modules

@sanity_function
def assert_version(self):

return sn.assert_found(r'Version 1.0.6', self.stderr)

The test looks pretty standard except for the highlighted blocks. Let’s have a look first to the block in the BZip2Check
class.

The first thing is to specify that the EasyBuild build system will be used. This is done by setting build_system to
'EasyBuild'. Then, the software to be installed is passed as a list to easyconfigs. Here only one easyconfig is
given, but more than one can be passed. Finally, through options, command line options can be passed to the eb
executable. In this test we pass -f to make sure that bzip2 will be built even if the module already exists externally.

For this test, ReFrame generates the following command to build and install the easyconfig:

export EASYBUILD_BUILDPATH={stagedir}/easybuild/build
export EASYBUILD_INSTALLPATH={stagedir}/easybuild
export EASYBUILD_PREFIX={stagedir}/easybuild
export EASYBUILD_SOURCEPATH={stagedir}/easybuild
eb bzip2-1.0.6.eb -f

94 Chapter 2. Publications

https://easybuild.io/
https://spack.io/
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/b/bzip2/bzip2-1.0.6.eb

ReFrame Documentation, Release 3.10.0

ReFrame will keep all the files generated by EasyBuild (sources, temporary files, installed software and the correspond-
ing modules) under the test’s stage directory. For this reason it sets the relevant EasyBuild environment variables.

Tip: Users may set the EasyBuild prefix to a different location by setting the prefix attribute of the build system.
This allows you to have the built software installed upon successful completion of the build phase, but if the test fails
in a later stage (sanity, performance), the installed software will not be cleaned up automatically.

Note: ReFrame assumes that the eb executable is available on the system where the compilation is run (typically the
local host where ReFrame is executed).

Now that we know everything related to building and installing the code, we can move to the part dealing with running
it. To run the code, the generated modules need to be loaded in order to make the software available. The modules can
be accessed through generated_modules, however, they are available only after EasyBuild completes the installation.
This means that modules can be set only after the build phase finishes. For that, we can set modules in a class method
wrapped by the run_before() built-in, specifying the run phase. This test will then run the following commands:

module load bzip/1.0.6
bzip2 --help

Packaging the installation

The EasyBuild build system offers a way of packaging the installation via EasyBuild’s packaging support. To use this
feature, the FPM package manager must be available. By setting the dictionary package_opts in the test, ReFrame
will pass --package-{key}={val} to the EasyBuild invocation. For instance, the following can be set to package
the installations as an rpm file:

self.keep_files = ['easybuild/packages']
self.build_system.package_opts = {

'type': 'rpm',
}

The packages are generated by EasyBuild in the stage directory. To retain them after the test succeeds, keep_files
needs to be set.

Using Spack to Build the Test Code

New in version 3.6.1.

This example is the equivalent to the previous one, except that it uses Spack to build bzip2. Here is the test’s code:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class BZip2SpackCheck(rfm.RegressionTest):

descr = 'Demo test using Spack to build the test code'
valid_systems = ['*']
valid_prog_environs = ['builtin']
executable = 'bzip2'

(continues on next page)

2.2. ReFrame Tutorials 95

https://fpm.readthedocs.io/en/latest/

ReFrame Documentation, Release 3.10.0

(continued from previous page)

executable_opts = ['--help']
build_system = 'Spack'

@run_before('compile')
def setup_build_system(self):

self.build_system.specs = ['bzip2@1.0.6']

@sanity_function
def assert_version(self):

return sn.assert_found(r'Version 1.0.6', self.stderr)

When build_system is set to 'Spack', ReFrame will leverage Spack environments in order to build the test code.
By default, ReFrame will create a new Spack environment in the test’s stage directory and add the requested specs to
it. Users may also specify an existing Spack environment by setting the environment attribute. In this case, ReFrame
treats the environment as a test resource so it expects to find it under the test’s sourcesdir, which defaults to 'src'.

As with every other test, ReFrame will copy the test’s resources to its stage directory before building it. ReFrame will
then activate the generated environment (either the one provided by the user or the one generated by ReFrame), add
the given specs using the spack add command and, finally, install the packages in the environment. Here is what
ReFrame generates as a build script for this example:

. "$(spack location --spack-root)/share/spack/setup-env.sh"
spack env create -d rfm_spack_env
spack env activate -V -d rfm_spack_env
spack config add "config:install_tree:root:opt/spack"
spack add bzip2@1.0.6
spack install

As you might have noticed ReFrame expects that Spack is already installed on the system. The packages specified
in the environment and the tests will be installed in the test’s stage directory, where the environment is copied before
building. Here is the stage directory structure:

stage/generic/default/builtin/BZip2SpackCheck/
rfm_spack_env

spack
opt

spack
bin
darwin-catalina-skylake

spack.lock
spack.yaml

rfm_BZip2SpackCheck_build.err
rfm_BZip2SpackCheck_build.out
rfm_BZip2SpackCheck_build.sh
rfm_BZip2SpackCheck_job.err
rfm_BZip2SpackCheck_job.out
rfm_BZip2SpackCheck_job.sh

Finally, here is the generated run script that ReFrame uses to run the test, once its build has succeeded:

#!/bin/bash
. "$(spack location --spack-root)/share/spack/setup-env.sh"
spack env create -d rfm_spack_env

(continues on next page)

96 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

spack env activate -V -d rfm_spack_env
spack load bzip2@1.0.6
bzip2 --help

From this point on, sanity and performance checking are exactly identical to any other ReFrame test.

Tip: While developing a test using Spack or EasyBuild as a build system, it can be useful to run ReFrame with the
--keep-stage-files and --dont-restage options to prevent ReFrame from removing the test’s stage directory
upon successful completion of the test. For this particular type of test, these options will avoid having to rebuild the
required package dependencies every time the test is retried.

2.2.6 Tutorial 6: Tips and Tricks

New in version 3.4.

This tutorial focuses on some less known aspects of ReFrame’s command line interface that can be helpful.

Debugging

ReFrame tests are Python classes inside Python source files, so the usual debugging techniques for Python apply, but
the ReFrame frontend will filter some errors and stack traces by default in order to keep the output clean. Generally,
ReFrame will not print the full stack trace for user programming errors and will not block the test loading process.
If a test has errors and cannot be loaded, an error message will be printed and the loading of the remaining tests will
continue. In the following, we have inserted a small typo in the hello2.py tutorial example:

./bin/reframe -c tutorials/basics/hello -R -l

[ReFrame Setup]
version: 3.10.0-dev.3+149af549
command: './bin/reframe -c tutorials/basics/hello -R -l'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: '<builtin>'
check search path: (R) '/home/user/Repositories/reframe/tutorials/basics/hello'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

./bin/reframe: skipping test file '/home/user/Repositories/reframe/tutorials/basics/
→˓hello/hello2.py': name error: tutorials/basics/hello/hello2.py:13: name 'paramter' is␣
→˓not defined

lang = paramter(['c', 'cpp'])
(rerun with '-v' for more information)

[List of matched checks]
- HelloTest
Found 1 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-bzqy3nc7.log'

Notice how ReFrame prints also the source code line that caused the error. This is not always the case, however.
ReFrame cannot always track a user error back to its source and this is particularly true for the ReFrame-specific

2.2. ReFrame Tutorials 97

ReFrame Documentation, Release 3.10.0

syntactic elements, such as the class builtins. In such cases, ReFrame will just print the error message but not the
source code context. In the following example, we introduce a typo in the argument of the @run_before decorator:

./bin/reframe: skipping test file '/Users/user/Repositories/reframe/tutorials/basics/
→˓hello/hello2.py': reframe syntax error: invalid pipeline stage specified: 'compil'␣
→˓(rerun with '-v' for more information)
[List of matched checks]
- HelloTest (found in '/Users/user/Repositories/reframe/tutorials/basics/hello/hello1.py
→˓')
Found 1 check(s)

As suggested by the warning message, passing -v will give you the stack trace for each of the failing tests, as well as
some more information about what is going on during the loading.

./bin/reframe -c tutorials/basics/hello -R -l -v

[ReFrame Setup]
version: 3.10.0-dev.3+149af549
command: './bin/reframe -c tutorials/basics/hello -R -l -v'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: '<builtin>'
check search path: (R) '/home/user/Repositories/reframe/tutorials/basics/hello'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

./bin/reframe: skipping test file '/home/user/Repositories/reframe/tutorials/basics/
→˓hello/hello2.py': name error: tutorials/basics/hello/hello2.py:13: name 'paramter' is␣
→˓not defined

lang = paramter(['c', 'cpp'])
(rerun with '-v' for more information)

Traceback (most recent call last):
File "/home/user/Repositories/reframe/reframe/frontend/loader.py", line 237, in load_

→˓from_file
util.import_module_from_file(filename, force)

File "/home/user/Repositories/reframe/reframe/utility/__init__.py", line 109, in␣
→˓import_module_from_file

return importlib.import_module(module_name)
File "/usr/local/Cellar/python@3.9/3.9.1_6/Frameworks/Python.framework/Versions/3.9/

→˓lib/python3.9/importlib/__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)

File "<frozen importlib._bootstrap>", line 1030, in _gcd_import
File "<frozen importlib._bootstrap>", line 1007, in _find_and_load
File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 680, in _load_unlocked
File "<frozen importlib._bootstrap_external>", line 790, in exec_module
File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed
File "/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py", line 12, in

→˓<module>
class HelloMultiLangTest(rfm.RegressionTest):

File "/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py", line 13, in␣
→˓HelloMultiLangTest

lang = paramter(['c', 'cpp'])
(continues on next page)

98 Chapter 2. Publications

regression_test_api.html#builtins

ReFrame Documentation, Release 3.10.0

(continued from previous page)

NameError: name 'paramter' is not defined

Loaded 1 test(s)
Generated 1 test case(s)
Filtering test cases(s) by name: 1 remaining
Filtering test cases(s) by tags: 1 remaining
Filtering test cases(s) by other attributes: 1 remaining
Final number of test cases: 1
[List of matched checks]
- HelloTest
Found 1 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-l21cjjas.log'

Tip: The -v option can be given multiple times to increase the verbosity level further.

Debugging deferred expressions

Although deferred expressions that are used in sanity and performance functions behave similarly to normal Python
expressions, you need to understand their implicit evaluation rules. One of the rules is that str() triggers the implicit
evaluation, so trying to use the standard print() function with a deferred expression, you might get unexpected results
if that expression is not yet to be evaluated. For this reason, ReFrame offers a sanity function counterpart of print(),
which allows you to safely print deferred expressions.

Let’s see that in practice, by printing the filename of the standard output for HelloMultiLangTest test. The stdout
is a deferred expression and it will get its value later on while the test executes. Trying to use the standard print here
print() function here would be of little help, since it would simply give us None, which is the value of stdout when
the test is created.

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloMultiLangTest(rfm.RegressionTest):

lang = parameter(['c', 'cpp'])
valid_systems = ['*']
valid_prog_environs = ['*']

@run_after('compile')
def set_sourcepath(self):

self.sourcepath = f'hello.{self.lang}'

@sanity_function
def validate_output(self):

return sn.assert_found(r'Hello, World\!', sn.print(self.stdout))

If we run the test, we can see that the correct standard output filename will be printed after sanity:

./bin/reframe -C tutorials/config/settings.py -c tutorials/basics/hello/hello2.py -r

2.2. ReFrame Tutorials 99

deferrable_functions_reference.html#implicit-evaluation-of-sanity-functions
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/constants.html#None

ReFrame Documentation, Release 3.10.0

[ReFrame Setup]
version: 3.10.0-dev.3+149af549
command: './bin/reframe -C tutorials/config/settings.py -c tutorials/basics/

→˓hello/hello2.py -r'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: 'tutorials/config/settings.py'
check search path: '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

[==========] Running 2 check(s)
[==========] Started on Sun Jan 23 00:11:07 2022

[----------] start processing checks
[RUN] HelloMultiLangTest %lang=cpp @catalina:default+gnu
[RUN] HelloMultiLangTest %lang=cpp @catalina:default+clang
[RUN] HelloMultiLangTest %lang=c @catalina:default+gnu
[RUN] HelloMultiLangTest %lang=c @catalina:default+clang
rfm_HelloMultiLangTest_cpp_job.out
[OK] (1/4) HelloMultiLangTest %lang=cpp @catalina:default+gnu [compile: 0.737s␣
→˓run: 0.748s total: 1.765s]
rfm_HelloMultiLangTest_cpp_job.out
[OK] (2/4) HelloMultiLangTest %lang=cpp @catalina:default+clang [compile: 0.735s␣
→˓run: 0.909s total: 1.928s]
rfm_HelloMultiLangTest_c_job.out
[OK] (3/4) HelloMultiLangTest %lang=c @catalina:default+gnu [compile: 0.719s␣
→˓run: 1.072s total: 2.090s]
rfm_HelloMultiLangTest_c_job.out
[OK] (4/4) HelloMultiLangTest %lang=c @catalina:default+clang [compile: 0.714s␣
→˓run: 1.074s total: 2.094s]
[----------] all spawned checks have finished

[PASSED] Ran 4/4 test case(s) from 2 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sun Jan 23 00:11:10 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-jumlrg66.log'

Debugging sanity and performance patterns

When creating a new test that requires a complex output parsing for either the sanity or performance pipeline stages,
tuning the functions decorated by @sanity_function or @performance_function may involve some trial and error
to debug the complex regular expressions required. For lightweight tests which execute in a few seconds, this trial and
error may not be an issue at all. However, when dealing with tests which take longer to run, this method can quickly
become tedious and inefficient.

Tip: When dealing with make-based projects which take a long time to compile, you can use the command line option
--dont-restage in order to speed up the compile stage in subsequent runs.

When a test fails, ReFrame will keep the test output in the stage directory after its execution, which means that one can
load this output into a Python shell or another helper script without having to rerun the expensive test again. If the test

100 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

is not failing but the user still wants to experiment or modify the existing sanity or performance functions, the command
line option --keep-stage-files can be used when running ReFrame to avoid deleting the stage directory. With the
executable’s output available in the stage directory, one can simply use the re module to debug regular expressions as
shown below.

>>> import re

>>> # Read the test's output
>>> with open(the_output_file, 'r') as f:
... test_output = ''.join(f.readlines())
...
>>> # Evaluate the regular expression
>>> re.find(the_regex_pattern, test_output)

Alternatively to using the re module, one could use all the sanity utility provided by ReFrame directly from the Python
shell. In order to do so, if ReFrame was installed manually using the bootstrap.sh script, one will have to make all
the Python modules from the external directory accessible to the Python shell as shown below.

>>> import sys
>>> import os

>>> # Make the external modules available
>>> sys.path = [os.path.abspath('external')] + sys.path

>>> # Import ReFrame-provided sanity functions
>>> import reframe.utility.sanity as sn

>>> # Evaluate the regular expression
>>> assert sn.evaluate(sn.assert_found(the_regex_pattern, the_output_file))

Debugging test loading

If you are new to ReFrame, you might wonder sometimes why your tests are not loading or why your tests are not
running on the partition they were supposed to run. This can be due to ReFrame picking the wrong configuration entry
or that your test is not written properly (not decorated, no valid_systems etc.). If you try to load a test file and list
its tests by increasing twice the verbosity level, you will get enough output to help you debug such issues. Let’s try
loading the tutorials/basics/hello/hello2.py file:

./bin/reframe -C tutorials/config/settings.py -c tutorials/basics/hello/hello2.py -l -vv

Loading user configuration
Loading configuration file: 'tutorials/config/settings.py'
Detecting system
Looking for a matching configuration entry for system 'host'
Configuration found: picking system 'generic'
Selecting subconfig for 'generic'
Initializing runtime
Selecting subconfig for 'generic:default'
Initializing system partition 'default'
Selecting subconfig for 'generic'
Initializing system 'generic'
Initializing modules system 'nomod'

(continues on next page)

2.2. ReFrame Tutorials 101

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

ReFrame Documentation, Release 3.10.0

(continued from previous page)

detecting topology info for generic:default
> found topology file '/home/user/.reframe/topology/generic-default/processor.json';␣
→˓loading...
> device auto-detection is not supported
[ReFrame Environment]
RFM_CHECK_SEARCH_PATH=<not set>
RFM_CHECK_SEARCH_RECURSIVE=<not set>
RFM_CLEAN_STAGEDIR=<not set>
RFM_COLORIZE=n
RFM_COMPACT_TEST_NAMES=n
RFM_CONFIG_FILE=<not set>
RFM_DUMP_PIPELINE_PROGRESS=<not set>
RFM_GIT_TIMEOUT=<not set>
RFM_GRAYLOG_ADDRESS=<not set>
RFM_HTTPJSON_URL=<not set>
RFM_IGNORE_CHECK_CONFLICTS=<not set>
RFM_IGNORE_REQNODENOTAVAIL=<not set>
RFM_INSTALL_PREFIX=/home/user/Repositories/reframe
RFM_KEEP_STAGE_FILES=<not set>
RFM_MODULE_MAPPINGS=<not set>
RFM_MODULE_MAP_FILE=<not set>
RFM_NON_DEFAULT_CRAYPE=<not set>
RFM_OUTPUT_DIR=<not set>
RFM_PERFLOG_DIR=<not set>
RFM_PIPELINE_TIMEOUT=<not set>
RFM_PREFIX=<not set>
RFM_PURGE_ENVIRONMENT=<not set>
RFM_REMOTE_DETECT=<not set>
RFM_REMOTE_WORKDIR=<not set>
RFM_REPORT_FILE=<not set>
RFM_REPORT_JUNIT=<not set>
RFM_RESOLVE_MODULE_CONFLICTS=<not set>
RFM_SAVE_LOG_FILES=<not set>
RFM_STAGE_DIR=<not set>
RFM_SYSLOG_ADDRESS=<not set>
RFM_SYSTEM=<not set>
RFM_TIMESTAMP_DIRS=<not set>
RFM_TRAP_JOB_ERRORS=<not set>
RFM_UNLOAD_MODULES=<not set>
RFM_USER_MODULES=<not set>
RFM_USE_LOGIN_SHELL=<not set>
RFM_VERBOSE=<not set>

[ReFrame Setup]
version: 3.10.0-dev.3+149af549
command: './bin/reframe -C tutorials/config/settings.py -c tutorials/basics/

→˓hello/hello2.py -l -vv'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: 'tutorials/config/settings.py'
check search path: '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

(continues on next page)

102 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

Looking for tests in '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py'
Validating '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py': OK
> Loaded 2 test(s)

Loaded 2 test(s)
Generated 2 test case(s)
Filtering test cases(s) by name: 2 remaining
Filtering test cases(s) by tags: 2 remaining
Filtering test cases(s) by other attributes: 2 remaining
Building and validating the full test DAG
Full test DAG:
('HelloMultiLangTest_cpp', 'generic:default', 'builtin') -> []
('HelloMultiLangTest_c', 'generic:default', 'builtin') -> []

Final number of test cases: 2
[List of matched checks]
- HelloMultiLangTest %lang=cpp
- HelloMultiLangTest %lang=c
Found 2 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-fs1arce0.log'

You can see all the different phases ReFrame’s frontend goes through when loading a test. The first “strange” thing
to notice in this log is that ReFrame picked the generic system configuration. This happened because it couldn’t find
a system entry with a matching hostname pattern. However, it did not impact the test loading, because these tests are
valid for any system, but it will affect the tests when running (see Tutorial 1: Getting Started with ReFrame) since the
generic system does not define any C++ compiler.

After loading the configuration, ReFrame will print out its relevant environment variables and will start examining
the given files in order to find and load ReFrame tests. Before attempting to load a file, it will validate it and check
if it looks like a ReFrame test. If it does, it will load that file by importing it. This is where any ReFrame tests are
instantiated and initialized (see Loaded 2 test(s)), as well as the actual test cases (combination of tests, system
partitions and environments) are generated. Then the test cases are filtered based on the various filtering command line
options as well as the programming environments that are defined for the currently selected system. Finally, the test
case dependency graph is built and everything is ready for running (or listing).

Try passing a specific system or partition with the --system option or modify the test (e.g., removing the decorator
that registers it) and see how the logs change.

Execution modes

ReFrame allows you to create pre-defined ways of running it, which you can invoke from the command line. These
are called execution modes and are essentially named groups of command line options that will be passed to ReFrame
whenever you request them. These are defined in the configuration file and can be requested with the --mode command-
line option. The following configuration defines an execution mode named maintenance and sets up ReFrame in a
certain way (selects tests to run, sets up stage and output paths etc.)

'modes': [
{

'name': 'maintenance',
'options': [

'--unload-module=reframe',
'--exec-policy=async',

(continues on next page)

2.2. ReFrame Tutorials 103

manpage.html#test-filtering
manpage.html#test-filtering

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'--strict',
'--output=/path/to/$USER/regression/maintenance',
'--perflogdir=/path/to/$USER/regression/maintenance/logs',
'--stage=$SCRATCH/regression/maintenance/stage',
'--report-file=/path/to/$USER/regression/maintenance/reports/maint_report_

→˓{sessionid}.json',
'-Jreservation=maintenance',
'--save-log-files',
'--tag=maintenance',
'--timestamp=%F_%H-%M-%S'

]
},

]

The execution modes come handy in situations that you have a standardized way of running ReFrame and you don’t
want to create and maintain shell scripts around it. In this example, you can simply run ReFrame with

./bin/reframe --mode=maintenance -r

and it will be equivalent to passing explicitly all the above options. You can still pass any additional command line
option and it will supersede or be combined (depending on the behaviour of the option) with those defined in the
execution mode. In this particular example, we could change just the reservation name by running

./bin/reframe --mode=maintenance -J reservation=maint -r

There are two options that you can’t use inside execution modes and these are the -C and --system . The reason is
that these option select the configuration file and the configuration entry to load.

Manipulating ReFrame’s environment

ReFrame runs the selected tests in the same environment as the one that it executes. It does not unload any environment
modules nor sets or unsets any environment variable. Nonetheless, it gives you the opportunity to modify the environ-
ment that the tests execute. You can either purge completely all environment modules by passing the --purge-env
option or ask ReFrame to load or unload some environment modules before starting running any tests by using the -m
and -u options respectively. Of course you could manage the environment manually, but it’s more convenient if you do
that directly through ReFrame’s command-line. If you used an environment module to load ReFrame, e.g., reframe,
you can use the -u to have ReFrame unload it before running any tests, so that the tests start in a clean environment:

./bin/reframe -u reframe [...]

Environment Modules Mappings

ReFrame allows you to replace environment modules used in tests with other modules on the fly. This is quite useful
if you want to test a new version of a module or another combination of modules. Assume you have a test that loads a
gromacs module:

class GromacsTest(rfm.RunOnlyRegressionTest):
...
modules = ['gromacs']

104 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

This test would use the default version of the module in the system, but you might want to test another version, before
making that new one the default. You can ask ReFrame to temporarily replace the gromacs module with another one
as follows:

./bin/reframe -n GromacsTest -M 'gromacs:gromacs/2020.5' -r

Every time ReFrame tries to load the gromacs module, it will replace it with gromacs/2020.5. You can specify
multiple mappings at once or provide a file with mappings using the --module-mappings option. You can also
replace a single module with multiple modules.

A very convenient feature of ReFrame in dealing with modules is that you do not have to care about module conflicts
at all, regardless of the modules system backend. ReFrame will take care of unloading any conflicting modules, if the
underlying modules system cannot do that automatically. In case of module mappings, it will also respect the module
order of the replacement modules and will produce the correct series of “load” and “unload” commands needed by the
modules system backend used.

Retrying and Rerunning Tests

If you are running ReFrame regularly as part of a continuous testing procedure you might not want it to generate alerts
for transient failures. If a ReFrame test fails, you might want to retry a couple of times before marking it as a failure.
You can achieve this with the --max-retries. ReFrame will then retry the failing test cases a maximum number
of times before reporting them as actual failures. The failed test cases will not be retried immediately after they have
failed, but rather at the end of the run session. This is done to give more chances of success in case the failures have
been transient.

Another interesting feature introduced in ReFrame 3.4 is the ability to restore a previous test session. Whenever it runs,
ReFrame stores a detailed JSON report of the last run under $HOME/.reframe (see --report-file). Using that file,
ReFrame can restore a previous run session using the --restore-session. This option is useful when you combine
it with the various test filtering options. For example, you might want to rerun only the failed tests or just a specific test
in a dependency chain. Let’s see an artificial example that uses the following test dependency graph.

Fig. 4: Complex test dependency graph. Nodes in red are set to fail.

Tests T2 and T8 are set to fail. Let’s run the whole test DAG:

./bin/reframe -c unittests/resources/checks_unlisted/deps_complex.py -r

[ReFrame Setup]
version: 3.10.0-dev.3+149af549
command: './bin/reframe -c unittests/resources/checks_unlisted/deps_complex.

→˓py -r'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: '<builtin>'
check search path: '/home/user/Repositories/reframe/unittests/resources/checks_

→˓unlisted/deps_complex.py'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

[==========] Running 10 check(s)
[==========] Started on Sat Jan 22 23:44:18 2022

[----------] start processing checks
(continues on next page)

2.2. ReFrame Tutorials 105

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[RUN] T0 @generic:default+builtin
[OK] (1/10) T0 @generic:default+builtin [compile: 0.018s run: 0.292s total: 0.
→˓336s]
[RUN] T4 @generic:default+builtin
[OK] (2/10) T4 @generic:default+builtin [compile: 0.016s run: 0.336s total: 0.
→˓380s]
[RUN] T5 @generic:default+builtin
[OK] (3/10) T5 @generic:default+builtin [compile: 0.016s run: 0.389s total: 0.
→˓446s]
[RUN] T1 @generic:default+builtin
[OK] (4/10) T1 @generic:default+builtin [compile: 0.016s run: 0.459s total: 0.
→˓501s]
[RUN] T8 @generic:default+builtin
[FAIL] (5/10) T8 @generic:default+builtin [compile: n/a run: n/a total: 0.006s]
==> test failed during 'setup': test staged in '/home/user/Repositories/reframe/stage/
→˓generic/default/builtin/T8'
[FAIL] (6/10) T9 @generic:default+builtin [compile: n/a run: n/a total: n/a]
==> test failed during 'startup': test staged in None
[RUN] T6 @generic:default+builtin
[OK] (7/10) T6 @generic:default+builtin [compile: 0.016s run: 0.530s total: 0.
→˓584s]
[RUN] T2 @generic:default+builtin
[RUN] T3 @generic:default+builtin
[FAIL] (8/10) T2 @generic:default+builtin [compile: 0.019s run: 0.324s total: 0.
→˓424s]
==> test failed during 'sanity': test staged in '/home/user/Repositories/reframe/stage/
→˓generic/default/builtin/T2'
[FAIL] (9/10) T7 @generic:default+builtin [compile: n/a run: n/a total: n/a]
==> test failed during 'startup': test staged in None
[OK] (10/10) T3 @generic:default+builtin [compile: 0.017s run: 0.328s total: 0.
→˓403s]
[----------] all spawned checks have finished

[FAILED] Ran 10/10 test case(s) from 10 check(s) (4 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 23:44:21 2022

==
SUMMARY OF FAILURES
--
FAILURE INFO for T8
* Expanded name: T8
* Description: T8
* System partition: generic:default
* Environment: builtin
* Stage directory: /home/user/Repositories/reframe/stage/generic/default/builtin/T8
* Node list:
* Job type: local (id=None)
* Dependencies (conceptual): ['T1']
* Dependencies (actual): [('T1', 'generic:default', 'builtin')]
* Maintainers: []
* Failing phase: setup
* Rerun with '-n T8 -p builtin --system generic:default -r'

(continues on next page)

106 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

* Reason: exception
Traceback (most recent call last):
File "/home/user/Repositories/reframe/reframe/frontend/executors/__init__.py", line␣

→˓291, in _safe_call
return fn(*args, **kwargs)

File "/home/user/Repositories/reframe/reframe/core/hooks.py", line 82, in _fn
getattr(obj, h.__name__)()

File "/home/user/Repositories/reframe/reframe/core/hooks.py", line 32, in _fn
func(*args, **kwargs)

File "/home/user/Repositories/reframe/unittests/resources/checks_unlisted/deps_complex.
→˓py", line 180, in fail

raise Exception
Exception

--
FAILURE INFO for T9
* Expanded name: T9
* Description: T9
* System partition: generic:default
* Environment: builtin
* Stage directory: None
* Node list:
* Job type: local (id=None)
* Dependencies (conceptual): ['T8']
* Dependencies (actual): [('T8', 'generic:default', 'builtin')]
* Maintainers: []
* Failing phase: startup
* Rerun with '-n T9 -p builtin --system generic:default -r'
* Reason: task dependency error: dependencies failed

--
FAILURE INFO for T2
* Expanded name: T2
* Description: T2
* System partition: generic:default
* Environment: builtin
* Stage directory: /home/user/Repositories/reframe/stage/generic/default/builtin/T2
* Node list: tresa.localNone
* Job type: local (id=49427)
* Dependencies (conceptual): ['T6']
* Dependencies (actual): [('T6', 'generic:default', 'builtin')]
* Maintainers: []
* Failing phase: sanity
* Rerun with '-n T2 -p builtin --system generic:default -r'
* Reason: sanity error: 31 != 30

--
FAILURE INFO for T7
* Expanded name: T7
* Description: T7
* System partition: generic:default
* Environment: builtin
* Stage directory: None
* Node list:

(continues on next page)

2.2. ReFrame Tutorials 107

ReFrame Documentation, Release 3.10.0

(continued from previous page)

* Job type: local (id=None)
* Dependencies (conceptual): ['T2']
* Dependencies (actual): [('T2', 'generic:default', 'builtin')]
* Maintainers: []
* Failing phase: startup
* Rerun with '-n T7 -p builtin --system generic:default -r'
* Reason: task dependency error: dependencies failed

--
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-92y3fr5s.log'

You can restore the run session and run only the failed test cases as follows:

./bin/reframe --restore-session --failed -r

Of course, as expected, the run will fail again, since these tests were designed to fail.

Instead of running the failed test cases of a previous run, you might simply want to rerun a specific test. This has little
meaning if you don’t use dependencies, because it would be equivalent to running it separately using the -n option.
However, if a test was part of a dependency chain, using --restore-session will not rerun its dependencies, but it
will rather restore them. This is useful in cases where the test that we want to rerun depends on time-consuming tests.
There is a little tweak, though, for this to work: you need to have run with --keep-stage-files in order to keep the
stage directory even for tests that have passed. This is due to two reasons: (a) if a test needs resources from its parents,
it will look into their stage directories and (b) ReFrame stores the state of a finished test case inside its stage directory
and it will need that state information in order to restore a test case.

Let’s try to rerun the T6 test from the previous test dependency chain:

./bin/reframe -c unittests/resources/checks_unlisted/deps_complex.py --keep-stage-files -
→˓r

./bin/reframe --restore-session --keep-stage-files -n T6 -r

Notice how only the T6 test was rerun and none of its dependencies, since they were simply restored:

[ReFrame Setup]
version: 3.10.0-dev.3+149af549
command: './bin/reframe --restore-session --keep-stage-files -n T6 -r'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: '<builtin>'
check search path: '/home/user/Repositories/reframe/unittests/resources/checks_

→˓unlisted/deps_complex.py'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

[==========] Running 1 check(s)
[==========] Started on Sat Jan 22 23:44:25 2022

[----------] start processing checks
[RUN] T6 @generic:default+builtin
[OK] (1/1) T6 @generic:default+builtin [compile: 0.017s run: 0.286s total: 0.
→˓330s]

(continues on next page)

108 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

[----------] all spawned checks have finished

[PASSED] Ran 1/1 test case(s) from 1 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 23:44:25 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-mug0a4cb.log'

If we tried to run T6 without restoring the session, we would have to rerun also the whole dependency chain, i.e., also
T5, T1, T4 and T0.

./bin/reframe -c unittests/resources/checks_unlisted/deps_complex.py -n T6 -r

[ReFrame Setup]
version: 3.10.0-dev.3+149af549
command: './bin/reframe -c unittests/resources/checks_unlisted/deps_complex.

→˓py -n T6 -r'
launched by: user@host
working directory: '/home/user/Repositories/reframe'
settings file: '<builtin>'
check search path: '/home/user/Repositories/reframe/unittests/resources/checks_

→˓unlisted/deps_complex.py'
stage directory: '/home/user/Repositories/reframe/stage'
output directory: '/home/user/Repositories/reframe/output'

[==========] Running 5 check(s)
[==========] Started on Sat Jan 22 23:44:25 2022

[----------] start processing checks
[RUN] T0 @generic:default+builtin
[OK] (1/5) T0 @generic:default+builtin [compile: 0.017s run: 0.289s total: 0.
→˓331s]
[RUN] T4 @generic:default+builtin
[OK] (2/5) T4 @generic:default+builtin [compile: 0.018s run: 0.330s total: 0.
→˓374s]
[RUN] T5 @generic:default+builtin
[OK] (3/5) T5 @generic:default+builtin [compile: 0.018s run: 0.384s total: 0.
→˓442s]
[RUN] T1 @generic:default+builtin
[OK] (4/5) T1 @generic:default+builtin [compile: 0.018s run: 0.452s total: 0.
→˓494s]
[RUN] T6 @generic:default+builtin
[OK] (5/5) T6 @generic:default+builtin [compile: 0.018s run: 0.525s total: 0.
→˓582s]
[----------] all spawned checks have finished

[PASSED] Ran 5/5 test case(s) from 5 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Jan 22 23:44:28 2022
Run report saved in '/home/user/.reframe/reports/run-report.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-ktylyaqk.log'

2.2. ReFrame Tutorials 109

ReFrame Documentation, Release 3.10.0

Integrating into a CI pipeline

New in version 3.4.1.

Instead of running your tests, you can ask ReFrame to generate a child pipeline specification for the Gitlab CI. This will
spawn a CI job for each ReFrame test respecting test dependencies. You could run your tests in a single job of your
Gitlab pipeline, but you would not take advantage of the parallelism across different CI jobs. Having a separate CI job
per test makes it also easier to spot the failing tests.

As soon as you have set up a runner for your repository, it is fairly straightforward to use ReFrame to automatically
generate the necessary CI steps. The following is an example of .gitlab-ci.yml file that does exactly that:

stages:
- generate
- test

generate-pipeline:
stage: generate
script:

- reframe --ci-generate=${CI_PROJECT_DIR}/pipeline.yml -c ${CI_PROJECT_DIR}/path/to/
→˓tests
artifacts:
paths:
- ${CI_PROJECT_DIR}/pipeline.yml

test-jobs:
stage: test
trigger:
include:
- artifact: pipeline.yml
job: generate-pipeline

strategy: depend

It defines two stages. The first one, called generate, will call ReFrame to generate the pipeline specification for the
desired tests. All the usual test selection options can be used to select specific tests. ReFrame will process them as
usual, but instead of running the selected tests, it will generate the correct steps for running each test individually as
a Gitlab job. We then pass the generated CI pipeline file to second phase as an artifact and we are done! If image
keyword is defined in .gitlab-ci.yml, the emitted pipeline will use the same image as the one defined in the parent
pipeline. Besides, each job in the generated pipeline will output a separate junit report which can be used to create
GitLab badges.

The following figure shows one part of the automatically generated pipeline for the test graph depicted above.

Note: The ReFrame executable must be available in the Gitlab runner that will run the CI jobs.

110 Chapter 2. Publications

https://docs.gitlab.com/ee/ci/parent_child_pipelines.html
https://docs.gitlab.com/ee/ci/quick_start/
manpage.html#test-filtering

ReFrame Documentation, Release 3.10.0

Fig. 5: Snapshot of a Gitlab pipeline generated automatically by ReFrame.

2.2.7 Online Tutorials

• Tutorial at 6th EasyBuild User Meeting 2021 [YouTube]

2.3 Configuring ReFrame for Your Site

ReFrame comes pre-configured with a minimal generic configuration that will allow you to run ReFrame on any system.
This will allow you to run simple local tests using the default compiler of the system. Of course, ReFrame is much
more powerful than that. This section will guide you through configuring ReFrame for your site.

If you started using ReFrame from version 3.0, you can keep on reading this section, otherwise you are advised to have
a look first at the Migrating to ReFrame 3 page.

ReFrame’s configuration file can be either a JSON file or a Python file storing the site configuration in a JSON-formatted
string. The latter format is useful in cases that you want to generate configuration parameters on-the-fly, since ReFrame
will import that Python file and the load the resulting configuration. In the following we will use a Python-based
configuration file also for historical reasons, since it was the only way to configure ReFrame in versions prior to 3.0.

2.3.1 Locating the Configuration File

ReFrame looks for a configuration file in the following locations in that order:

1. ${HOME}/.reframe/settings.{py,json}

2. ${RFM_INSTALL_PREFIX}/settings.{py,json}

3. /etc/reframe.d/settings.{py,json}

If both settings.py and settings.json are found, the Python file is preferred. The RFM_INSTALL_PREFIX variable
refers to the installation directory of ReFrame or the top-level source directory if you are running ReFrame from source.
Users have no control over this variable. It is always set by the framework upon startup.

If no configuration file is found in any of the predefined locations, ReFrame will fall back to a generic configuration
that allows it to run on any system. You can find this generic configuration file here. Users may not modify this file.

There are two ways to provide a custom configuration file to ReFrame:

2.3. Configuring ReFrame for Your Site 111

https://youtube.com/playlist?list=PLhnGtSmEGEQjySVEPTUSLpewpOWwX5mjb
https://github.com/eth-cscs/reframe/blob/master/reframe/core/settings.py

ReFrame Documentation, Release 3.10.0

1. Pass it through the -C or --config-file option.

2. Specify it using the RFM_CONFIG_FILE environment variable.

Command line options take always precedence over their respective environment variables.

2.3.2 Anatomy of the Configuration File

The whole configuration of ReFrame is a single JSON object whose properties are responsible for configuring the basic
aspects of the framework. We’ll refer to these top-level properties as sections. These sections contain other objects
which further define in detail the framework’s behavior. If you are using a Python file to configure ReFrame, this big
JSON configuration object is stored in a special variable called site_configuration.

We will explore the basic configuration of ReFrame by looking into the configuration file of the tutorials, which permits
ReFrame to run both on the Piz Daint supercomputer and a local computer. For the complete listing and description of
all configuration options, you should refer to the Configuration Reference.

site_configuration = {
rfmdocstart: systems
'systems': [

{
'name': 'catalina',
'descr': 'My Mac',
'hostnames': ['tresa'],
'modules_system': 'nomod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['gnu', 'clang'],

}
]

},
{

'name': 'tutorials-docker',
'descr': 'Container for running the build system tutorials',
'hostnames': ['docker'],
'modules_system': 'lmod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin'],

}
]

},
{

'name': 'daint',
'descr': 'Piz Daint Supercomputer',
'hostnames': ['daint'],
'modules_system': 'tmod32',
'partitions': [

(continues on next page)

112 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

{
'name': 'login',
'descr': 'Login nodes',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin', 'gnu', 'intel', 'pgi', 'cray'],

},
rfmdocstart: all-partitions
rfmdocstart: gpu-partition
{

'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
],
'container_platforms': [

{
'type': 'Sarus',
'modules': ['sarus']

},
{

'type': 'Singularity',
'modules': ['singularity']

}
]

},
rfmdocend: gpu-partition
{

'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
]

}
rfmdocend: all-partitions

]

(continues on next page)

2.3. Configuring ReFrame for Your Site 113

ReFrame Documentation, Release 3.10.0

(continued from previous page)

},
{

'name': 'generic',
'descr': 'Generic example system',
'hostnames': ['.*'],
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin']

}
]

},
],
rfmdocend: systems
rfmdocstart: environments
'environments': [

{
'name': 'gnu',
'cc': 'gcc-9',
'cxx': 'g++-9',
'ftn': 'gfortran-9'

},
{

'name': 'gnu',
'modules': ['PrgEnv-gnu'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'cray',
'modules': ['PrgEnv-cray'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'intel',
'modules': ['PrgEnv-intel'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'pgi',
'modules': ['PrgEnv-pgi'],
'cc': 'cc',

(continues on next page)

114 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'clang',
'cc': 'clang',
'cxx': 'clang++',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': '',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

}
],
rfmdocend: environments
rfmdocstart: logging
'logging': [

{
'level': 'debug',
'handlers': [

{
'type': 'stream',
'name': 'stdout',
'level': 'info',
'format': '%(message)s'

},
{

'type': 'file',
'level': 'debug',
'format': '[%(asctime)s] %(levelname)s: %(check_info)s: %(message)s',

→˓ # noqa: E501
'append': False

}
],
'handlers_perflog': [

{
'type': 'filelog',
'prefix': '%(check_system)s/%(check_partition)s',
'level': 'info',
'format': (

'%(check_job_completion_time)s|reframe %(version)s|'
'%(check_info)s|jobid=%(check_jobid)s|'

(continues on next page)

2.3. Configuring ReFrame for Your Site 115

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'%(check_perf_var)s=%(check_perf_value)s|'
'ref=%(check_perf_ref)s '
'(l=%(check_perf_lower_thres)s, '
'u=%(check_perf_upper_thres)s)|'
'%(check_perf_unit)s'

),
'append': True

}
]

}
],
rfmdocend: logging

}

There are three required sections that each configuration file must provide: systems, environments and logging.
We will first cover these and then move on to the optional ones.

Systems Configuration

ReFrame allows you to configure multiple systems in the same configuration file. Each system is a different object
inside the systems section. In our example we define three systems, a Mac laptop, Piz Daint and a generic fallback
system:

'systems': [
{

'name': 'catalina',
'descr': 'My Mac',
'hostnames': ['tresa'],
'modules_system': 'nomod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['gnu', 'clang'],

}
]

},
{

'name': 'tutorials-docker',
'descr': 'Container for running the build system tutorials',
'hostnames': ['docker'],
'modules_system': 'lmod',
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin'],

}
]

(continues on next page)

116 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

},
{

'name': 'daint',
'descr': 'Piz Daint Supercomputer',
'hostnames': ['daint'],
'modules_system': 'tmod32',
'partitions': [

{
'name': 'login',
'descr': 'Login nodes',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin', 'gnu', 'intel', 'pgi', 'cray'],

},
rfmdocstart: all-partitions
rfmdocstart: gpu-partition
{

'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{
'name': 'memory',
'options': ['--mem={size}']

}
],
'container_platforms': [

{
'type': 'Sarus',
'modules': ['sarus']

},
{

'type': 'Singularity',
'modules': ['singularity']

}
]

},
rfmdocend: gpu-partition
{

'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,
'resources': [

{

(continues on next page)

2.3. Configuring ReFrame for Your Site 117

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'name': 'memory',
'options': ['--mem={size}']

}
]

}
rfmdocend: all-partitions

]
},
{

'name': 'generic',
'descr': 'Generic example system',
'hostnames': ['.*'],
'partitions': [

{
'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin']

}
]

},
],

Each system is associated with a set of properties, which in this case are the following:

• name: The name of the system. This should be an alphanumeric string (dashes - are allowed) and it will be used
to refer to this system in other contexts.

• descr: A detailed description of the system.

• hostnames: This is a list of hostname patterns following the Python Regular Expression Syntax, which will be
used by ReFrame when it tries to automatically select a configuration entry for the current system.

• modules_system: This refers to the modules management backend which should be used for loading environ-
ment modules on this system. Multiple backends are supported, as well as the special nomod backend which
implements the different modules system operations as no-ops. For the complete list of the supported modules
systems, see here.

• partitions: The list of partitions that are defined for this system. Each partition is defined as a separate object.
We devote the rest of this section in system partitions, since they are an essential part of ReFrame’s configuration.

A system partition in ReFrame is not bound to a real scheduler partition. It is a virtual partition or separation of the
system. In the example shown here, we define three partitions that none of them corresponds to a scheduler partition.
The login partition refers to the login nodes of the system, whereas the gpu and mc partitions refer to two different
set of nodes in the same cluster that are effectively separated using Slurm constraints. Let’s pick the gpu partition and
look into it in more detail:

{
'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'pgi', 'cray'],
'max_jobs': 100,

(continues on next page)

118 Chapter 2. Publications

https://docs.python.org/3/library/re.html#regular-expression-syntax
config_reference.html#.systems{[}{]}.modules_system

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'resources': [
{

'name': 'memory',
'options': ['--mem={size}']

}
],
'container_platforms': [

{
'type': 'Sarus',
'modules': ['sarus']

},
{

'type': 'Singularity',
'modules': ['singularity']

}
]

},

The basic properties of a partition are the following:

• name: The name of the partition. This should be an alphanumeric string (dashes - are allowed) and it will be
used to refer to this partition in other contexts.

• descr: A detailed description of the system partition.

• scheduler: The workload manager (job scheduler) used in this partition for launching parallel jobs. In this
particular example, the Slurm scheduler is used. For a complete list of the supported job schedulers, see here.

• launcher: The parallel job launcher used in this partition. In this case, the srun command will be used. For a
complete list of the supported parallel job launchers, see here.

• access: A list of scheduler options that will be passed to the generated job script for gaining access to that
logical partition. Notice how in this case, the nodes are selected through a constraint and not an actual scheduler
partition.

• environs: The list of environments that ReFrame will use to run regression tests on this partition. These are
just symbolic names that refer to environments defined in the environments section described below.

• container_platforms: A set of supported container platforms in this partition. Each container platform is an
object with a name and list of environment modules to load, in order to enable this platform. For a complete list
of the supported container platforms, see here.

• max_jobs: The maximum number of concurrent regression tests that may be active (i.e., not completed) on this
partition. This option is relevant only when ReFrame executes with the asynchronous execution policy.

• resources: This is a set of optional additional scheduler resources that the tests can access transparently. For
more information, please have a look here.

2.3. Configuring ReFrame for Your Site 119

https://slurm.schedmd.com/
config_reference.html#.systems{[}{]}.partitions{[}{]}.scheduler
config_reference.html#.systems{[}{]}.partitions{[}{]}.launcher
config_reference.html#.systems{[}{]}.partitions{[}{]}.container_platforms{[}{]}.type
pipeline.html#execution-policies
config_reference.html#custom-job-scheduler-resources

ReFrame Documentation, Release 3.10.0

Environments Configuration

We have seen already environments to be referred to by the environs property of a partition. An environment in
ReFrame is simply a collection of environment modules, environment variables and compiler and compiler flags defi-
nitions. None of these attributes is required. An environment can simply by empty, in which case it refers to the actual
environment that ReFrame runs in. In fact, this is what the generic fallback configuration of ReFrame does.

Environments in ReFrame are configured under the environments section of the documentation. For each envi-
ronment referenced inside a partition, a definition of it must be present in this section. In our example, we define
environments for all the basic compilers as well as a default built-in one, which is used with the generic system config-
uration. In certain contexts, it is useful to see a ReFrame environment as a wrapper of a programming toolchain (MPI
+ compiler combination):

'environments': [
{

'name': 'gnu',
'cc': 'gcc-9',
'cxx': 'g++-9',
'ftn': 'gfortran-9'

},
{

'name': 'gnu',
'modules': ['PrgEnv-gnu'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'cray',
'modules': ['PrgEnv-cray'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'intel',
'modules': ['PrgEnv-intel'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'pgi',
'modules': ['PrgEnv-pgi'],
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

},
{

'name': 'clang',
(continues on next page)

120 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'cc': 'clang',
'cxx': 'clang++',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': '',
'ftn': ''

},
{

'name': 'builtin',
'cc': 'cc',
'cxx': 'CC',
'ftn': 'ftn',
'target_systems': ['daint']

}
],

Each environment is associated with a name. This name will be used to reference this environment in different con-
texts, as for example in the environs property of the system partitions. A programming environment in ReFrame is
essentially a collection of environment modules, environment variables and compiler definitions.

An important feature in ReFrame’s configuration, is that you can define section objects differently for different systems
or system partitions by using the target_systems property. Notice, for example, how the gnu environment is defined
differently for the system daint compared to the generic definition. The target_systems property is a list of systems
or system/partition combinations where this definition of the environment is in effect. This means that gnu will be
defined this way only for regression tests running on daint. For all the other systems, it will be defined using the first
definition.

Logging configuration

ReFrame has a powerful logging mechanism that gives fine grained control over what information is being logged,
where it is being logged and how this information is formatted. Additionally, it allows for logging performance data
from performance tests into different channels. Let’s see how logging is defined in our example configuration, which
also represents a typical one for logging:

'logging': [
{

'level': 'debug',
'handlers': [

{
'type': 'stream',
'name': 'stdout',
'level': 'info',
'format': '%(message)s'

},
{

'type': 'file',
'level': 'debug',
'format': '[%(asctime)s] %(levelname)s: %(check_info)s: %(message)s',

→˓ # noqa: E501
(continues on next page)

2.3. Configuring ReFrame for Your Site 121

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'append': False
}

],
'handlers_perflog': [

{
'type': 'filelog',
'prefix': '%(check_system)s/%(check_partition)s',
'level': 'info',
'format': (

'%(check_job_completion_time)s|reframe %(version)s|'
'%(check_info)s|jobid=%(check_jobid)s|'
'%(check_perf_var)s=%(check_perf_value)s|'
'ref=%(check_perf_ref)s '
'(l=%(check_perf_lower_thres)s, '
'u=%(check_perf_upper_thres)s)|'
'%(check_perf_unit)s'

),
'append': True

}
]

}
],

Logging is configured under the logging section of the configuration, which is a list of logger objects. Unless you want
to configure logging differently for different systems, a single logger object is enough. Each logger object is associated
with a logging level stored in the level property and has a set of logging handlers that are actually responsible for
handling the actual logging records. ReFrame’s output is performed through the logging mechanism, meaning that
if you don’t specify any logging handler, you will not get any output from ReFrame! The handlers property of the
logger object holds the actual handlers. Notice that you can use multiple handlers at the same time, which enables you
to feed ReFrame’s output to different sinks and at different verbosity levels. All handler objects share a set of common
properties. These are the following:

• type: This is the type of the handler, which determines its functionality. Depending on the handler type, handler-
specific properties may be allowed or required. For a complete list of available log handler types, see here.

• level: The cut-off level for messages reaching this handler. Any message with a lower level number will be
filtered out.

• format: A format string for formatting the emitted log record. ReFrame uses the format specifiers from Python
Logging, but also defines its owns specifiers.

• datefmt: A time format string for formatting timestamps. There are two log record fields that are considered
timestamps: (a) asctime and (b) check_job_completion_time. ReFrame follows the time formatting syntax
of Python’s time.strftime() with a small tweak allowing full RFC3339 compliance when formatting time zone
differences.

We will not go into the details of the individual handlers here. In this particular example we use three handlers of two
distinct types:

1. A file handler to print debug messages in the reframe.log file using a more extensive message format that
contains a timestamp, the level name etc.

2. A stream handler to print any informational messages (and warnings and errors) from ReFrame to the standard
output. This handles essentially the actual output of ReFrame.

3. A file handler to print the framework’s output in the reframe.out file.

122 Chapter 2. Publications

config_reference.html#.logging{[}{]}.level
config_reference.html#.logging{[}{]}.handlers{[}{]}.type
https://docs.python.org/3/library/logging.html?highlight=logging#logrecord-attributes
https://docs.python.org/3/library/logging.html?highlight=logging#logrecord-attributes
https://docs.python.org/3/library/time.html#time.strftime

ReFrame Documentation, Release 3.10.0

It might initially seem confusing the fact that there are two level properties: one at the logger level and one at the
handler level. Logging in ReFrame works hierarchically. When a message is logged, a log record is created, which
contains metadata about the message being logged (log level, timestamp, ReFrame runtime information etc.). This
log record first goes into ReFrame’s internal logger, where the record’s level is checked against the logger’s level (here
debug). If the log record’s level exceeds the log level threshold from the logger, it is forwarded to the logger’s handlers.
Then each handler filters the log record differently and takes care of formatting the log record’s message appropriately.
You can view logger’s log level as a general cut off. For example, if we have set it to warning, no debug or informational
messages would ever be printed.

Finally, there is a special set of handlers for handling performance log messages. Performance log messages are gen-
erated only for performance tests, i.e., tests defining the perf_variables or the perf_patterns attributes. The
performance log handlers are stored in the handlers_perflog property. The filelog handler used in this example
will create a file per test and per system/partition combination (./<system>/<partition>/<testname>.log) and
will append to it the obtained performance data every time a performance test is run. Notice how the message to be
logged is structured in the format property, such that it can be easily parsed from post processing tools. Apart from
file logging, ReFrame offers more advanced performance logging capabilities through Syslog and Graylog.

For a complete reference of logging configuration parameters, please refer to the Configuration Reference.

General configuration options

General configuration options of the framework go under the general section of the configuration file. This section is
optional and, in fact, we do not define it for our tutorial configuration file. However, there are several options that can
go into this section, but the reader is referred to the Configuration Reference for the complete list.

Other configuration options

There are finally two more optional configuration sections that are not discussed here:

1. The schedulers section holds configuration variables specific to the different scheduler backends and

2. the modes section defines different execution modes for the framework. Execution modes are discussed in the
How ReFrame Executes Tests page.

2.3.3 Picking a System Configuration

As discussed previously, ReFrame’s configuration file can store the configurations for multiple systems. When
launched, ReFrame will pick the first matching configuration and load it. This process is performed as follows: Re-
Frame first tries to obtain the hostname from /etc/xthostname, which provides the unqualified machine name in
Cray systems. If this cannot be found, the hostname will be obtained from the standard hostname command. Having
retrieved the hostname, ReFrame goes through all the systems in its configuration and tries to match the hostname
against any of the patterns defined in each system’s hostnames property. The detection process stops at the first match
found, and that system’s configuration is selected.

As soon as a system configuration is selected, all configuration objects that have a target_systems property are
resolved against the selected system, and any configuration object that is not applicable is dropped. So, internally,
ReFrame keeps an instantiation of the site configuration for the selected system only. To better understand this, let’s
assume that we have the following environments defined:

'environments': [
{

'name': 'cray',
'modules': ['cray']

},
(continues on next page)

2.3. Configuring ReFrame for Your Site 123

tutorial_basics.html#writing-a-performance-test

ReFrame Documentation, Release 3.10.0

(continued from previous page)

{
'name': 'gnu',
'modules': ['gnu']

},
{

'name': 'gnu',
'modules': ['gnu', 'openmpi'],
'cc': 'mpicc',
'cxx': 'mpicxx',
'ftn': 'mpif90',
'target_systems': ['foo']

}
],

If the selected system is foo, then ReFrame will use the second definition of gnu which is specific to the foo system.

You can override completely the system auto-selection process by specifying a system or system/partition combination
with the --system option, e.g., --system=daint or --system=daint:gpu.

2.3.4 Querying Configuration Options

ReFrame offers the powerful --show-config command-line option that allows you to query any configuration param-
eter of the framework and see how it is set for the selected system. Using no arguments or passing all to this option,
the whole configuration for the currently selected system will be printed in JSON format, which you can then pipe to
a JSON command line editor, such as jq, and either get a colored output or even generate a completely new ReFrame
configuration!

Passing specific configuration keys in this option, you can query specific parts of the configuration. Let’s see some
concrete examples:

• Query the current system’s partitions:

./bin/reframe -C tutorials/config/settings.py --system=daint --show-config=systems/
→˓0/partitions

[
{
"name": "login",
"descr": "Login nodes",
"scheduler": "local",
"launcher": "local",
"environs": [

"gnu",
"intel",
"pgi",
"cray"

],
"max_jobs": 10

},
{
"name": "gpu",
"descr": "Hybrid nodes",

(continues on next page)

124 Chapter 2. Publications

https://stedolan.github.io/jq/

ReFrame Documentation, Release 3.10.0

(continued from previous page)

"scheduler": "slurm",
"launcher": "srun",
"access": [
"-C gpu",
"-A csstaff"

],
"environs": [
"gnu",
"intel",
"pgi",
"cray"

],
"max_jobs": 100

},
{
"name": "mc",
"descr": "Multicore nodes",
"scheduler": "slurm",
"launcher": "srun",
"access": [
"-C mc",
"-A csstaff"

],
"environs": [
"gnu",
"intel",
"pgi",
"cray"

],
"max_jobs": 100

}
]

Check how the output changes if we explicitly set system to daint:login:

./bin/reframe -C tutorials/config/settings.py --system=daint:login --show-
→˓config=systems/0/partitions

[
{
"name": "login",
"descr": "Login nodes",
"scheduler": "local",
"launcher": "local",
"environs": [

"gnu",
"intel",
"pgi",
"cray"

],
"max_jobs": 10

}
(continues on next page)

2.3. Configuring ReFrame for Your Site 125

ReFrame Documentation, Release 3.10.0

(continued from previous page)

]

ReFrame will internally represent system daint as having a single partition only. Notice also how you can use
indexes to objects elements inside a list.

• Query an environment configuration:

./bin/reframe -C tutorials/config/settings.py --system=daint --show-
→˓config=environments/@gnu

{
"name": "gnu",
"modules": [
"PrgEnv-gnu"

],
"cc": "cc",
"cxx": "CC",
"ftn": "ftn",
"target_systems": [
"daint"

]
}

If an object has a name property you can address it by name using the @name syntax, instead of its index.

• Query an environment’s compiler:

./bin/reframe -C tutorials/config/settings.py --system=daint --show-
→˓config=environments/@gnu/cxx

"CC"

If you explicitly query a configuration value which is not defined in the configuration file, ReFrame will print its
default value.

2.3.5 Auto-detecting processor information

New in version 3.7.0.

ReFrame is able to detect the processor topology of both local and remote partitions automatically. The processor and
device information are made available to the tests through the corresponding attributes of the current_partition
allowing a test to modify its behavior accordingly. Currently, ReFrame supports auto-detection of the local or remote
processor information only. It does not support auto-detection of devices, in which cases users should explicitly specify
this information using the devices configuration option. The processor information auto-detection works as follows:

1. If the processor configuration is option is defined, then no auto-detection is attempted.

2. If the processor configuration option is not defined, ReFrame will look for a processor configuration meta-
data file in ~/.reframe/topology/{system}-{part}/processor.json. If the file is found, the topology
information is loaded from there. These files are generated automatically by ReFrame from previous runs.

3. If the corresponding metadata files are not found, the processor information will be auto-detected. If the system
partition is local (i.e., local scheduler + local launcher), the processor information is auto-detected uncondi-
tionally and stored in the corresponding metadata file for this partition. If the partition is remote, ReFrame will

126 Chapter 2. Publications

config_reference.html#.systems{[}{]}.partitions{[}{]}.devices
config_reference.html#.systems{[}{]}.partitions{[}{]}.processor
config_reference.html#.systems{[}{]}.partitions{[}{]}.processor

ReFrame Documentation, Release 3.10.0

not try to auto-detect it unless the RFM_REMOTE_DETECT or the detect_remote_system_topology configu-
ration option is set. In that case, the steps to auto-detect the remote processor information are the following:

a. ReFrame creates a fresh clone of itself in a temporary directory created under . by default. This temporary
directory prefix can be changed by setting the RFM_REMOTE_WORKDIR environment variable.

b. ReFrame changes to that directory and launches a job that will first bootstrap the fresh clone and
then run that clone with {launcher} ./bin/reframe --detect-host-topology=topo.json. The
--detect-host-topology option causes ReFrame to detect the topology of the current host, which in
this case would be the remote compute nodes.

In case of errors during auto-detection, ReFrame will simply issue a warning and continue.

2.4 Advanced Topics

2.4.1 How ReFrame Executes Tests

A ReFrame test will be normally tried for different programming environments and different partitions within the same
ReFrame run. These can be defined in the test’s class body, in a post-init hook or in its __init__() method, but it is
not this original test object that is scheduled for execution. The following figure explains in more detail the process:

Fig. 6: How ReFrame loads and schedules tests for execution.

When ReFrame loads a test from the disk it unconditionally constructs it executing its __init__() method. The
practical implication of this is that your test will be instantiated even if it will not run on the current system. After
all the tests are loaded, they are filtered based on the current system and any other criteria (such as programming
environment, test attributes etc.) specified by the user (see Test Filtering for more details). After the tests are filtered,
ReFrame creates the actual test cases to be run. A test case is essentially a tuple consisting of the test, the system
partition and the programming environment to try. The test that goes into a test case is essentially a clone of the
original test that was instantiated upon loading. This ensures that the test case’s state is not shared and may not be
reused in any case. Finally, the generated test cases are passed to a runner that is responsible for scheduling them for
execution based on the selected execution policy.

The Regression Test Pipeline

Each ReFrame test case goes through a pipeline with clearly defined stages. ReFrame tests can customize their operation
as they execute by attaching hooks to the pipeline stages. The following figure shows the different pipeline stages.

Fig. 7: The regression test pipeline.

All tests will go through every stage one after the other. However, some types of tests implement some stages as no-
ops, whereas the sanity or performance check phases may be skipped on demand (see --skip-sanity-check and
--skip-performance-check options). In the following we describe in more detail what happens in every stage.

2.4. Advanced Topics 127

config_reference.html#.general{[}{]}.detect_remote_system_topology
manpage.html#test-filtering

ReFrame Documentation, Release 3.10.0

The Setup Phase

During this phase the test will be set up for the currently selected system partition and programming environment.
The current_partition and current_environ test attributes will be set and the paths associated to this test case
(stage, output and performance log directories) will be created. A job descriptor will also be created for the test case
containing information about the job to be submitted later in the pipeline.

The Build Phase

During this phase a job script for the compilation of the test will be created and it will be submitted for execution. The
source code associated with the test is compiled using the current programming environment. If the test is “run-only,”
this phase is a no-op.

Before building the test, all the resources associated with it are copied to the test case’s stage directory. ReFrame then
temporarily switches to that directory and builds the test.

The Run Phase

During this phase a job script associated with the test case will be created and it will be submitted for execution. If the
test is “run-only,” its resources will be first copied to the test case’s stage directory. ReFrame will temporarily switch to
that directory and spawn the test’s job from there. This phase is executed asynchronously (either a batch job is spawned
or a local process is started) and it is up to the selected execution policy to block or not until the associated job finishes.

The Sanity Phase

During this phase, the sanity of the test’s output is checked. ReFrame makes no assumption as of what a successful
test is; it does not even look into its exit code. This is entirely up to the test to define. ReFrame provides a flexible
and expressive way for specifying complex patterns and operations to be performed on the test’s output in order to
determine the outcome of the test.

The Performance Phase

During this phase, the performance metrics reported by the test (if it is performance test) are collected, logged and
compared to their reference values. The mechanism for extracting performance metrics from the test’s output is the
same used by the sanity checking phase for extracting patterns from the test’s output.

The Cleanup Phase

During this final stage of the pipeline, the test’s resources are cleaned up. More specifically, if the test has finished
successfully, all interesting test files (build/job scripts, build/job script output and any user-specified files) are copied
to ReFrame’s output directory and the stage directory of the test is deleted.

Note: This phase might be deferred in case a test has dependents (see Cleaning up stage files for more details).

128 Chapter 2. Publications

regression_test_api.html#reframe.core.pipeline.RegressionTest.job
regression_test_api.html#reframe.core.pipeline.RunOnlyRegressionTest
regression_test_api.html#reframe.core.pipeline.RegressionTest.sourcesdir
regression_test_api.html#reframe.core.pipeline.RunOnlyRegressionTest
regression_test_api.html#reframe.core.pipeline.RegressionTest.sourcesdir

ReFrame Documentation, Release 3.10.0

Execution Policies

All regression tests in ReFrame will execute the pipeline stages described above. However, how exactly this pipeline
will be executed is responsibility of the test execution policy. There are two execution policies in ReFrame: the serial
and the asynchronous execution policy.

In the serial execution policy, a new test gets into the pipeline after the previous one has exited. As the figure below
shows, this can lead to long idling times in the build and run phases, since the execution blocks until the associated test
job finishes.

Fig. 8: The serial execution policy.

In the asynchronous execution policy, multiple tests can be simultaneously on-the-fly. When a test enters the build or
run phase, ReFrame does not block, but continues by picking the next test case to run. This continues until no more test
cases are left for execution or until a maximum concurrency limit is reached. At the end, ReFrame enters a busy-wait
loop monitoring the spawned test cases. As soon as test case finishes, it resumes its pipeline and runs it to completion.
The following figure shows how the asynchronous execution policy works.

Fig. 9: The asynchronous execution policy.

ReFrame tries to keep concurrency high by maintaining as many test cases as possible simultaneously active. When
the concurrency limit is reached, ReFrame will first try to free up execution slots by checking if any of the spawned
jobs have finished, and it will fill that slots first before throttling execution.

ReFrame uses polling to check the status of the spawned jobs, but it does so in a dynamic way, in order to ensure both
responsiveness and avoid overloading the system job scheduler with excessive polling.

ReFrame’s runtime internally encapsulates each test in a task, which is scheduled for execution. This task can be in
different states and is responsible for executing the test’s pipeline. The following state diagram shows how test tasks
are scheduled, as well as when the various test pipeline stages are executed.

Fig. 10: State diagram of the execution of test tasks with annotations for the execution of the actual pipeline stages.

There are a number of things to notice in this diagram:

• If a test encounters an exception it is marked as a failure. Even normal failures, such as dependency failures and
sanity or performance failures are also exceptions raised explicitly by the framework during a pipeline stage.

• The pipeline stages that are executed asynchronously, namely the compile and run stages, are split in sub-stages
for submitting the corresponding job and for checking or waiting its completion. This is why in ReFrame error
messages you may see compile_complete or run_complete being reported as the failing stage.

• The execution of a test may be stalled if there are not enough execution slots available for submitting compile or
run jobs on the target partition.

• Although a test is officially marked as “completed” only when its cleanup phase is executed, it is reported as
success or failure as soon as it is “retired,” i.e., as soon as its performance stage has passed successfully.

• For successful tests, the cleanup stage is executed after the test is reported as a “success,” since a test may not
clean up its resources until all of its immediate dependencies finish also successfully. If the cleanup phase fails,
the test is not marked as a failure, but this condition is marked as an error.

Changed in version 3.10.0: The compile stage is now also executed asynchronously.

2.4. Advanced Topics 129

config_reference.html#.systems{[}{]}.partitions{[}{]}.max_jobs

ReFrame Documentation, Release 3.10.0

Where each pipeline stage is executed?

There are two executions contexts where a pipeline stage can be executed: the ReFrame execution context and the
partition execution context. The ReFrame execution context is where ReFrame executes. This is always the local
host. The partition execution context can either be local or remote depending on how the partition is configured. The
following table show in which context each pipeline stage executes:

Pipeline
Stage

Execution Context

Setup ReFrame
Compile ReFrame if build_locally or local is True or if --force-local is passed, partition other-

wise.
Run ReFrame if local is True or if --force-local is passed, partition otherwise.
Sanity ReFrame
Performance ReFrame
Cleanup ReFrame

It should be noted that even if the partition execution context is local, it is treated differently from the ReFrame execution
context. For example, a test executing in the ReFrame context will not respect the max_jobs partition configuration
option, even if the partition is local. To control the concurrency of the ReFrame execution context, users should set the
systems[].max_local_jobs option instead.

Changed in version 3.10.0: Execution contexts were formalized.

Timing the Test Pipeline

New in version 3.0.

ReFrame keeps track of the time a test spends in every pipeline stage and reports that after each test finishes. However, it
does so from its own perspective and not from that of the scheduler backend used. This has some practical implications:
As soon as a test enters the “run” phase, ReFrame’s timer for that phase starts ticking regardless if the associated job is
pending. Similarly, the “run” phase ends as soon as ReFrame realizes it. This will happen after the associated job has
finished. For this reason, the time spent in the pipeline’s “run” phase should not be interpreted as the actual runtime of
the test, especially if a non-local scheduler backend is used.

Finally, the execution time of the “cleanup” phase is not reported when a test finishes, since it may be deferred in case
that there exist tests that depend on that one. See How Test Dependencies Work In ReFrame for more information on
how ReFrame treats tests with dependencies.

2.4.2 How Test Dependencies Work In ReFrame

Dependencies in ReFrame are defined at the test level using the depends_on() function, but are projected to the test
cases space. We will see the rules of that projection in a while. The dependency graph construction and the subsequent
dependency analysis happen also at the level of the test cases.

Let’s assume that test T1 depends on T0. This can be expressed inside T1 using the depends_on() method:

@rfm.simple_test
class T0(rfm.RegressionTest):

...
valid_systems = ['P0', 'P1']
valid_prog_environs = ['E0', 'E1']

(continues on next page)

130 Chapter 2. Publications

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
pipeline.html
pipeline.html

ReFrame Documentation, Release 3.10.0

(continued from previous page)

@rfm.simple_test
class T1(rfm.RegressionTest):

...
valid_systems = ['P0', 'P1']
valid_prog_environs = ['E0', 'E1']

def __init__(self):
self.depends_on('T0')

Conceptually, this dependency can be viewed at the test level as follows:

Fig. 11: Simple test dependency presented conceptually.

For most of the cases, this is sufficient to reason about test dependencies. In reality, as mentioned above, dependencies
are handled at the level of test cases. If not specified differently, test cases on different partitions or programming
environments are independent. This is the default behavior of the depends_on() function. The following image
shows the actual test case dependencies of the two tests above:

Fig. 12: Test case dependencies partitioned by case (default).

This means that test cases of T1 may start executing before all test cases of T0 have finished. You can impose a stricter
dependency between tests, such that T1 does not start execution unless all test cases of T0 have finished. You can
achieve this as follows:

import reframe.utility.udeps as udeps

@rfm.simple_test
class T1(rfm.RegressionTest):

def __init__(self):
...
self.depends_on('T0', how=udeps.fully)

This will create a fully connected graph between the test cases of the two tests as it is shown in the following figure:

Fig. 13: Fully dependent test cases.

There are more options that the test case subgraph can be split than the two extremes we presented so far. The following
figures show the different splittings.

2.4. Advanced Topics 131

ReFrame Documentation, Release 3.10.0

Split by partition

The test cases are split in fully connected components per partition. Test cases from different partitions are independent.

Fig. 14: Test case dependencies partitioned by partition.

Split by environment

The test cases are split in fully connected components per environment. Test cases from different environments are
independent.

Fig. 15: Test case dependencies partitioned by environment.

Split by exclusive partition

The test cases are split in fully connected components that do not contain the same partition. Test cases from the same
partition are independent.

Fig. 16: Test case dependencies partitioned by exclusive partition.

Split by exclusive environment

The test cases are split in fully connected components that do not contain the same environment. Test cases from the
same environment are independent.

Split by exclusive case

The test cases are split in fully connected components that do not contain the same environment and the same partition.
Test cases from the same environment and the same partition are independent.

Custom splits

Users may define custom dependency patterns by supplying their own how function. The how argument accepts a
callable which takes as arguments the source and destination of a possible edge in the test case subgraph. If the
callable returns True, then ReFrame will place an edge (i.e., a dependency) otherwise not. The following code will
create dependencies only if the source partition is P0 and the destination environment is E1:

def myway(src, dst):
psrc, esrc = src
pdst, edst = dst
return psrc == 'P0' and edst == 'E1'

@rfm.simple_test
class T1(rfm.RegressionTest):

(continues on next page)

132 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Fig. 17: Test case dependencies partitioned by exclusive environment.

Fig. 18: Test case dependencies partitioned by exclusive case.

(continued from previous page)

def __init__(self):
...
self.depends_on('T0', how=myway)

This corresponds to the following test case dependency subgraph:

Fig. 19: Custom test case dependencies.

Notice how all the rest test cases are completely independent.

Cyclic dependencies

Obviously, cyclic dependencies between test cases are not allowed. Cyclic dependencies between tests are not allowed
either, even if the test case dependency graph is acyclic. For example, the following dependency set up is invalid:

The test case dependencies here, clearly, do not form a cycle, but the edge from (T0, P0, E0) to (T1, P0, E1)
introduces a dependency from T0 to T1 forming a cycle at the test level. If you end up requiring such type of dependency
in your tests, you might have to reconsider how you organize your tests.

Note: Technically, the framework could easily support such types of dependencies, but ReFrame’s output would have
to change substantially.

Resolving dependencies

As shown in the Tutorial 3: Using Dependencies in ReFrame Tests, test dependencies would be of limited usage if you
were not able to use the results or information of the target tests. Let’s reiterate over the set_executable() function
of the OSULatencyTest that we presented previously:

@require_deps
def set_executable(self, OSUBuildTest):

self.executable = os.path.join(
OSUBuildTest().stagedir,
'mpi', 'pt2pt', 'osu_latency'

)
self.executable_opts = ['-x', '100', '-i', '1000']

The @require_deps decorator does some magic – we will unravel this shortly – with the function arguments of the
set_executable() function and binds them to the target test dependencies by their name. However, as discussed
in this section, dependencies are defined at test case level, so the OSUBuildTest function argument is bound to a
special function that allows you to retrieve an actual test case of the target dependency. This is why you need to “call”
OSUBuildTest in order to retrieve the desired test case. When no arguments are passed, this will retrieve the test
case corresponding to the current partition and the current programming environment. We could always retrieve the

2.4. Advanced Topics 133

ReFrame Documentation, Release 3.10.0

PrgEnv-gnu case by writing OSUBuildTest('PrgEnv-gnu'). If a dependency cannot be resolved, because it is
invalid, a runtime error will be thrown with an appropriate message.

The low-level method for retrieving a dependency is the getdep() method of the RegressionTest. In fact, you can
rewrite set_executable() function as follows:

@run_after('setup')
def set_executable(self):

target = self.getdep('OSUBuildTest')
self.executable = os.path.join(

target.stagedir,
'osu-micro-benchmarks-5.6.2', 'mpi', 'pt2pt', 'osu_latency'

)
self.executable_opts = ['-x', '100', '-i', '1000']

Now it’s easier to understand what the @require_deps decorator does behind the scenes. It binds the function argu-
ments to a partial realization of the getdep() function and attaches the decorated function as an after-setup hook. In
fact, any @require_deps-decorated function will be invoked before any other after-setup hook.

Cleaning up stage files

In principle, the output of a test might be needed by its dependent tests. As a result, the stage directory of the test will
only be cleaned up after all of its immediate dependent tests have finished successfully. If any of its children has failed,
the cleanup phase will be skipped, such that all the test’s files will remain in the stage directory. This allows users to
reproduce manually the error of a failed test with dependencies, since all the needed resources of the failing test are
left in their original location.

2.4.3 Understanding the Mechanism of Deferrable Functions

This section describes the mechanism behind deferrable functions, which in ReFrame, they are used for sanity and
performance checking. Generally, writing a new sanity function in a RegressionTest is as straightforward as deco-
rating a simple member function with the built-in sanity_function() decorator. Behind the scenes, this decorator
will convert the Python function into a deferrable function and schedule its evaluation for the sanity stage of the test.
However, when dealing with more complex scenarios such as a deferrable function taking as an argument the results
from other deferrable functions, it is crucial to understand how a deferrable function differs from a regular Python
function, and when is it actually evaluated.

What Is a Deferrable Function?

A deferrable function is a function whose a evaluation is deferred to a later point in time. You can define any function
as deferrable by wrapping it with the deferrable() when decorating a member function of a class derived from
RegressionMixin, or alternatively, the reframe.utility.sanity.deferrable() decorator can be used for any
other function. The example below demonstrates a simple scenario:

import reframe.utility.sanity as sn

@sn.deferrable
def foo():

print('hello')

If you try to call foo(), its code will not execute:

134 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

>>> foo()
<reframe.core.deferrable._DeferredExpression object at 0x2b70fff23550>

Instead, a special object is returned that represents the function whose execution is deferred. Notice the more general
deferred expression name of this object. We shall see later on why this name is used.

In order to explicitly trigger the execution of foo(), you have to call evaluate on it:

>>> from reframe.utility.sanity import evaluate
>>> evaluate(foo())
hello

If the argument passed to evaluate is not a deferred expression, it will be simply returned as is.

Deferrable functions may also be combined as we do with normal functions. Let’s extend our example with foo()
accepting an argument and printing it:

import reframe.utility.sanity as sn

@sn.deferrable
def foo(arg):

print(arg)

@sn.deferrable
def greetings():

return 'hello'

If we now do foo(greetings()), again nothing will be evaluated:

>>> foo(greetings())
<reframe.core.deferrable._DeferredExpression object at 0x2b7100e9e978>

If we trigger the evaluation of foo() as before, we will get expected result:

>>> evaluate(foo(greetings()))
hello

Notice how the evaluation mechanism goes down the function call graph and returns the expected result. An alternative
way to evaluate this expression would be the following:

>>> x = foo(greetings())
>>> x.evaluate()
hello

As you may have noticed, you can assign a deferred function to a variable and evaluate it later. You may also do
evaluate(x), which is equivalent to x.evaluate().

To demonstrate more clearly how the deferred evaluation of a function works, let’s consider the following size3()
deferrable function that simply checks whether an iterable passed as argument has three elements inside it:

@sn.deferrable
def size3(iterable):

return len(iterable) == 3

Now let’s assume the following example:

2.4. Advanced Topics 135

ReFrame Documentation, Release 3.10.0

>>> l = [1, 2]
>>> x = size3(l)
>>> evaluate(x)
False
>>> l += [3]
>>> evaluate(x)
True

We first call size3() and store its result in x. As expected when we evaluate x, False is returned, since at the time
of the evaluation our list has two elements. We later append an element to our list and reevaluate x and we get True,
since at this point the list has three elements.

Note: Deferred functions and expressions may be stored and (re)evaluated at any later point in the program.

An important thing to point out here is that deferrable functions capture their arguments at the point they are called.
If you change the binding of a variable name (either explicitly or implicitly by applying an operator to an immutable
object), this change will not be reflected when you evaluate the deferred function. The function instead will operate on
its captured arguments. We will demonstrate this by replacing the list in the above example with a tuple:

>>> l = (1, 2)
>>> x = size3(l)
>>> l += (3,)
>>> l
(1, 2, 3)
>>> evaluate(x)
False

Why this is happening? This is because tuples are immutable so when we are doing l += (3,) to append to our tuple,
Python constructs a new tuple and rebinds l to the newly created tuple that has three elements. However, when we
called our deferrable function, l was pointing to a different tuple object, and that was the actual tuple argument that
our deferrable function has captured.

The following augmented example demonstrates this:

>>> l = (1, 2)
>>> x = size3(l)
>>> l += (3,)
>>> l
(1, 2, 3)
>>> evaluate(x)
False
>>> l = (1, 2)
>>> id(l)
47764346657160
>>> x = size3(l)
>>> l += (3,)
>>> id(l)
47764330582232
>>> l
(1, 2, 3)
>>> evaluate(x)
False

136 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Notice the different IDs of l before and after the += operation. This a key trait of deferrable functions and expressions
that you should be aware of.

Deferred expressions

You might be still wondering why the internal name of a deferred function refers to the more general term deferred
expression. Here is why:

>>> @sn.deferrable
... def size(iterable):
... return len(iterable)
...
>>> l = [1, 2]
>>> x = 2*(size(l) + 3)
>>> x
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f4e940>
>>> evaluate(x)
10

As you can see, you can use the result of a deferred function inside arithmetic operations. The result will be another
deferred expression that you can evaluate later. You can practically use any Python builtin operator or builtin function
with a deferred expression and the result will be another deferred expression. This is quite a powerful mechanism,
since with the standard syntax you can create arbitrary expressions that may be evaluated later in your program.

There are some exceptions to this rule, though. The logical and, or and not operators as well as the in operator cannot
be deferred automatically. These operators try to take the truthy value of their arguments by calling bool on them. As
we shall see later, applying the bool function on a deferred expression causes its immediate evaluation and returns the
result. If you want to defer the execution of such operators, you should use the corresponding and_, or_, not_ and
contains functions in reframe.utility.sanity, which basically wrap the expression in a deferrable function.

In summary deferrable functions have the following characteristics:

• You can make any function deferrable by wrapping it with the deferrable() decorator.

• When you call a deferrable function, its body is not executed but its arguments are captured and an object
representing the deferred function is returned.

• You can execute the body of a deferrable function at any later point by calling evaluate on the deferred expres-
sion object that it has been returned by the call to the deferred function.

• Deferred functions can accept other deferred expressions as arguments and may also return a deferred expression.

• When you evaluate a deferrable function, any other deferrable function down the call tree will also be evaluated.

• You can include a call to a deferrable function in any Python expression and the result will be another deferred
expression.

2.4. Advanced Topics 137

https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/expressions.html#in

ReFrame Documentation, Release 3.10.0

How a Deferred Expression Is Evaluated?

As discussed before, you can create a new deferred expression by calling a function whose definition is decorated by
the @deferrable decorator or by including an already deferred expression in any sort of arithmetic operation. When
you call evaluate on a deferred expression, you trigger the evaluation of the whole subexpression tree. Here is how
the evaluation process evolves:

A deferred expression object is merely a placeholder of the target function and its arguments at the moment you call
it. Deferred expressions leverage also the Python’s data model so as to capture all the binary and unary operators
supported by the language. When you call evaluate() on a deferred expression object, the stored function will be
called passing it the captured arguments. If any of the arguments is a deferred expression, it will be evaluated too. If
the return value of the deferred expression is also a deferred expression, it will be evaluated as well.

This last property lets you call other deferrable functions from inside a deferrable function. Here is an example where
we define two deferrable variations of the builtins sum and len and another deferrable function avg() that computes
the average value of the elements of an iterable by calling our deferred builtin alternatives.

@sn.deferrable
def dsum(iterable):

return sum(iterable)

@sn.deferrable
def dlen(iterable):

return len(iterable)

@sn.deferrable
def avg(iterable):

return dsum(iterable) / dlen(iterable)

If you try to evaluate avg() with a list, you will get the expected result:

>>> avg([1, 2, 3, 4])
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f54b70>
>>> evaluate(avg([1, 2, 3, 4]))
2.5

The return value of evaluate(avg())would normally be a deferred expression representing the division of the results
of the other two deferrable functions. However, the evaluation mechanism detects that the return value is a deferred
expression and it automatically triggers its evaluation, yielding the expected result. The following figure shows how
the evaluation evolves for this particular example:

Fig. 20: Sequence diagram of the evaluation of the deferrable avg() function.

Implicit evaluation of a deferred expression

Although you can trigger the evaluation of a deferred expression at any time by calling evaluate, there are some cases
where the evaluation is triggered implicitly:

• When you try to get the truthy value of a deferred expression by calling bool on it. This happens for exam-
ple when you include a deferred expression in an if statement or as an argument to the and, or, not and in
(__contains__) operators. The following example demonstrates this behavior:

138 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/expressions.html#in

ReFrame Documentation, Release 3.10.0

>>> if avg([1, 2, 3, 4]) > 2:
... print('hello')
...
hello

The expression avg([1, 2, 3, 4]) > 2 is a deferred expression, but its evaluation is triggered from the
Python interpreter by calling the bool() method on it, in order to evaluate the if statement. A similar example
is the following that demonstrates the behaviour of the in operator:

>>> from reframe.utility.sanity import defer
>>> l = defer([1, 2, 3])
>>> l
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f54cf8>
>>> evaluate(l)
[1, 2, 3]
>>> 4 in l
False
>>> 3 in l
True

The defer is simply a deferrable version of the identity function (a function that simply returns its argument).
As expected, l is a deferred expression that evaluates to the [1, 2, 3] list. When we apply the in operator, the
deferred expression is immediately evaluated.

Note: Python expands this expression into bool(l.__contains__(3)). Although __contains__ is also
defined as a deferrable function in _DeferredExpression, its evaluation is triggered by the bool builtin.

• When you try to iterate over a deferred expression by calling the iter function on it. This call happens implicitly
by the Python interpreter when you try to iterate over a container. Here is an example:

>>> @sn.deferrable
... def getlist(iterable):
... ret = list(iterable)
... ret += [1, 2, 3]
... return ret
>>> getlist([1, 2, 3])
<reframe.core.deferrable._DeferredExpression object at 0x2b1288f54dd8>
>>> for x in getlist([1, 2, 3]):
... print(x)
...
1
2
3
1
2
3

Simply calling getlist()will not execute anything and a deferred expression object will be returned. However,
when you try to iterate over the result of this call, then the deferred expression will be evaluated immediately.

• When you try to call str on a deferred expression. This will be called by the Python interpreter every time you
try to print this expression. Here is an example with the getlist deferrable function:

2.4. Advanced Topics 139

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/library/functions.html#iter

ReFrame Documentation, Release 3.10.0

>>> print(getlist([1, 2, 3]))
[1, 2, 3, 1, 2, 3]

How to Write a Deferrable Function?

The answer is simple: like you would with any other normal function! We’ve done that already in all the examples
we’ve shown in this documentation. A question that somehow naturally comes up here is whether you can call a
deferrable function from within a deferrable function, since this doesn’t make a lot of sense: after all, your function
will be deferred anyway.

The answer is, yes. You can call other deferrable functions from within a deferrable function. Thanks to the implicit
evaluation rules as well as the fact that the return value of a deferrable function is also evaluated if it is a deferred
expression, you can write a deferrable function without caring much about whether the functions you call are themselves
deferrable or not. However, you should be aware of passing mutable objects to deferrable functions. If these objects
happen to change between the actual call and the implicit evaluation of the deferrable function, you might run into
surprises. In any case, if you want the immediate evaluation of a deferrable function or expression, you can always do
that by calling evaluate on it.

The following example demonstrates two different ways writing a deferrable function that checks the average of the
elements of an iterable:

import reframe.utility.sanity as sn

@sn.deferrable
def check_avg_with_deferrables(iterable):

avg = sn.sum(iterable) / sn.len(iterable)
return -1 if avg > 2 else 1

@sn.deferrable
def check_avg_without_deferrables(iterable):

avg = sum(iterable) / len(iterable)
return -1 if avg > 2 else 1

>>> evaluate(check_avg_with_deferrables([1, 2, 3, 4]))
-1
>>> evaluate(check_avg_without_deferrables([1, 2, 3, 4]))
-1

The first version uses the sum and len functions from reframe.utility.sanity, which are deferrable versions of
the corresponding builtins. The second version uses directly the builtin sum and len functions. As you can see, both of
them behave in exactly the same way. In the version with the deferrables, avg is a deferred expression but it is evaluated
by the if statement before returning.

Generally, inside a sanity function, it is a preferable to use the non-deferrable version of a function, if that exists, since
you avoid the extra overhead and bookkeeping of the deferring mechanism.

140 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/reference/compound_stmts.html#if

ReFrame Documentation, Release 3.10.0

Ready to Go Deferrable Functions

Normally, you will not have to implement your own deferrable functions, since ReFrame provides already a variety of
them. You can find the complete list of provided sanity functions in Deferrable Functions Reference.

Deferrable functions vs Generators

Python allows you to create functions that will be evaluated lazily. These are called generator functions. Their key
characteristic is that instead of using the return keyword to return values, they use the yield keyword. I’m not going
to go into the details of the generators, since there is plenty of documentation out there, so I will focus on the similarities
and differences with our deferrable functions.

Similarities

• Both generators and our deferrables return an object representing the deferred expression when you call them.

• Both generators and deferrables may be evaluated explicitly or implicitly when they appear in certain expressions.

• When you try to iterate over a generator or a deferrable, you trigger its evaluation.

Differences

• You can include deferrables in any arithmetic expression and the result will be another deferrable expression.
This is not true with generator functions, which will raise a TypeError in such cases or they will always evaluate
to False if you include them in boolean expressions Here is an example demonstrating this:

>>> @sn.deferrable
... def dsize(iterable):
... print(len(iterable))
... return len(iterable)
...
>>> def gsize(iterable):
... print(len(iterable))
... yield len(iterable)
...
>>> l = [1, 2]
>>> dsize(l)
<reframe.core.deferrable._DeferredExpression object at 0x2abc630abb38>
>>> gsize(l)
<generator object gsize at 0x2abc62a4bf10>
>>> expr = gsize(l) == 2
>>> expr
False
>>> expr = gsize(l) + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'generator' and 'int'
>>> expr = dsize(l) == 2
>>> expr
<reframe.core.deferrable._DeferredExpression object at 0x2abc630abba8>
>>> expr = dsize(l) + 2

(continues on next page)

2.4. Advanced Topics 141

https://wiki.python.org/moin/Generators
https://docs.python.org/3/reference/simple_stmts.html#return
https://docs.python.org/3/reference/simple_stmts.html#yield
https://docs.python.org/3/library/exceptions.html#TypeError

ReFrame Documentation, Release 3.10.0

(continued from previous page)

>>> expr
<reframe.core.deferrable._DeferredExpression object at 0x2abc630abc18>

Notice that you cannot include generators in expressions, whereas you can generate arbitrary expressions with de-
ferrables.

• Generators are iterator objects, while deferred expressions are not. As a result, you can trigger the evaluation
of a generator expression using the next builtin function. For a deferred expression you should use evaluate
instead.

• A generator object is iterable, whereas a deferrable object will be iterable if and only if the result of its evaluation
is iterable.

Note: Technically, a deferrable object is iterable, too, since it provides the __iter__ method. That’s why you
can include it in iteration expressions. However, it delegates this call to the result of its evaluation.

Here is an example demonstrating this difference:

>>> for i in gsize(l): print(i)
...
2
2
>>> for i in dsize(l): print(i)
...
2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/users/karakasv/Devel/reframe/reframe/core/deferrable.py", line 73, in __

→˓iter__
return iter(self.evaluate())

TypeError: 'int' object is not iterable

Notice how the iteration works fine with the generator object, whereas with the deferrable function, the iteration
call is delegated to the result of the evaluation, which is not an iterable, therefore yielding TypeError. Notice
also, the printout of 2 in the iteration over the deferrable expression, which shows that it has been evaluated.

2.5 Use Cases

ReFrame has been publicly released on May 2017, but it has been used in production at the Swiss National Supercom-
puting Centre since December 2016. Since then it has gained visibility across computing centers, some of which have
already integrated in their production testing workflows and others are considering to fully adopt it. To our knowledge,
private companies in the HPC sector are using it as well. Here we will briefly present the use cases of ReFrame at the
Swiss National Supercomputing Centre (CSCS) in Switzerland, at the National Energy Research Scientific Computing
Center (NERSC) and at the Ohio Supercomputer Center (OSC) in the United States.

142 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/exceptions.html#TypeError
https://www.cscs.ch/
https://www.nersc.gov/
https://www.osc.edu/

ReFrame Documentation, Release 3.10.0

2.5.1 ReFrame at CSCS

CSCS uses ReFrame for both functionality and performance tests for all of its production and test development systems,
among which are the Piz Daint supercomputer (Cray XC40/XC50 hybrid system), the Kesch/Escha twin systems (Cray
CS-Storm used by MeteoSwiss for weather predition). The same ReFrame tests are reused as much as possible across
systems with minor adaptations. The test suite of CSCS (publicly available inside ReFrame’s repository) comprises
tests for full scientific applications, scientific libraries, programming environments, compilation and linking, profiling
and debugger tools, basic CUDA operations, performance microbenchmarks and I/O libraries. Using tags we have split
the tests in three broad overlapping categories:

1. Production tests – This category comprises a large variety of tests and is run daily overnight using Jenkins.

2. Maintenance tests – This suite is essentially a small subset of the production tests, comprising mostly application
sanity and performance tests, as well as sanity tests for the programming environment and the scheduler. It is
run before and after maintenance of the systems.

3. Benchmarking tests – These tests are used to measure the performance of different computing and networking
components and are run manually before major upgrades or when a performance problem needs to be investigated.

We are currently working on a fourth category of tests that are intended to run frequently (e.g., every 10 minutes).
The purpose of these tests is to measure the system behavior and performance as perceived by the users. Example
tests are the time it takes to run basic Slurm commands and/or performance basic filesystem operations. Such glitches
might affect the performance of running applications and cause users to open support tickets. Collecting periodically
such performance data will help us correlate system events with user application performance. Finally, there is an
ongoing effort to expand our ReFrame test suite to virtual clusters based on OpenStack. The new tests will measure the
responsiveness of our OpenStack installation to deploy compute instances, volumes, and perform snapshots. We plan
to make them publicly available in the near future.

Our regression test suite consists of 278 tests in total, from which 204 are marked as production tests. A test can be valid
for one or more systems and system partitions and can be tried with multiple programming environments. Specifically
on Piz Daint, the production suite runs 640 test cases from 193 tests.

ReFrame really focuses on abstracting away all the gory details from the regression test description, hence letting the
user to concentrate solely on the logic of his test. This effect can be seen in the following Table where the total amount
of lines of code (loc) of the regression tests written with the previous shell script-based solution is shown in comparison
to ReFrame.

Maintenance Burden Shell-Script Based ReFrame (May 2017) ReFrame (Apr. 2020)
Total tests 179 122 278
Total size of tests 14635 loc 2985 loc 8421 loc
Avg. test file size 179 loc 93 loc 102 loc
Avg. effective test size 179 loc 25 loc 30 loc

The difference in the total amount of regression test code is dramatic. From the 15K lines of code of the old shell script
based regression testing suite, ReFrame tests used only 3K lines of code (first public release, May 2017) achieving a
higher coverage.

Each regression test file in ReFrame is approximately 100 loc on average. However, each regression test file may contain
or generate more than one related tests, thus leading to the effective decrease of the line count per test to only 30 loc.
If we also account for the test cases generated per test, this number decreases further.

Separating the logical description of a regression test from all the unnecessary implementation details contributes
significantly to the ease of writing and maintaining new regression tests with ReFrame.

Note: The higher test count of the older suite refers to test cases, i.e., running the same test for different programming
environments, whereas for ReFrame the counts do not account for this.

2.5. Use Cases 143

https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/kesch-escha-meteoswiss/
https://github.com/eth-cscs/reframe/tree/master/cscs-checks

ReFrame Documentation, Release 3.10.0

Note: CSCS maintains a separate repository for tests related to HPC debugging and performance tools, which you
can find here. These tests were not accounted in this analysis.

2.5.2 ReFrame at NERSC

ReFrame at NERSC covers functionality and performance of its current HPC system Cori, a Cray XC40 with Intel
“Haswell” and “Knights Landing” compute nodes; as well as its smaller Cray CS-Storm cluster featuring Intel “Sky-
lake” CPUs and NVIDIA “Volta” GPUs. The performance tests include several general-purpose benchmarks designed
to stress different components of the system, including HPGMG (both finite-element and finite-volume tests), HPCG,
Graph500, IOR, and others. Additionally, the tests include several benchmark codes used during NERSC system pro-
curements, as well as several extracted benchmarks from full applications which participate in the NERSC Exascale
Science Application Program (NESAP). Including NESAP applications ensures that representative components of the
NERSC workload are included in the performance tests.

The functionality tests evaluate several different components of the system; for example, there are several tests for
the Cray DataWarp software which enables users to interact with the Cori burst buffer. There are also several Slurm
tests which verify that partitions and QoSs are correctly configured for jobs of varying sizes. The Cray programming
environments, including compiler wrappers, MPI and OpenMP capability, and Shifter, are also included in these tests,
and are especially impactful following changes in defaults to the programming environments.

The test battery at NERSC can be invoked both manually and automatically, depending on the need. Specifically,
the full battery is typically executed manually following a significant change to the Cori system, e.g., after a major
system software change, or a Cray Linux OS upgrade, before the system is released back to users. Under most other
circumstances, however, only a subset of tests are typically run, and in most causes they are executed automatically.
NERSC uses ReFrame’s tagging capabilities to categorize the various subsets of tests, such that groups of tests which
evaluate a particular component of the system can be invoked easily. For example, some performance tests are tagged
as “daily”, others as “weekly”, “reboot”, “slurm”, “aries”, etc., such that it is clear from the test’s Python code when
and how frequently a particular test is run.

ReFrame has also been integrated into NERSC’s centralized data collection service used for facility and system moni-
toring, called the “Data Collect.” The Data Collect stores data in an Elasticsearch instance, uses Logstash to ingest log
information about the Cori system, and provides a web-based GUI to display results via Kibana. Cray, in turn, provides
the Cray Lightweight Log Manager on XC systems such as Cori, which provides a syslog interface. ReFrame’s support
for Syslog, and the Python standard logging library, enabled simple integration with NERSC’s Data Collect The result
of this integration with ReFrame to the Data Collect is that the results from each ReFrame test executed on Cori are
visible via a Kibana query within a few seconds of the test completing. One can then configure Elasticsearch to alert
a system administrator if a particular system functionality stops working, or if the performance of certain benchmarks
suddenly declines.

Finally, ReFrame has been automated at NERSC via the continuous integration (CI) capabilities provided by an internal
GitLab instance. More specifically, GitLab was enhanced due to efforts from the US Department of Energy Exascale
Computing Project (ECP) in order to allow CI “runners” to submit jobs to queues on HPC systems such as Cori auto-
matically via schedulable “pipelines.” Automation via GitLab runners is a significant improvement over test executed
automated by cron, because the runners exist outside of the Cori system, and therefore are unaffected by system shut-
downs, reboots, and other disruptions. The pipelines are configured to run tests with particular tags at particular times,
e.g., tests tagged with “daily” are invoked each day at the same time, tests tagged “weekly” are invoked once per week,
etc.

144 Chapter 2. Publications

https://github.com/eth-cscs/hpctools
https://www.nersc.gov/
https://www.nersc.gov/systems/cori/
https://hpgmg.org/
https://www.hpcg-benchmark.org/
https://graph500.org/
https://ior.readthedocs.io/en/latest/
https://www.nersc.gov/research-and-development/nesap/
https://www.cray.com/products/storage/datawarp
https://www.elastic.co/logstash
https://www.elastic.co/kibana
https://docs.python.org/3.8/library/logging.html
https://www.exascaleproject.org/
https://www.exascaleproject.org/

ReFrame Documentation, Release 3.10.0

2.5.3 ReFrame at OSC

At OSC, we use ReFrame to build the testing system for the software environment. As a change is made to an appli-
cation, e.g., upgrade, module change or new installation, ReFrame tests are performed by a user-privilege account and
the OSC staff members who receive the test summary can easily check the result to decide if the change should be
approved.

ReFrame is configured and installed on three production systems (Pitzer, Owens and Ruby). For each application we
prepare the following classes of ReFrame tests:

1. default version – checks if a new installation overwrites the default module file

2. broken executable or library – i.e. run a binary with the --version flag and compare the result with the module
version,

3. functionality – i.e. numerical tests,

4. performance – extensive functionality checking and benchmarking,

where we currently have functionality and performance tests for a limited subset of our deployed software.

All checks are designed to be general and version independent. The correct module file is loaded at runtime, reducing
the number of Python classes to be maintained. In addition, all application-based ReFrame tests are performed as
regression testing of software environment when the system has critical update or rolling reboot.

ReFrame is also used for performance monitoring. We run weekly MPI tests and monthly HPCG tests. The performance
data is logged directly to an internal Splunk server via Syslog protocol. The job summary is sent to the responsible
OSC staff member who can watch the performance dashboards.

2.6 Migrating to ReFrame 3

ReFrame 3 brings substantial changes in its configuration. The configuration component was completely revised and
rewritten from scratch in order to allow much more flexibility in how the framework’s configuration options are handled,
as well as to ensure the maintainability of the framework in the future.

At the same time, ReFrame 3 deprecates some common pre-2.20 test syntax in favor of the more modern and intuitive
pipeline hooks, as well as renames some regression test attributes.

This guide details the necessary steps in order to easily migrate to ReFrame 3.

2.6.1 Updating Your Site Configuration

As described in Configuring ReFrame for Your Site, ReFrame’s configuration file has changed substantially. However,
you can convert any old configuration file using the command line option --upgrade-config-file:

$./bin/reframe --upgrade-config-file unittests/resources/settings_old_syntax.py:new_
→˓config.py
Conversion successful! The converted file can be found at 'new_config.py'.

Warning: Changed in version 3.4: The old configuration syntax in no longer supported and it will not be auto-
matically converted by the -C option.

Another important change is that default locations for looking up a configuration file has changed (see Configuring
ReFrame for Your Site for more details). That practically means that if you were relying on ReFrame loading your

2.6. Migrating to ReFrame 3 145

https://www.osc.edu/resources/technical_support/supercomputers/pitzer
https://www.osc.edu/resources/technical_support/supercomputers/owens
https://www.osc.edu/resources/technical_support/supercomputers/ruby
https://www.splunk.com/
configure.html
configure.html
configure.html

ReFrame Documentation, Release 3.10.0

reframe/settings.py by default, this is no longer true. You have to move it to any of the default settings locations
or set the corresponding command line option or environment variable.

Note: The conversion tool will create a JSON configuration file if the extension of the target file is .json.

Configuration conversion limitations

ReFrame does a pretty good job in converting correctly your old configuration files, but there are some limitations:

• Your code formatting will be lost. ReFrame will use its own, which is PEP8 compliant nonetheless.

• Any comments will be lost.

• Any code that was used to dynamically generate configuration parameters will be lost. ReFrame will generate
the new configuration based on what was the actual old configuration after any dynamic generation.

Warning: The very old logging configuration syntax (prior to ReFrame 2.13) is no more recognized and the
configuration conversion tool does not take it into account.

2.6.2 Updating Your Tests

ReFrame 3.0 deprecates particular test syntax as well as certain test attributes. Some more esoteric features have also
changed which may cause tests that make use of them to break. In this section we summarize all these changes and
how to make these tests compatible with ReFrame 3.0

Pipeline methods and hooks

ReFrame 2.20 introduced a new powerful mechanism for attaching arbitrary functions hooks at the different pipeline
stages. This mechanism provides an easy way to configure and extend the functionality of a test, eliminating essentially
the need to override pipeline stages for this purpose. ReFrame 3.0 deprecates the old practice of overriding pipeline
stage methods in favor of using pipeline hooks and ReFrame 3.4 disables that by default. In the old syntax, it was
quite common to override the setup() method, in order to configure your test based on the current programming
environment or the current system partition. The following is a typical example of that:

def setup(self, partition, environ, **job_opts):
if environ.name == 'gnu':

self.build_system.cflags = ['-fopenmp']
elif environ.name == 'intel':

self.build_system.cflags = ['-qopenmp']

super().setup(partition, environ, **job_opts)

Alternatively, this example could have been written as follows:

def setup(self, partition, environ, **job_opts):
super().setup(partition, environ, **job_opts)
if self.current_environ.name == 'gnu':

self.build_system.cflags = ['-fopenmp']
elif self.current_environ.name == 'intel':

self.build_system.cflags = ['-qopenmp']

146 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

This syntax is no longer valid and it will raise a deprecation warning for ReFrame versions >= 3.0 and a reframe syntax
error for versions >=3.4. Rewriting this using pipeline hooks is quite straightforward and leads to nicer and more
intuitive code:

@run_before('compile')
def setflags(self):

if self.current_environ.name == 'gnu':
self.build_system.cflags = ['-fopenmp']

elif self.current_environ.name == 'intel':
self.build_system.cflags = ['-qopenmp']

You could equally attach this function to run after the “setup” phase with @run_after('setup'), as in the original
example, but attaching it to the “compile” phase makes more sense. However, you can’t attach this function before the
“setup” phase, because the current_environ will not be available and it will be still None.

Warning: Changed in version 3.4: Overriding a pipeline stage method is no longer allowed and a reframe syntax
error is raised.

Force override a pipeline method

Although pipeline hooks should be able to cover almost all the cases for writing tests in ReFrame, there might be corner
cases that you need to override one of the pipeline methods, e.g., because you want to implement a stage differently. In
this case, all you have to do is mark your test class as “special”, and ReFrame will not issue any deprecation warning
if you override pipeline stage methods:

class MyExtendedTest(rfm.RegressionTest, special=True):
def setup(self, partition, environ, **job_opts):

do your custom stuff
super().setup(partition, environ, **job_opts)

If you try to override the setup()method in any of the subclasses of MyExtendedTest, it will again result in a reframe
syntax error, which is a desired behavior since the subclasses should be normal tests.

Getting schedulers and launchers by name

The way to get a scheduler or launcher instance by name has changed. Prior to ReFrame 3, this was written as follows:

from reframe.core.launchers.registry import getlauncher

class MyTest(rfm.RegressionTest):
...

@run_before('run')
def setlauncher(self):

self.job.launcher = getlauncher('local')()

Now you have to simply replace the import statement with the following:

from reframe.core.backends import getlauncher

2.6. Migrating to ReFrame 3 147

ReFrame Documentation, Release 3.10.0

Similarly for schedulers, the reframe.core.schedulers.registrymodule must be replaced with reframe.core.
backends.

Other deprecations

The prebuild_cmd and postbuild_cmd test attributes are replaced by the prebuild_cmds and postbuild_cmds
respectively. Similarly, the pre_run and post_run test attributes are replaced by the prerun_cmds and
postrun_cmds respectively.

Warning: Changed in version 3.4: The prebuild_cmd, postbuild_cmd, pre_run and post_run attributes
have been removed.

Suppressing deprecation warnings

Although not recommended, you can suppress any deprecation warning issued by ReFrame by passing the
--no-deprecation-warnings flag.

2.6.3 Other Changes

ReFrame 3.0-dev0 introduced a change in the way that a search path for checks was constructed in the command-line
using the -c option. ReFrame 3.0 reverts the behavior of the -c to its original one (i.e., ReFrame 2.x behavior), in which
multiple paths can be specified by passing multiple times the -c option. Overriding completely the check search path
can be achieved in ReFrame 3.0 through the RFM_CHECK_SEARCH_PATH environment variable or the corresponding
configuration option.

2.7 ReFrame Manuals

2.7.1 Command Line Reference

Synopsis

reframe [OPTION]... ACTION

Description

ReFrame provides both a programming interface for writing regression tests and a command-line interface for managing
and running the tests, which is detailed here. The reframe command is part of ReFrame’s frontend. This frontend
is responsible for loading and running regression tests written in ReFrame. ReFrame executes tests by sending them
down to a well defined pipeline. The implementation of the different stages of this pipeline is part of ReFrame’s core
architecture, but the frontend is responsible for driving this pipeline and executing tests through it. There are three
basic phases that the frontend goes through, which are described briefly in the following.

148 Chapter 2. Publications

https://github.com/eth-cscs/reframe/pull/1125
regression_test_api.html

ReFrame Documentation, Release 3.10.0

Test discovery and test loading

This is the very first phase of the frontend. ReFrame will search for tests in its check search path and will load them.
When ReFrame loads a test, it actually instantiates it, meaning that it will call its __init__() method unconditionally
whether this test is meant to run on the selected system or not. This is something that writers of regression tests should
bear in mind.

-c, --checkpath=PATH
A filesystem path where ReFrame should search for tests.

PATH can be a directory or a single test file. If it is a directory, ReFrame will search for test files inside this
directory load all tests found in them. This option can be specified multiple times, in which case each PATH will
be searched in order.

The check search path can also be set using the RFM_CHECK_SEARCH_PATH environment variable or the
check_search_path general configuration parameter.

--ignore-check-conflicts
Ignore tests with conflicting names when loading.

ReFrame requires test names to be unique. Test names are used as components of the stage and output directory
prefixes of tests, as well as for referencing target test dependencies. This option should generally be avoided
unless there is a specific reason.

This option can also be set using the RFM_IGNORE_CHECK_CONFLICTS environment variable or the
ignore_check_conflicts general configuration parameter.

Deprecated since version 3.8.0: This option will be removed in a future version.

-R, --recursive
Search for test files recursively in directories found in the check search path.

This option can also be set using the RFM_CHECK_SEARCH_RECURSIVE environment variable or the
check_search_recursive general configuration parameter.

Test filtering

After all tests in the search path have been loaded, they are first filtered by the selected system. Any test that is not
valid for the current system, it will be filtered out. The current system is either auto-selected or explicitly specified
with the --system option. Tests can be filtered by different attributes and there are specific command line options for
achieving this. A common characteristic of all test filtering options is that if a test is selected, then all its dependencies
will be selected, too, regardless if they match the filtering criteria or not. This happens recursively so that if test T1
depends on T2 and T2 depends on T3, then selecting T1 would also select T2 and T3.

--cpu-only
Select tests that do not target GPUs.

These are all tests with num_gpus_per_node equals to zero This option and --gpu-only are mutually exclusive.

The --gpu-only and --cpu-only check only the value of the num_gpus_per_node attribute of tests. The
value of this attribute is not required to be non-zero for GPU tests. Tests may or may not make use of it.

--failed
Select only the failed test cases for a previous run.

This option can only be used in combination with the --restore-session. To rerun the failed cases from the
last run, you can use reframe --restore-session --failed -r.

New in version 3.4.

2.7. ReFrame Manuals 149

ReFrame Documentation, Release 3.10.0

--gpu-only
Select tests that can run on GPUs.

These are all tests with num_gpus_per_node greater than zero. This option and --cpu-only are mutually
exclusive.

--maintainer=MAINTAINER
Filter tests by maintainer.

MAINTAINER is interpreted as a Python Regular Expression; all tests that have at least a matching maintainer will
be selected. MAINTAINER being a regular expression has the implication that --maintainer 'foo' will select
also tests that define 'foobar' as a maintainer. To restrict the selection to tests defining only 'foo', you should
use --maintainer 'foo$'.

This option may be specified multiple times, in which case only tests defining or matching all maintainers will
be selected.

New in version 3.9.1.

-n, --name=NAME
Filter tests by name.

NAME is interpreted as a Python Regular Expression; any test whose display name matches NAME will be selected.
The display name of a test encodes also any parameterization information. See Test Naming Scheme for more
details on how the tests are automatically named by the framework.

Before matching, any whitespace will be removed from the display name of the test.

This option may be specified multiple times, in which case tests with any of the specified names will be selected:
-n NAME1 -n NAME2 is therefore equivalent to -n 'NAME1|NAME2'.

If the special notation <test_name>@<variant_num> is passed as the NAME argument, then an exact match will
be performed selecting the variant variant_num of the test test_name.

Note: Fixtures cannot be selected.

Changed in version 3.10.0: The option’s behaviour was adapted and extended in order to work with the updated
test naming scheme.

-p, --prgenv=NAME
Filter tests by programming environment.

NAME is interpreted as a Python Regular Expression; any test for which at least one valid programming environ-
ment is matching NAME will be selected.

This option may be specified multiple times, in which case only tests matching all of the specified programming
environments will be selected.

--skip-prgenv-check
Do not filter tests against programming environments.

Even if the -p option is not specified, ReFrame will filter tests based on the programming environments defined
for the currently selected system. This option disables that filter completely.

--skip-system-check
Do not filter tests against the selected system.

-T, --exclude-tag=TAG
Exclude tests by tags.

TAG is interpreted as a Python Regular Expression; any test with tags matching TAG will be excluded.

150 Chapter 2. Publications

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

ReFrame Documentation, Release 3.10.0

This option may be specified multiple times, in which case tests with any of the specified tags will be excluded:
-T TAG1 -T TAG2 is therefore equivalent to -T 'TAG1|TAG2'.

-t, --tag=TAG
Filter tests by tag.

TAG is interpreted as a Python Regular Expression; all tests that have at least a matching tag will be selected.
TAG being a regular expression has the implication that -t 'foo' will select also tests that define 'foobar' as
a tag. To restrict the selection to tests defining only 'foo', you should use -t 'foo$'.

This option may be specified multiple times, in which case only tests defining or matching all tags will be selected.

-x, --exclude=NAME
Exclude tests by name.

NAME is interpreted as a Python Regular Expression; any test whose name matches NAME will be excluded.

This option may be specified multiple times, in which case tests with any of the specified names will be excluded:
-x NAME1 -x NAME2 is therefore equivalent to -x 'NAME1|NAME2'.

Test actions

ReFrame will finally act upon the selected tests. There are currently two actions that can be performed on tests: (a) list
the tests and (b) execute the tests. An action must always be specified.

--ci-generate=FILE
Do not run the tests, but generate a Gitlab child pipeline specification in FILE.

You can set up your Gitlab CI to use the generated file to run every test as a separate Gitlab job respecting test
dependencies. For more information, have a look in Integrating into a CI pipeline.

New in version 3.4.1.

--describe
Print a detailed description of the selected tests in JSON format and exit.

Note: The generated test description corresponds to its state after it has been initialized. If any of its attributes
are changed or set during its execution, their updated values will not be shown by this listing.

New in version 3.10.0.

-L, --list-detailed[=T|C]
List selected tests providing more details for each test.

The unique id of each test (see also unique_name) as well as the file where each test is defined are printed.

This option accepts optionally a single argument denoting what type of listing is requested. Please refer to -l
for an explanation of this argument.

New in version 3.10.0: Support for different types of listing is added.

-l, --list[=T|C]
List selected tests and their dependencies.

This option accepts optionally a single argument denoting what type of listing is requested. There are two types
of possible listings:

• Regular test listing (T, the default): This type of listing lists the tests and their dependencies or fixtures
using their display_name. A test that is listed as a dependency of another test will not be listed separately.

2.7. ReFrame Manuals 151

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.gitlab.com/ee/ci/parent_child_pipelines.html

ReFrame Documentation, Release 3.10.0

• Concretized test case listing (C): This type of listing lists the exact test cases and their dependencies as they
have been concretized for the current system and environment combinations. This listing shows practically
the exact test DAG that will be executed.

New in version 3.10.0: Support for different types of listing is added.

--list-tags
List the unique tags of the selected tests.

The tags are printed in alphabetical order.

New in version 3.6.0.

-r, --run
Execute the selected tests.

If more than one action options are specified, the precedence order is the following:

--describe > --list-detailed > --list > --list-tags > --ci-generate

Options controlling ReFrame output

--dont-restage
Do not restage a test if its stage directory exists. Normally, if the stage directory of a test exists, ReFrame will
remove it and recreate it. This option disables this behavior.

This option can also be set using the RFM_CLEAN_STAGEDIR environment variable or the clean_stagedir
general configuration parameter.

New in version 3.1.

--keep-stage-files
Keep test stage directories even for tests that finish successfully.

This option can also be set using the RFM_KEEP_STAGE_FILES environment variable or the keep_stage_files
general configuration parameter.

-o, --output=DIR
Directory prefix for test output files.

When a test finishes successfully, ReFrame copies important output files to a test-specific directory for fu-
ture reference. This test-specific directory is of the form {output_prefix}/{system}/{partition}/
{environment}/{test_name}, where output_prefix is set by this option. The test files saved in this di-
rectory are the following:

• The ReFrame-generated build script, if not a run-only test.

• The standard output and standard error of the build phase, if not a run-only test.

• The ReFrame-generated job script, if not a compile-only test.

• The standard output and standard error of the run phase, if not a compile-only test.

• Any additional files specified by the keep_files regression test attribute.

This option can also be set using the RFM_OUTPUT_DIR environment variable or the outputdir system config-
uration parameter.

--perflogdir=DIR
Directory prefix for logging performance data.

This option is relevant only to the filelog logging handler.

152 Chapter 2. Publications

config_reference.html#the-filelog-log-handler

ReFrame Documentation, Release 3.10.0

This option can also be set using the RFM_PERFLOG_DIR environment variable or the basedir logging handler
configuration parameter.

--prefix=DIR
General directory prefix for ReFrame-generated directories.

The base stage and output directories (see below) will be specified relative to this prefix if not specified explicitly.

This option can also be set using the RFM_PREFIX environment variable or the prefix system configuration
parameter.

--report-file=FILE
The file where ReFrame will store its report.

The FILE argument may contain the special placeholder {sessionid}, in which case ReFrame will generate a
new report each time it is run by appending a counter to the report file.

This option can also be set using the RFM_REPORT_FILE environment variable or the report_file general
configuration parameter.

New in version 3.1.

--report-junit=FILE
Instruct ReFrame to generate a JUnit XML report in FILE.

The generated report adheres to the XSD schema here where each retry is treated as an individual testsuite.

This option can also be set using the RFM_REPORT_JUNIT environment variable or the report_junit general
configuration parameter.

New in version 3.6.0.

Changed in version 3.6.1: Added support for retries in the JUnit XML report.

-s, --stage=DIR
Directory prefix for staging test resources.

ReFrame does not execute tests from their original source directory. Instead it creates a test-specific stage direc-
tory and copies all test resources there. It then changes to that directory and executes the test. This test-specific
directory is of the form {stage_prefix}/{system}/{partition}/{environment}/{test_name}, where
stage_prefix is set by this option. If a test finishes successfully, its stage directory will be removed.

This option can also be set using the RFM_STAGE_DIR environment variable or the stagedir system configu-
ration parameter.

--save-log-files
Save ReFrame log files in the output directory before exiting.

Only log files generated by file log handlers will be copied.

This option can also be set using the RFM_SAVE_LOG_FILES environment variable or the save_log_files
general configuration parameter.

--timestamp [TIMEFMT]
Append a timestamp to the output and stage directory prefixes.

TIMEFMT can be any valid strftime(3) time format. If not specified, TIMEFMT is set to %FT%T.

This option can also be set using the RFM_TIMESTAMP_DIRS environment variable or the timestamp_dirs
general configuration parameter.

2.7. ReFrame Manuals 153

https://github.com/windyroad/JUnit-Schema/blob/master/JUnit.xsd
config_reference.html#the-file-log-handler

ReFrame Documentation, Release 3.10.0

Options controlling ReFrame execution

--disable-hook=HOOK
Disable the pipeline hook named HOOK from all the tests that will run.

This feature is useful when you have implemented test workarounds as pipeline hooks, in which case you can
quickly disable them from the command line. This option may be specified multiple times in order to disable
multiple hooks at the same time.

New in version 3.2.

--exec-policy=POLICY
The execution policy to be used for running tests.

There are two policies defined:

• serial: Tests will be executed sequentially.

• async: Tests will be executed asynchronously. This is the default policy.

The async execution policy executes the build and run phases of tests asynchronously by submitting their
associated jobs in a non-blocking way. ReFrame’s runtime monitors the progress of each test and will
resume the pipeline execution of an asynchronously spawned test as soon as its build or run phase have
finished. Note that the rest of the pipeline stages are still executed sequentially in this policy.

Concurrency can be controlled by setting the max_jobs system partition configuration parameter. As soon
as the concurrency limit is reached, ReFrame will first poll the status of all its pending tests to check if any
execution slots have been freed up. If there are tests that have finished their build or run phase, ReFrame
will keep pushing tests for execution until the concurrency limit is reached again. If no execution slots are
available, ReFrame will throttle job submission.

--force-local
Force local execution of tests.

Execute tests as if all partitions of the currently selected system had a local scheduler.

--max-retries=NUM
The maximum number of times a failing test can be retried.

The test stage and output directories will receive a _retry<N> suffix every time the test is retried.

--maxfail=NUM
The maximum number of failing test cases before the execution is aborted.

After NUM failed test cases the rest of the test cases will be aborted. The counter of the failed test cases is reset to
0 in every retry.

--mode=MODE
ReFrame execution mode to use.

An execution mode is simply a predefined invocation of ReFrame that is set with the modes configuration pa-
rameter. If an option is specified both in an execution mode and in the command-line, then command-line takes
precedence.

--restore-session [REPORT1[,REPORT2,...]]
Restore a testing session that has run previously.

REPORT1 etc. are a run report files generated by ReFrame. If a report is not given, ReFrame will pick the last
report file found in the default location of report files (see the --report-file option). If passed alone, this
option will simply rerun all the test cases that have run previously based on the report file data. It is more
useful to combine this option with any of the test filtering options, in which case only the selected test cases
will be executed. The difference in test selection process when using this option is that the dependencies of the
selected tests will not be selected for execution, as they would normally, but they will be restored. For example,

154 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

if test T1 depends on T2 and T2 depends on T3, then running reframe -n T1 -r would cause both T2 and T3
to run. However, by doing reframe -n T1 --restore-session -r, only T1 would run and its immediate
dependence T2 will be restored. This is useful when you have deep test dependencies or some of the tests in the
dependency chain are very time consuming.

Multiple reports may be passed as a comma-separated list. ReFrame will try to restore any required test case by
looking it up in each report sequentially. If it cannot find it, it will issue an error and exit.

Note: In order for a test case to be restored, its stage directory must be present. This is not a problem when
rerunning a failed case, since the stage directories of its dependencies are automatically kept, but if you want to
rerun a successful test case, you should make sure to have run with the --keep-stage-files option.

New in version 3.4.

Changed in version 3.6.1: Multiple report files are now accepted.

-S, --setvar=[TEST.]VAR=VAL
Set variable VAR in all tests or optionally only in test TEST to VAL.

Multiple variables can be set at the same time by passing this option multiple times. This option cannot change
arbitrary test attributes, but only test variables declared with the variable built-in. If an attempt is made to
change an inexistent variable or a test parameter, a warning will be issued.

ReFrame will try to convert VAL to the type of the variable. If it does not succeed, a warning will be issued and
the variable will not be set. VAL can take the special value @none to denote that the variable must be set to None.
Boolean variables can be set in one of the following ways:

• By passing true, yes or 1 to set them to True.

• By passing false, no or 0 to set them to False.

Passing any other value will issue an error.

Note: Boolean variables in a test must be declared of type Bool and not of the built-in bool type, in order to
adhere to the aforementioned behaviour. If a variable is defined as bool there is no way you can set it to False,
since all strings in Python evaluate to True.

Sequence and mapping types can also be set from the command line by using the following syntax:

• Sequence types: -S seqvar=1,2,3,4

• Mapping types: -S mapvar=a:1,b:2,c:3

Conversions to arbitrary objects are also supported. See ConvertibleType for more details.

The optional TEST. prefix refers to the test class name, not the test name.

Variable assignments passed from the command line happen before the test is instantiated and is the exact equiv-
alent of assigning a new value to the variable at the end of the test class body. This has a number of implications
that users of this feature should be aware of:

• In the following test, num_tasks will have always the value 1 regardless of any command-line assignment
of the variable foo:

@rfm.simple_test
class my_test(rfm.RegressionTest):

foo = variable(int, value=1)
num_tasks = foo

2.7. ReFrame Manuals 155

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

ReFrame Documentation, Release 3.10.0

Tip: In cases where the class body expresses logic as a function of a variable and this variable, as well as its
dependent logic, need to be controlled externally, the variable’s default value (i.e. the value set through the value
argument) may be modified as follows through an environment variable and not through the -S option:

import os

@rfm.simple_test
class my_test(rfm.RegressionTest):

max_nodes = variable(int, value=int(os.getenv('MAX_NODES', 1)))
Parameterise number of nodes
num_nodes = parameter((1 << i for i in range(0, int(max_nodes))))

• If the variable is set in any pipeline hook, the command line assignment will have an effect until the variable
assignment in the pipeline hook is reached. The variable will be then overwritten.

• The test filtering happens after a test is instantiated, so the only way to scope a variable assignment is to
prefix it with the test class name. However, this has some positive side effects:

– Passing -S valid_systems='*' and -S valid_prog_environs='*' is the equivalent of passing
the --skip-system-check and --skip-prgenv-check options.

– Users could alter the behavior of tests based on tag values that they pass from the command line, by
changing the behavior of a test in a post-init hook based on the value of the tags attribute.

– Users could force a test with required variables to run if they set these variables from the command
line. For example, the following test could only be run if invoked with -S num_tasks=<NUM>:

@rfm.simple_test
class my_test(rfm.RegressionTest):

num_tasks = required

New in version 3.8.0.

Changed in version 3.9.3: Proper handling of boolean variables.

--skip-performance-check
Skip performance checking phase.

The phase is completely skipped, meaning that performance data will not be logged.

--skip-sanity-check
Skip sanity checking phase.

--strict
Enforce strict performance checking, even if a performance test is marked as not performance critical by having
set its strict_check attribute to False.

156 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Options controlling job submission

-J, --job-option=OPTION
Pass OPTION directly to the job scheduler backend.

The syntax of OPTION is -J key=value. If OPTION starts with - it will be passed verbatim to the backend job
scheduler. If OPTION starts with # it will be emitted verbatim in the job script. Otherwise, ReFrame will pass
--key value or -k value (if key is a single character) to the backend scheduler. Any job options specified
with this command-line option will be emitted after any job options specified in the access system partition
configuration parameter.

Especially for the Slurm backends, constraint options, such as -J constraint=value, -J C=value, -J
--constraint=value or -J -C=value, are going to be combined with any constraint options specified in
the access system partition configuration parameter. For example, if -C x is specified in the access and -J
C=y is passed to the command-line, ReFrame will pass -C x&y as a constraint to the scheduler. Notice, however,
that if constraint options are specified through multiple -J options, only the last one will be considered. If you
wish to completely overwrite any constraint options passed in access, you should consider passing explicitly
the Slurm directive with -J '#SBATCH --constraint=new'.

Changed in version 3.0: This option has become more flexible.

Changed in version 3.1: Use & to combine constraints.

Flexible node allocation

ReFrame can automatically set the number of tasks of a test, if its num_tasks attribute is set to a value less than or equal
to zero. This scheme is conveniently called flexible node allocation and is valid only for the Slurm backend. When
allocating nodes automatically, ReFrame will take into account all node limiting factors, such as partition access
options, and any job submission control options described above. Nodes from this pool are allocated according to
different policies. If no node can be selected, the test will be marked as a failure with an appropriate message.

--flex-alloc-nodes=POLICY
Set the flexible node allocation policy.

Available values are the following:

• all: Flexible tests will be assigned as many tasks as needed in order to span over all the nodes of the node
pool.

• STATE: Flexible tests will be assigned as many tasks as needed in order to span over the nodes that are
currently in state STATE. Querying of the node state and submission of the test job are two separate steps
not executed atomically. It is therefore possible that the number of tasks assigned does not correspond to
the actual nodes in the given state.

If this option is not specified, the default allocation policy for flexible tests is ‘idle’.

• Any positive integer: Flexible tests will be assigned as many tasks as needed in order to span over the
specified number of nodes from the node pool.

Changed in version 3.1: It is now possible to pass an arbitrary node state as a flexible node allocation parameter.

2.7. ReFrame Manuals 157

ReFrame Documentation, Release 3.10.0

Options controlling ReFrame environment

ReFrame offers the ability to dynamically change its environment as well as the environment of tests. It does so by
leveraging the selected system’s environment modules system.

-M, --map-module=MAPPING
Apply a module mapping.

ReFrame allows manipulating test modules on-the-fly using module mappings. A module mapping has the form
old_module: module1 [module2]... and will cause ReFrame to replace a module with another list of
modules upon load time. For example, the mapping foo: foo/1.2 will load module foo/1.2 whenever
module foo needs to be loaded. A mapping may also be self-referring, e.g., gnu: gnu gcc/10.1, however
cyclic dependencies in module mappings are not allowed and ReFrame will issue an error if it detects one. This
option is especially useful for running tests using a newer version of a software or library.

This option may be specified multiple times, in which case multiple mappings will be applied.

This option can also be set using the RFM_MODULE_MAPPINGS environment variable or the module_mappings
general configuration parameter.

Changed in version 3.3: If the mapping replaces a module collection, all new names must refer to module col-
lections, too.

See also:

Module collections with Environment Modules and Lmod.

-m, --module=NAME
Load environment module NAME before acting on any tests.

This option may be specified multiple times, in which case all specified modules will be loaded in order. ReFrame
will not perform any automatic conflict resolution.

This option can also be set using the RFM_USER_MODULES environment variable or the user_modules general
configuration parameter.

--module-mappings=FILE
A file containing module mappings.

Each line of the file contains a module mapping in the form described in the -M option. This option may be
combined with the -M option, in which case module mappings specified will be applied additionally.

This option can also be set using the RFM_MODULE_MAP_FILE environment variable or the module_map_file
general configuration parameter.

--module-path=PATH
Manipulate the MODULEPATH environment variable before acting on any tests.

If PATH starts with the - character, it will be removed from the MODULEPATH, whereas if it starts with the +
character, it will be added to it. In all other cases, PATH will completely override MODULEPATH. This option
may be specified multiple times, in which case all the paths specified will be added or removed in order.

New in version 3.3.

--non-default-craype
Test a non-default Cray Programming Environment.

Since CDT 19.11, this option can be used in conjunction with -m , which will load the target CDT. For example:

reframe -m cdt/20.03 --non-default-craype -r

This option causes ReFrame to properly set the LD_LIBRARY_PATH for such cases. It will emit the following
code after all the environment modules of a test have been loaded:

158 Chapter 2. Publications

https://modules.readthedocs.io/en/latest/MIGRATING.html#module-collection
https://lmod.readthedocs.io/en/latest/010_user.html#user-collections

ReFrame Documentation, Release 3.10.0

export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH

This option can also be set using the RFM_NON_DEFAULT_CRAYPE environment variable or the
non_default_craype general configuration parameter.

--purge-env
Unload all environment modules before acting on any tests.

This will unload also sticky Lmod modules.

This option can also be set using the RFM_PURGE_ENVIRONMENT environment variable or the
purge_environment general configuration parameter.

-u, --unload-module=NAME
Unload environment module NAME before acting on any tests.

This option may be specified multiple times, in which case all specified modules will be unloaded in order.

This option can also be set using the RFM_UNLOAD_MODULES environment variable or the unload_modules
general configuration parameter.

Miscellaneous options

-C --config-file=FILE
Use FILE as configuration file for ReFrame.

This option can also be set using the RFM_CONFIG_FILE environment variable.

--detect-host-topology[=FILE]
Detect the local host processor topology, store it to FILE and exit.

If no FILE is specified, the standard output will be used.

New in version 3.7.0.

--failure-stats
Print failure statistics at the end of the run.

-h, --help
Print a short help message and exit.

--nocolor
Disable output coloring.

This option can also be set using the RFM_COLORIZE environment variable or the colorize general configuration
parameter.

--performance-report
Print a performance report for all the performance tests that have been run.

The report shows the performance values retrieved for the different performance variables defined in the tests.

-q, --quiet
Decrease the verbosity level.

This option can be specified multiple times. Every time this option is specified, the verbosity level will be
decreased by one. This option can be combined arbitrarily with the -v option, in which case the final verbosity
level will be determined by the final combination. For example, specifying -qv will not change the verbosity
level, since the two options cancel each other, but -qqv is equivalent to -q. For a list of ReFrame’s verbosity
levels, see the description of the -v option.

New in version 3.9.3.

2.7. ReFrame Manuals 159

ReFrame Documentation, Release 3.10.0

--show-config [PARAM]
Show the value of configuration parameter PARAM as this is defined for the currently selected system and exit.

The parameter value is printed in JSON format. If PARAM is not specified or if it set to all, the whole configura-
tion for the currently selected system will be shown. Configuration parameters are formatted as a path navigating
from the top-level configuration object to the actual parameter. The / character acts as a selector of configuration
object properties or an index in array objects. The @ character acts as a selector by name for configuration objects
that have a name property. Here are some example queries:

• Retrieve all the partitions of the current system:

reframe --show-config=systems/0/partitions

• Retrieve the job scheduler of the partition named default:

reframe --show-config=systems/0/partitions/@default/scheduler

• Retrieve the check search path for system foo:

reframe --system=foo --show-config=general/0/check_search_path

--system=NAME
Load the configuration for system NAME.

The NAME must be a valid system name in the configuration file. It may also have the form SYSNAME:PARTNAME,
in which case the configuration of system SYSNAME will be loaded, but as if it had PARTNAME as its sole partition.
Of course, PARTNAME must be a valid partition of system SYSNAME. If this option is not specified, ReFrame will
try to pick the correct configuration entry automatically. It does so by trying to match the hostname of the current
machine again the hostname patterns defined in the hostnames system configuration parameter. The system with
the first match becomes the current system. For Cray systems, ReFrame will first look for the unqualified machine
name in /etc/xthostname before trying retrieving the hostname of the current machine.

This option can also be set using the RFM_SYSTEM environment variable.

--upgrade-config-file=OLD[:NEW]
Convert the old-style configuration file OLD, place it into the new file NEW and exit.

If a new file is not given, a file in the system temporary directory will be created.

-V, --version
Print version and exit.

-v, --verbose
Increase verbosity level of output.

This option can be specified multiple times. Every time this option is specified, the verbosity level will be
increased by one. There are the following message levels in ReFrame listed in increasing verbosity order:
critical, error, warning, info, verbose and debug. The base verbosity level of the output is defined
by the level stream logging handler configuration parameter.

This option can also be set using the RFM_VERBOSE environment variable or the verbose general configuration
parameter.

160 Chapter 2. Publications

config_reference.html#common-logging-handler-properties

ReFrame Documentation, Release 3.10.0

Test Naming Scheme

New in version 3.10.0.

This section describes the new test naming scheme which will replace the current one in ReFrame 4.0. It can be enabled
by setting the RFM_COMPACT_TEST_NAMES environment variable.

Each ReFrame test is assigned a unique name, which will be used internally by the framework to reference the test.
Any test-specific path component will use that name, too. It is formed as follows for the various types of tests:

• Regular tests: The unique name is simply the test class name. This implies that you cannot load two tests with
the same class name within the same run session even if these tests reside in separate directories.

• Parameterized tests: The unique name is formed by the test class name followed by an _ and the variant number
of the test. Each point in the parameter space of the test is assigned a unique variant number.

• Fixtures: The unique name is formed by the test class name followed by an _ and a hash. The hash is constructed
by combining the information of the fixture variant (if the fixture is parameterized), the fixture’s scope and any
fixture variables that were explicitly set.

Since unique names can be cryptic, they are not listed by the -l option, but are listed when a detailed listing is requested
by using the -L option.

A human readable version of the test name, which is called the display name, is also constructed for each test. This
name encodes all the parameterization information as well as the fixture-specific information (scopes, variables). The
format of the display name is the following in BNF notation:

<display_name> ::= <test_class_name> (<params>)* (<scope>)?
<params> ::= "%" <parametrization> "=" <pvalue>
<parametrization> ::= (<fname> ".")* <pname>
<scope> ::= "~" <scope_descr>
<scope_descr> ::= <first> ("+" <second>)*

<test_class_name> ::= (* as in Python *)
<fname> ::= (* string *)
<pname> ::= (* string *)
<pvalue> ::= (* string *)
<first> ::= (* string *)
<second> ::= (* string *)

The following is an example of a fictitious complex test that is itself parameterized and depends on parameterized
fixtures as well.

import reframe as rfm

class MyFixture(rfm.RunOnlyRegressionTest):
p = parameter([1, 2])

class X(rfm.RunOnlyRegressionTest):
foo = variable(int, value=1)

@rfm.simple_test
class TestA(rfm.RunOnlyRegressionTest):

f = fixture(MyFixture, scope='test', action='join')
(continues on next page)

2.7. ReFrame Manuals 161

ReFrame Documentation, Release 3.10.0

(continued from previous page)

x = parameter([3, 4])
t = fixture(MyFixture, scope='test')
l = fixture(X, scope='environment', variables={'foo': 10})
valid_systems = ['*']
valid_prog_environs = ['*']

Here is how this test is listed where the various components of the display name can be seen:

- TestA %x=4 %l.foo=10 %t.p=2
^MyFixture %p=1 ~TestA_4_1
^MyFixture %p=2 ~TestA_4_1
^X %foo=10 ~generic:default+builtin

- TestA %x=3 %l.foo=10 %t.p=2
^MyFixture %p=1 ~TestA_3_1
^MyFixture %p=2 ~TestA_3_1
^X %foo=10 ~generic:default+builtin

- TestA %x=4 %l.foo=10 %t.p=1
^MyFixture %p=2 ~TestA_4_0
^MyFixture %p=1 ~TestA_4_0
^X %foo=10 ~generic:default+builtin

- TestA %x=3 %l.foo=10 %t.p=1
^MyFixture %p=2 ~TestA_3_0
^MyFixture %p=1 ~TestA_3_0
^X %foo=10 ~generic:default+builtin

Found 4 check(s)

Display names may not always be unique. In the following example:

class MyTest(RegressionTest):
p = parameter([1, 1, 1])

This generates three different tests with different unique names, but their display name is the same for all: MyTest
%p=1. Notice that this example leads to a name conflict with the old naming scheme, since all tests would be named
MyTest_1.

Differences from the old naming scheme

Prior to version 3.10, ReFrame used to encode the parameter values of an instance of parameterized test in its name. It
did so by taking the string representation of the value and replacing any non-alphanumeric character with an underscore.
This could lead to very large and hard to read names when a test defined multiple parameters or the parameter type was
more complex. Very large test names meant also very large path names which could also lead to problems and random
failures. Fixtures followed a similar naming pattern making them hard to debug.

The old naming scheme is still the default for parameterized tests (but not for fixtures) and will remain so until ReFrame
4.0, in order to ensure backward compatibility. However, users are advised to enable the new naming scheme by setting
the RFM_COMPACT_TEST_NAMES environment variable.

162 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Environment

Several aspects of ReFrame can be controlled through environment variables. Usually environment variables have
counterparts in command line options or configuration parameters. In such cases, command-line options take prece-
dence over environment variables, which in turn precede configuration parameters. Boolean environment variables can
have any value of true, yes, y (case insensitive) or 1 to denote true and any value of false, no, n (case insensitive)
or 0 to denote false.

Changed in version 3.9.2: Values 1 and 0 are now valid for boolean environment variables.

Here is an alphabetical list of the environment variables recognized by ReFrame:

RFM_CHECK_SEARCH_PATH
A colon-separated list of filesystem paths where ReFrame should search for tests.

Associated command line option -c
Associated configuration parameter check_search_path general configuration parameter

RFM_CHECK_SEARCH_RECURSIVE
Search for test files recursively in directories found in the check search path.

Associated command line option -R
Associated configuration parameter check_search_recursive general configuration parameter

RFM_CLEAN_STAGEDIR
Clean stage directory of tests before populating it.

New in version 3.1.

Associated command line option --dont-restage
Associated configuration parameter clean_stagedir general configuration parameter

RFM_COLORIZE
Enable output coloring.

Associated command line option --nocolor
Associated configuration parameter colorize general configuration parameter

RFM_COMPACT_TEST_NAMES
Enable the new test naming scheme.

Associated command line option N/A
Associated configuration parameter compact_test_names general configuration parameter

New in version 3.9.0.

RFM_CONFIG_FILE
Set the configuration file for ReFrame.

Associated command line option -C
Associated configuration parameter N/A

2.7. ReFrame Manuals 163

ReFrame Documentation, Release 3.10.0

RFM_GIT_TIMEOUT
Timeout value in seconds used when checking if a git repository exists.

Associated command line option N/A
Associated configuration parameter git_timeout general configuration parameter.

New in version 3.9.0.

RFM_GRAYLOG_ADDRESS
The address of the Graylog server to send performance logs. The address is specified in host:port format.

Associated command line option N/A
Associated configuration parameter address graylog log handler configuration parameter

New in version 3.1.

RFM_GRAYLOG_SERVER
Deprecated since version 3.1: Please RFM_GRAYLOG_ADDRESS instead.

RFM_HTTPJSON_URL
The URL of the server to send performance logs in JSON format. The URL is specified in scheme://
host:port/path format.

Associated command line option N/A
Associated configuration parameter url httpjson log handler configuration parameter

New in version 3.6.1.

RFM_IGNORE_CHECK_CONFLICTS
Ignore tests with conflicting names when loading.

Associated command line option --ignore-check-conflicts
Associated configuration parameter ignore_check_conflicts general configuration parameter

Deprecated since version 3.8.0: This environment variable will be removed in a future version.

RFM_IGNORE_REQNODENOTAVAIL
Do not treat specially jobs in pending state with the reason ReqNodeNotAvail (Slurm only).

Associated command line option N/A
Associated configuration parameter ignore_reqnodenotavail scheduler configuration parameter

RFM_KEEP_STAGE_FILES
Keep test stage directories even for tests that finish successfully.

Associated command line option --keep-stage-files
Associated configuration parameter keep_stage_files general configuration parameter

RFM_MODULE_MAP_FILE
A file containing module mappings.

Associated command line option --module-mappings
Associated configuration parameter module_map_file general configuration parameter

164 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

RFM_MODULE_MAPPINGS
A comma-separated list of module mappings.

Associated command line option -M
Associated configuration parameter module_mappings general configuration parameter

RFM_NON_DEFAULT_CRAYPE
Test a non-default Cray Programming Environment.

Associated command line option --non-default-craype
Associated configuration parameter non_default_craype general configuration parameter

RFM_OUTPUT_DIR
Directory prefix for test output files.

Associated command line option -o
Associated configuration parameter outputdir system configuration parameter

RFM_PERFLOG_DIR
Directory prefix for logging performance data.

Associated command line option --perflogdir
Associated configuration parameter basedir logging handler configuration parameter

RFM_PREFIX
General directory prefix for ReFrame-generated directories.

Associated command line option --prefix
Associated configuration parameter prefix system configuration parameter

RFM_PURGE_ENVIRONMENT
Unload all environment modules before acting on any tests.

Associated command line option --purge-env
Associated configuration parameter purge_environment general configuration parameter

RFM_REMOTE_DETECT
Auto-detect processor information of remote partitions as well.

Associated command line option N/A
Associated configuration parameter remote_detect general configuration parameter

New in version 3.7.0.

RFM_REMOTE_WORKDIR
The temporary directory prefix that will be used to create a fresh ReFrame clone, in order to auto-detect the
processor information of a remote partition.

Associated command line option N/A
Associated configuration parameter remote_workdir general configuration parameter

2.7. ReFrame Manuals 165

ReFrame Documentation, Release 3.10.0

New in version 3.7.0.

RFM_REPORT_FILE
The file where ReFrame will store its report.

New in version 3.1.

Associated command line option --report-file
Associated configuration parameter report_file general configuration parameter

RFM_REPORT_JUNIT
The file where ReFrame will generate a JUnit XML report.

New in version 3.6.0.

Associated command line option --report-junit
Associated configuration parameter report_junit general configuration parameter

RFM_RESOLVE_MODULE_CONFLICTS
Resolve module conflicts automatically.

New in version 3.6.0.

Associated command line option N/A
Associated configuration parameter resolve_module_conflicts general configuration parameter

RFM_SAVE_LOG_FILES
Save ReFrame log files in the output directory before exiting.

Associated command line option --save-log-files
Associated configuration parameter save_log_files general configuration parameter

RFM_STAGE_DIR
Directory prefix for staging test resources.

Associated command line option -s
Associated configuration parameter stagedir system configuration parameter

RFM_SYSLOG_ADDRESS
The address of the Syslog server to send performance logs. The address is specified in host:port format. If no
port is specified, the address refers to a UNIX socket.

Associated command line option N/A
Associated configuration parameter address syslog log handler configuration parameter

New in version 3.1.

RFM_SYSTEM
Set the current system.

Associated command line option --system
Associated configuration parameter N/A

166 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

RFM_TIMESTAMP_DIRS
Append a timestamp to the output and stage directory prefixes.

Associated command line option --timestamp
Associated configuration parameter timestamp_dirs general configuration parameter.

RFM_TRAP_JOB_ERRORS
Trap job errors in submitted scripts and fail tests automatically.

Associated configuration parameter trap_job_errors general configuration parameter

New in version 3.9.0.

RFM_UNLOAD_MODULES
A comma-separated list of environment modules to be unloaded before acting on any tests.

Associated command line option -u
Associated configuration parameter unload_modules general configuration parameter

RFM_USE_LOGIN_SHELL
Use a login shell for the generated job scripts.

Associated command line option N/A
Associated configuration parameter use_login_shell general configuration parameter

RFM_USER_MODULES
A comma-separated list of environment modules to be loaded before acting on any tests.

Associated command line option -m
Associated configuration parameter user_modules general configuration parameter

RFM_VERBOSE
Set the verbosity level of output.

Associated command line option -v
Associated configuration parameter verbose general configuration parameter

Configuration File

The configuration file of ReFrame defines the systems and environments to test as well as parameters controlling its
behavior. Upon start up ReFrame checks for configuration files in the following locations in that order:

1. $HOME/.reframe/settings.{py,json}

2. $RFM_INSTALL_PREFIX/settings.{py,json}

3. /etc/reframe.d/settings.{py,json}

ReFrame accepts configuration files either in Python or JSON syntax. If both are found in the same location, the Python
file will be preferred.

The RFM_INSTALL_PREFIX environment variable refers to the installation directory of ReFrame. Users have no control
over this variable. It is always set by the framework upon startup.

2.7. ReFrame Manuals 167

ReFrame Documentation, Release 3.10.0

If no configuration file can be found in any of the predefined locations, ReFrame will fall back to a generic configuration
that allows it to run on any system. This configuration file is located in reframe/core/settings.py. Users may not
modify this file.

For a complete reference of the configuration, please refer to reframe.settings(8) man page.

Reporting Bugs

For bugs, feature request, help, please open an issue on Github: <https://github.com/eth-cscs/reframe>

See Also

See full documentation online: <https://reframe-hpc.readthedocs.io/>

2.7.2 Configuration Reference

ReFrame’s behavior can be configured through its configuration file (see Configuring ReFrame for Your Site), envi-
ronment variables and command-line options. An option can be specified via multiple paths (e.g., a configuration file
parameter and an environment variable), in which case command-line options precede environment variables, which in
turn precede configuration file options. This section provides a complete reference guide of the configuration options
of ReFrame that can be set in its configuration file or specified using environment variables.

ReFrame’s configuration is in JSON syntax. The full schema describing it can be found in reframe/schemas/
config.json file. Any configuration file given to ReFrame is validated against this schema.

The syntax we use in the following to describe the different configuration object attributes is a valid query string for
the jq(1) command-line processor.

Top-level Configuration

The top-level configuration object is essentially the full configuration of ReFrame. It consists of the following proper-
ties:

.systems

Required Yes

A list of system configuration objects.

.environments

Required Yes

A list of environment configuration objects.

.logging

Required Yes

A list of logging configuration objects.

.schedulers

Required No

A list of scheduler configuration objects.

.modes

168 Chapter 2. Publications

https://github.com/eth-cscs/reframe/blob/master/reframe/core/settings.py
config_reference.html
https://github.com/eth-cscs/reframe
https://reframe-hpc.readthedocs.io/
https://github.com/eth-cscs/reframe/blob/master/reframe/schemas/config.json
https://github.com/eth-cscs/reframe/blob/master/reframe/schemas/config.json
https://stedolan.github.io/jq/manual/

ReFrame Documentation, Release 3.10.0

Required No

A list of execution mode configuration objects.

.general

Required No

A list of general configuration objects.

System Configuration

.systems[].name

Required Yes

The name of this system. Only alphanumeric characters, dashes (-) and underscores (_) are allowed.

.systems[].descr

Required No

Default ""

The description of this system.

.systems[].hostnames

Required Yes

A list of hostname regular expression patterns in Python syntax, which will be used by the framework in order
to automatically select a system configuration. For the auto-selection process, see here.

.systems[].max_local_jobs
The maximum number of forced local build or run jobs allowed.

Forced local jobs run within the execution context of ReFrame.

Required No

Default 8

New in version 3.10.0.

.systems[].modules_system

Required No

Default "nomod"

The modules system that should be used for loading environment modules on this system. Available values are
the following:

• tmod: The classic Tcl implementation of the environment modules (version 3.2).

• tmod31: The classic Tcl implementation of the environment modules (version 3.1). A separate backend is
required for Tmod 3.1, because Python bindings are different from Tmod 3.2.

• tmod32: A synonym of tmod.

• tmod4: The new environment modules implementation (versions older than 4.1 are not supported).

• lmod: The Lua implementation of the environment modules.

• spack: Spack’s built-in mechanism for managing modules.

• nomod: This is to denote that no modules system is used by this system.

2.7. ReFrame Manuals 169

https://docs.python.org/3.8/library/re.html
configure.html#picking-a-system-configuration
https://sourceforge.net/projects/modules/files/Modules/modules-3.2.10/
https://sourceforge.net/projects/modules/files/Modules/modules-3.2.10/
http://modules.sourceforge.net/
https://lmod.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/

ReFrame Documentation, Release 3.10.0

New in version 3.4: The spack backend is added.

.systems[].modules

Required No

Default []

A list of environment module objects to be loaded always when running on this system. These modules modify
the ReFrame environment. This is useful in cases where a particular module is needed, for example, to submit
jobs on a specific system.

.systems[].variables

Required No

Default []

A list of environment variables to be set always when running on this system. Each environment variable is
specified as a two-element list containing the variable name and its value. You may reference other environment
variables when defining an environment variable here. ReFrame will expand its value. Variables are set after the
environment modules are loaded.

.systems[].prefix

Required No

Default "."

Directory prefix for a ReFrame run on this system. Any directories or files produced by ReFrame will use this
prefix, if not specified otherwise.

.systems[].stagedir

Required No

Default "${RFM_PREFIX}/stage"

Stage directory prefix for this system. This is the directory prefix, where ReFrame will create the stage directories
for each individual test case.

.systems[].outputdir

Required No

Default "${RFM_PREFIX}/output"

Output directory prefix for this system. This is the directory prefix, where ReFrame will save information about
the successful tests.

.systems[].resourcesdir

Required No

Default "."

Directory prefix where external test resources (e.g., large input files) are stored. You may reference this prefix
from within a regression test by accessing the reframe.core.systems.System.resourcesdir attribute of
the current system.

.systems[].partitions

Required Yes

A list of system partition configuration objects. This list must have at least one element.

170 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

System Partition Configuration

.systems[].partitions[].name

Required Yes

The name of this partition. Only alphanumeric characters, dashes (-) and underscores (_) are allowed.

.systems[].partitions[].descr

Required No

Default ""

The description of this partition.

.systems[].partitions[].scheduler

Required Yes

The job scheduler that will be used to launch jobs on this partition. Supported schedulers are the following:

• local: Jobs will be launched locally without using any job scheduler.

• oar: Jobs will be launched using the OAR scheduler.

• pbs: Jobs will be launched using the PBS Pro scheduler.

• sge: Jobs will be launched using the Sun Grid Engine scheduler.

• slurm: Jobs will be launched using the Slurm scheduler. This backend requires job accounting to be
enabled in the target system. If not, you should consider using the squeue backend below.

• squeue: Jobs will be launched using the Slurm scheduler. This backend does not rely on job accounting
to retrieve job statuses, but ReFrame does its best to query the job state as reliably as possible.

• torque: Jobs will be launched using the Torque scheduler.

New in version 3.7.2: Support for the SGE scheduler is added.

New in version 3.8.2: Support for the OAR scheduler is added.

Note: The way that multiple node jobs are submitted using the SGE scheduler can be very site-specific.
For this reason, the sge scheduler backend does not try to interpret any related arguments, e.g., num_tasks,
num_tasks_per_node etc. Users must specify how these resources are to be requested by setting the resources
partition configuration parameter and then request them from inside a test using the extra_resources test
attribute. Here is an example configuration for a system partition named foo that defines different ways for
submitting MPI-only, OpenMP-only and MPI+OpenMP jobs:

{
'name': 'foo',
'scheduler': 'sge',
'resources': [

{
'name': 'smp',
'options': ['-pe smp {num_slots}']

},
{

'name': 'mpi',
'options': ['-pe mpi {num_slots}']

},
(continues on next page)

2.7. ReFrame Manuals 171

https://oar.imag.fr/
https://en.wikipedia.org/wiki/Portable_Batch_System
https://arc.liv.ac.uk/SGE/htmlman/manuals.html
https://www.schedmd.com/
https://www.schedmd.com/
https://en.wikipedia.org/wiki/TORQUE

ReFrame Documentation, Release 3.10.0

(continued from previous page)

{
'name': 'mpismp',
'options': ['-pe mpismp {num_slots}']

}
]

}

Each test then can request the different type of slots as follows:

self.extra_resouces = {
'smp': {'num_slots': self.num_cpus_per_task},
'mpi': {'num_slots': self.num_tasks},
'mpismp': {'num_slots': self.num_tasks*self.num_cpus_per_task}

}

Notice that defining extra_resources does not make the test non-portable to other systems that have different
schedulers; the extra_resources will be simply ignored in this case and the scheduler backend will interpret
the different test fields in the appropriate way.

.systems[].partitions[].launcher

Required Yes

The parallel job launcher that will be used in this partition to launch parallel programs. Available values are the
following:

• alps: Parallel programs will be launched using the Cray ALPS aprun command.

• ibrun: Parallel programs will be launched using the ibrun command. This is a custom parallel program
launcher used at TACC.

• local: No parallel program launcher will be used. The program will be launched locally.

• lrun: Parallel programs will be launched using LC Launcher’s lrun command.

• lrun-gpu: Parallel programs will be launched using LC Launcher’s lrun -M "-gpu" command that
enables the CUDA-aware Spectrum MPI.

• mpirun: Parallel programs will be launched using the mpirun command.

• mpiexec: Parallel programs will be launched using the mpiexec command.

• srun: Parallel programs will be launched using Slurm’s srun command.

• srunalloc: Parallel programs will be launched using Slurm’s srun command, but job allocation options
will also be emitted. This can be useful when combined with the local job scheduler.

• ssh: Parallel programs will be launched using SSH. This launcher uses the partition’s access property
in order to determine the remote host and any additional options to be passed to the SSH client. The ssh
command will be launched in “batch mode,” meaning that password-less access to the remote host must be
configured. Here is an example configuration for the ssh launcher:

{
'name': 'foo'
'scheduler': 'local',
'launcher': 'ssh'
'access': ['-l admin', 'remote.host'],

(continues on next page)

172 Chapter 2. Publications

https://pubs.cray.com/content/S-2393/CLE%205.2.UP03/cle-xc-system-administration-guide-s-2393-5203-xc/the-aprun-client
https://portal.tacc.utexas.edu/user-guides/stampede2
https://hpc.llnl.gov/training/tutorials/using-lcs-sierra-system#lrun
https://hpc.llnl.gov/training/tutorials/using-lcs-sierra-system#lrun
https://slurm.schedmd.com/srun.html
https://slurm.schedmd.com/srun.html

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'environs': ['builtin'],
}

• upcrun: Parallel programs will be launched using the UPC upcrun command.

• upcxx-run: Parallel programs will be launched using the UPC++ upcxx-run command.

.systems[].partitions[].access

Required No

Default []

A list of job scheduler options that will be passed to the generated job script for gaining access to that logical
partition.

.systems[].partitions[].environs

required No

default []

A list of environment names that ReFrame will use to run regression tests on this partition. Each environment
must be defined in the environments section of the configuration and the definition of the environment must
be valid for this partition.

.systems[].partitions[].container_platforms

Required No

Default []

A list for container platform configuration objects. This will allow launching regression tests that use containers
on this partition.

.systems[].partitions[].modules

required No

default []

A list of environment module objects to be loaded before running a regression test on this partition.

.systems[].partitions[].time_limit

Required No

Default null

The time limit for the jobs submitted on this partition. When the value is null, no time limit is applied.

.systems[].partitions[].variables

Required No

Default []

A list of environment variables to be set before running a regression test on this partition. Each environment
variable is specified as a two-element list containing the variable name and its value. You may reference other
environment variables when defining an environment variable here. ReFrame will expand its value. Variables
are set after the environment modules are loaded.

.systems[].partitions[].max_jobs

Required No

Default 8

2.7. ReFrame Manuals 173

https://upc.lbl.gov/
https://bitbucket.org/berkeleylab/upcxx/wiki/Home

ReFrame Documentation, Release 3.10.0

The maximum number of concurrent regression tests that may be active (i.e., not completed) on this partition.
This option is relevant only when ReFrame executes with the asynchronous execution policy.

.systems[].partitions[].prepare_cmds

Required No

Default []

List of shell commands to be emitted before any environment loading commands are emitted.

New in version 3.5.0.

.systems[].partitions[].resources

Required No

Default []

A list of job scheduler resource specification objects.

.systems[].partitions[].processor

Required No

Default {}

Processor information for this partition stored in a processor info object. If not set, ReFrame will try to auto-
detect this information (see Auto-detecting processor information for more information).

New in version 3.5.0.

Changed in version 3.7.0: ReFrame is now able to detect the processor information automatically.

.systems[].partitions[].devices

Required No

Default []

A list with device info objects for this partition.

New in version 3.5.0.

.systems[].partitions[].extras

Required No

Default {}

User defined attributes of the partition. This will be accessible through the extras attribute of the
current_partition.

New in version 3.5.0.

Container Platform Configuration

ReFrame can launch containerized applications, but you need to configure properly a system partition in order to do
that by defining a container platform configuration.

.systems[].partitions[].container_platforms[].type

Required Yes

The type of the container platform. Available values are the following:

• Docker: The Docker container runtime.

174 Chapter 2. Publications

pipeline.html#execution-policies
config_reference.html#custom-job-scheduler-resources
https://www.docker.com/

ReFrame Documentation, Release 3.10.0

• Sarus: The Sarus container runtime.

• Shifter: The Shifter container runtime.

• Singularity: The Singularity container runtime.

.systems[].partitions[].container_platforms[].modules

Required No

Default []

A list of environment module objects to be loaded when running containerized tests using this container platform.

.systems[].partitions[].container_platforms[].variables

Required No

Default []

List of environment variables to be set when running containerized tests using this container platform. Each
environment variable is specified as a two-element list containing the variable name and its value. You may
reference other environment variables when defining an environment variable here. ReFrame will expand its
value. Variables are set after the environment modules are loaded.

Custom Job Scheduler Resources

ReFrame allows you to define custom scheduler resources for each partition that you can then transparently access
through the extra_resources attribute of a regression test.

.systems[].partitions[].resources[].name

required Yes

The name of this resources. This name will be used to request this resource in a regression test’s
extra_resources.

.systems[].partitions[].resources[].options

required No

default []

A list of options to be passed to this partition’s job scheduler. The option strings can contain place-
holders of the form {placeholder_name}. These placeholders may be replaced with concrete values
by a regression test through the extra_resources attribute.

For example, one could define a gpu resource for a multi-GPU system that uses Slurm as follows:

'resources': [
{

'name': 'gpu',
'options': ['--gres=gpu:{num_gpus_per_node}']

}
]

A regression test then may request this resource as follows:

self.extra_resources = {'gpu': {'num_gpus_per_node': '8'}}

And the generated job script will have the following line in its preamble:

2.7. ReFrame Manuals 175

https://sarus.readthedocs.io/
https://github.com/NERSC/shifter
https://sylabs.io/

ReFrame Documentation, Release 3.10.0

#SBATCH --gres=gpu:8

A resource specification may also start with #PREFIX, in which case #PREFIXwill replace the standard
job script prefix of the backend scheduler of this partition. This is useful in cases of job schedulers like
Slurm, that allow alternative prefixes for certain features. An example is the DataWarp functionality
of Slurm which is supported by the #DW prefix. One could then define DataWarp related resources as
follows:

'resources': [
{

'name': 'datawarp',
'options': [

'#DW jobdw capacity={capacity} access_mode={mode} type=scratch',
'#DW stage_out source={out_src} destination={out_dst} type=

→˓{stage_filetype}'
]

}
]

A regression test that wants to make use of that resource, it can set its extra_resources as follows:

self.extra_resources = {
'datawarp': {

'capacity': '100GB',
'mode': 'striped',
'out_src': '$DW_JOB_STRIPED/name',
'out_dst': '/my/file',
'stage_filetype': 'file'

}
}

Note: For the pbs and torque backends, options accepted in the access and resources attributes may either
refer to actual qsub options or may be just resources specifications to be passed to the -l option. The backend
assumes a qsub option, if the options passed in these attributes start with a -.

Environment Configuration

Environments defined in this section will be used for running regression tests. They are associated with system parti-
tions.

.environments[].name

Required Yes

The name of this environment.

.environments[].modules

Required No

Default []

A list of environment module objects to be loaded when this environment is loaded.

.environments[].variables

176 Chapter 2. Publications

https://www.cray.com/datawarp

ReFrame Documentation, Release 3.10.0

Required No

Default []

A list of environment variables to be set when loading this environment. Each environment variable is specified
as a two-element list containing the variable name and its value. You may reference other environment vari-
ables when defining an environment variable here. ReFrame will expand its value. Variables are set after the
environment modules are loaded.

.environments[].extras

Required No

Default {}

User defined attributes of the environment. This will be accessible through the extras attribute of the
current_environ.

New in version 3.9.1.

.environments[].cc

Required No

Default "cc"

The C compiler to be used with this environment.

.environments[].cxx

Required No

Default "CC"

The C++ compiler to be used with this environment.

.environments[].ftn

Required No

Default "ftn"

The Fortran compiler to be used with this environment.

.environments[].cppflags

Required No

Default []

A list of C preprocessor flags to be used with this environment by default.

.environments[].cflags

Required No

Default []

A list of C flags to be used with this environment by default.

.environments[].cxxflags

Required No

Default []

A list of C++ flags to be used with this environment by default.

.environments[].fflags

2.7. ReFrame Manuals 177

ReFrame Documentation, Release 3.10.0

Required No

Default []

A list of Fortran flags to be used with this environment by default.

.environments[].ldflags

Required No

Default []

A list of linker flags to be used with this environment by default.

.environments[].target_systems

Required No

Default ["*"]

A list of systems or system/partitions combinations that this environment definition is valid for. A * entry denotes
any system. In case of multiple definitions of an environment, the most specific to the current system partition
will be used. For example, if the current system/partition combination is daint:mc, the second definition of the
PrgEnv-gnu environment will be used:

'environments': [
{

'name': 'PrgEnv-gnu',
'modules': ['PrgEnv-gnu']

},
{

'name': 'PrgEnv-gnu',
'modules': ['PrgEnv-gnu', 'openmpi'],
'cc': 'mpicc',
'cxx': 'mpicxx',
'ftn': 'mpif90',
'target_systems': ['daint:mc']

}
]

However, if the current system was daint:gpu, the first definition would be selected, despite the fact that the
second definition is relevant for another partition of the same system. To better understand this, ReFrame resolves
definitions in a hierarchical way. It first looks for definitions for the current partition, then for the containing
system and, finally, for global definitions (the * pseudo-system).

Logging Configuration

Logging in ReFrame is handled by logger objects which further delegate message to logging handlers which are even-
tually responsible for emitting or sending the log records to their destinations. You may define different logger objects
per system but not per partition.

.logging[].level

Required No

Default "undefined"

The level associated with this logger object. There are the following levels in decreasing severity order:

• critical: Catastrophic errors; the framework cannot proceed with its execution.

178 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

• error: Normal errors; the framework may or may not proceed with its execution.

• warning: Warning messages.

• info: Informational messages.

• verbose: More informational messages.

• debug: Debug messages.

• debug2: Further debug messages.

• undefined: This is the lowest level; do not filter any message.

If a message is logged by the framework, its severity level will be checked by the logger and if it is higher from
the logger’s level, it will be passed down to its handlers.

New in version 3.3: The debug2 and undefined levels are added.

Changed in version 3.3: The default level is now undefined.

.logging[].handlers

Required Yes

A list of logging handlers responsible for handling normal framework output.

.logging[].handlers_perflog

Required Yes

A list of logging handlers responsible for handling performance data from tests.

.logging[].target_systems

Required No

Default ["*"]

A list of systems or system/partitions combinations that this logging configuration is valid for. For a detailed
description of this property, you may refer here.

Common logging handler properties

All logging handlers share the following set of common attributes:

.logging[].handlers[].type

.logging[].handlers_perflog[].type

Required Yes

The type of handler. There are the following types available:

• file: This handler sends log records to file. See here for more details.

• filelog: This handler sends performance log records to files. See here for more details.

• graylog: This handler sends performance log records to Graylog. See here for more details.

• stream: This handler sends log records to a file stream. See here for more details.

• syslog: This handler sends log records to a Syslog facility. See here for more details.

• httpjson: This handler sends log records in JSON format using HTTP post requests. See here for more
details.

.logging[].handlers[].level

2.7. ReFrame Manuals 179

ReFrame Documentation, Release 3.10.0

.logging[].handlers_perflog[].level

Required No

Default "info"

The log level associated with this handler.

.logging[].handlers[].format

.logging[].handlers_perflog[].format

Required No

Default "%(message)s"

Log record format string. ReFrame accepts all log record attributes from Python’s logging mechanism and adds
the following:

• %(check_environ)s: The name of the environment that the current test is being executing for.

• %(check_info)s: General information of the currently executing check. By default this field has the form
%(check_name)s on %(check_system)s:%(check_partition)s using %(check_environ)s. It
can be configured on a per test basis by overriding the info method of a specific regression test.

• %(check_jobid)s: The job or process id of the job or process associated with the currently executing
regression test. If a job or process is not yet created, -1 will be printed.

• %(check_job_completion_time)s: The completion time of the job spawned by this regression test.
This timestamp will be formatted according to datefmt handler property. The accuracy of this timestamp
depends on the backend scheduler. The slurm scheduler backend relies on job accounting and returns the
actual termination time of the job. The rest of the backends report as completion time the moment when the
framework realizes that the spawned job has finished. In this case, the accuracy depends on the execution
policy used. If tests are executed with the serial execution policy, this is close to the real completion time,
but if the asynchronous execution policy is used, it can differ significantly. If the job completion time cannot
be retrieved, None will be printed.

• %(check_job_completion_time_unix)s: The completion time of the job spawned by this regression
test expressed as UNIX time. This is a raw time field and will not be formatted according to datefmt. If
specific formatting is desired, the check_job_completion_time should be used instead.

• %(check_name)s: The name of the regression test on behalf of which ReFrame is currently executing. If
ReFrame is not executing in the context of a regression test, reframe will be printed instead.

• %(check_partition)s: The system partition where this test is currently executing.

• %(check_system)s: The system where this test is currently executing.

• %(check_perf_lower_thres)s: The lower threshold of the performance difference from the reference
value expressed as a fractional value. See the reframe.core.pipeline.RegressionTest.reference
attribute of regression tests for more details.

• %(check_perf_ref)s: The reference performance value of a certain performance variable.

• %(check_perf_unit)s: The unit of measurement for the measured performance variable.

• %(check_perf_upper_thres)s: The upper threshold of the performance difference from the reference
value expressed as a fractional value. See the reframe.core.pipeline.RegressionTest.reference
attribute of regression tests for more details.

• %(check_perf_value)s: The performance value obtained for a certain performance variable.

• %(check_perf_var)s: The name of the performance variable being logged.

180 Chapter 2. Publications

https://docs.python.org/3.8/library/logging.html#logrecord-attributes
tutorial_basics.html#writing-a-performance-test

ReFrame Documentation, Release 3.10.0

• %(check_ATTR)s: This will log the value of the attribute ATTR of the currently executing regression test.
Dictionaries will be logged in JSON format and all other iterables, except strings, will be logged as comma-
separated lists. If ATTR is not an attribute of the test, %(check_ATTR)s will be logged as null. This
allows users to log arbitrary attributes of their tests. For the complete list of test attributes, please refer to
Regression Test API .

• %(check_job_ATTR)s: This will log the value of the attribute ATTR of the job associated to the currently
executing regression test.

• %(osuser)s: The name of the OS user running ReFrame.

• %(osgroup)s: The name of the OS group running ReFrame.

• %(version)s: The ReFrame version.

New in version 3.3: Allow arbitrary test attributes to be logged.

New in version 3.4.2: Allow arbitrary job attributes to be logged.

.logging[].handlers[].datefmt

.logging[].handlers_perflog[].datefmt

Required No

Default "%FT%T"

Time format to be used for printing timestamps fields. There are two timestamp fields available: %(asctime)s
and %(check_job_completion_time)s. In addition to the format directives supported by the standard li-
brary’s time.strftime() function, ReFrame allows you to use the %:z directive – a GNU date extension – that
will print the time zone difference in a RFC3339 compliant way, i.e., +/-HH:MM instead of +/-HHMM.

The file log handler

This log handler handles output to normal files. The additional properties for the file handler are the following:

.logging[].handlers[].name

.logging[].handlers_perflog[].name

Required No

The name of the file where this handler will write log records. If not specified, ReFrame will create a log file
prefixed with rfm- in the system’s temporary directory.

Changed in version 3.3: The name parameter is no more required and the default log file resides in the system’s
temporary directory.

.logging[].handlers[].append

.logging[].handlers_perflog[].append

Required No

Default false

Controls whether this handler should append to its file or not.

.logging[].handlers[].timestamp

.logging[].handlers_perflog[].timestamp

Required No

Default false

2.7. ReFrame Manuals 181

https://docs.python.org/3.8/library/time.html#time.strftime

ReFrame Documentation, Release 3.10.0

Append a timestamp to this handler’s log file. This property may also accept a date format as described in the
datefmt property. If the handler’s name property is set to filename.log and this property is set to true or to
a specific timestamp format, the resulting log file will be filename_<timestamp>.log.

The filelog log handler

This handler is meant primarily for performance logging and logs the performance of a regression test in one or more
files. The additional properties for the filelog handler are the following:

.logging[].handlers[].basedir

.logging[].handlers_perflog[].basedir

Required No

Default "./perflogs"

The base directory of performance data log files.

.logging[].handlers[].prefix

.logging[].handlers_perflog[].prefix

Required Yes

This is a directory prefix (usually dynamic), appended to the basedir, where the performance logs of a test
will be stored. This attribute accepts any of the check-specific formatting placeholders. This allows to create
dynamic paths based on the current system, partition and/or programming environment a test executes with. For
example, a value of %(check_system)s/%(check_partition)s would generate the following structure of
performance log files:

{basedir}/
system1/

partition1/
test_name.log

partition2/
test_name.log

...
system2/
...

.logging[].handlers[].append

.logging[].handlers_perflog[].append

Required No

Default true

Open each log file in append mode.

182 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

The graylog log handler

This handler sends log records to a Graylog server. The additional properties for the graylog handler are the following:

.logging[].handlers[].address

.logging[].handlers_perflog[].address

Required Yes

The address of the Graylog server defined as host:port.

.logging[].handlers[].extras

.logging[].handlers_perflog[].extras

Required No

Default {}

A set of optional key/value pairs to be passed with each log record to the server. These may depend on the server
configuration.

This log handler uses internally pygelf. If pygelf is not available, this log handler will be ignored. GELF is a format
specification for log messages that are sent over the network. The graylog handler sends log messages in JSON format
using an HTTP POST request to the specified address. More details on this log format may be found here. An example
configuration of this handler for performance logging is shown here:

{
'type': 'graylog',
'address': 'graylog-server:12345',
'level': 'info',
'format': '%(message)s',
'extras': {

'facility': 'reframe',
'data-version': '1.0'

}
}

Although the format is defined for this handler, it is not only the log message that will be transmitted the Graylog
server. This handler transmits the whole log record, meaning that all the information will be available and indexable at
the remote end.

The stream log handler

This handler sends log records to a file stream. The additional properties for the stream handler are the following:

.logging[].handlers[].name

.logging[].handlers_perflog[].name

Required No

Default "stdout"

The name of the file stream to send records to. There are only two available streams:

• stdout: the standard output.

• stderr: the standard error.

2.7. ReFrame Manuals 183

https://www.graylog.org/
https://pypi.org/project/pygelf/
http://docs.graylog.org/en/latest/pages/gelf.html
http://docs.graylog.org/en/latest/pages/gelf.html#gelf-payload-specification

ReFrame Documentation, Release 3.10.0

The syslog log handler

This handler sends log records to UNIX syslog. The additional properties for the syslog handler are the following:

.logging[].handlers[].socktype

.logging[].handlers_perflog[].socktype

Required No

Default "udp"

The socket type where this handler will send log records to. There are two socket types:

• udp: A UDP datagram socket.

• tcp: A TCP stream socket.

.logging[].handlers[].facility

.logging[].handlers_perflog[].facility

Required No

Default "user"

The Syslog facility where this handler will send log records to. The list of supported facilities can be found here.

.logging[].handlers[].address

.logging[].handlers_perflog[].address

Required Yes

The socket address where this handler will connect to. This can either be of the form <host>:<port> or simply
a path that refers to a Unix domain socket.

The httpjson log handler

This handler sends log records in JSON format to a server using HTTP POST requests. The additional properties for
the httpjson handler are the following:

.logging[].handlers[].url

.logging[].handlers_perflog[].url

Required Yes

The URL to be used in the HTTP(S) request server.

.logging[].handlers[].extras

.logging[].handlers_perflog[].extras

Required No

Default {}

A set of optional key/value pairs to be passed with each log record to the server. These may depend on the server
configuration.

The httpjson handler sends log messages in JSON format using an HTTP POST request to the specified URL.

An example configuration of this handler for performance logging is shown here:

184 Chapter 2. Publications

https://docs.python.org/3.8/library/logging.handlers.html#logging.handlers.SysLogHandler.encodePriority

ReFrame Documentation, Release 3.10.0

{
'type': 'httpjson',
'address': 'http://httpjson-server:12345/rfm',
'level': 'info',
'extras': {

'facility': 'reframe',
'data-version': '1.0'

}
}

This handler transmits the whole log record, meaning that all the information will be available and indexable at the
remote end.

Scheduler Configuration

A scheduler configuration object contains configuration options specific to the scheduler’s behavior.

Common scheduler options

.schedulers[].name

Required Yes

The name of the scheduler that these options refer to. It can be any of the supported job scheduler backends.

.schedulers[].job_submit_timeout

Required No

Default 60

Timeout in seconds for the job submission command. If timeout is reached, the regression test issuing that
command will be marked as a failure.

.schedulers[].target_systems

Required No

Default ["*"]

A list of systems or system/partitions combinations that this scheduler configuration is valid for. For a detailed
description of this property, you may refer here.

.schedulers[].use_nodes_option

Required No

Default false

Always emit the --nodes Slurm option in the preamble of the job script. This option is relevant to Slurm
backends only.

.schedulers[].ignore_reqnodenotavail

Required No

Default false

2.7. ReFrame Manuals 185

ReFrame Documentation, Release 3.10.0

This option is relevant to the Slurm backends only.

If a job associated to a test is in pending state with the Slurm reason ReqNodeNotAvail and a list of unavailable
nodes is also specified, ReFrame will check the status of the nodes and, if all of them are indeed down, it will
cancel the job. Sometimes, however, when Slurm’s backfill algorithm takes too long to compute, Slurm will set
the pending reason to ReqNodeNotAvail and mark all system nodes as unavailable, causing ReFrame to kill the
job. In such cases, you may set this parameter to true to avoid this.

.schedulers[].resubmit_on_errors

Required No

Default []

This option is relevant to the Slurm backends only.

If any of the listed errors occur, ReFrame will try to resubmit the job after some seconds. As an example, you
could have ReFrame trying to resubmit a job in case that the maximum submission limit per user is reached by
setting this field to ["QOSMaxSubmitJobPerUserLimit"]. You can ignore multiple errors at the same time if
you add more error strings in the list.

New in version 3.4.1.

Warning: Job submission is a synchronous operation in ReFrame. If this option is set, ReFrame’s execution
will block until the error conditions specified in this list are resolved. No other test would be able to proceed.

Execution Mode Configuration

ReFrame allows you to define groups of command line options that are collectively called execution modes. An execu-
tion mode can then be selected from the command line with the -mode option. The options of an execution mode will
be passed to ReFrame as if they were specified in the command line.

.modes[].name

Required Yes

The name of this execution mode. This can be used with the -mode command line option to invoke this mode.

.modes[].options

Required No

Default []

The command-line options associated with this execution mode.

.modes[].target_systems

Required No

Default ["*"]

A list of systems or system/partitions combinations that this execution mode is valid for. For a detailed description
of this property, you may refer here.

186 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

General Configuration

.general[].check_search_path

Required No

Default ["${RFM_INSTALL_PREFIX}/checks/"]

A list of paths (files or directories) where ReFrame will look for regression test files. If the search path is set
through the environment variable, it should be a colon separated list. If specified from command line, the search
path is constructed by specifying multiple times the command line option.

.general[].check_search_recursive

Required No

Default false

Search directories in the search path recursively.

.general[].clean_stagedir

Required No

Default true

Clean stage directory of tests before populating it.

New in version 3.1.

.general[].colorize

Required No

Default true

Use colors in output. The command-line option sets the configuration option to false.

.general[].compact_test_names

Required No

Default false

Use a compact test naming scheme. When set to true, the test parameter values will not be encoded into the
test name. Instead, the several test variants are differentiated by including the unique variant number into the test
name.

Warning: The default value will be changed to true in version 4.0.0.

New in version 3.9.0.

.general[].git_timeout

Required No

Default 5

Timeout value in seconds used when checking if a git repository exists.

.general[].dump_pipeline_progress
Dump pipeline progress for the asynchronous execution policy in pipeline-progress.json. This option is
meant for debug purposes only.

Required No

2.7. ReFrame Manuals 187

ReFrame Documentation, Release 3.10.0

Default False

New in version 3.10.0.

.general[].pipeline_timeout
Timeout in seconds for advancing the pipeline in the asynchronous execution policy.

ReFrame’s asynchronous execution policy will try to advance as many tests as possible in their pipeline, but some
tests may take too long to proceed (e.g., due to copying of large files) blocking the advancement of previously
started tests. If this timeout value is exceeded and at least one test has progressed, ReFrame will stop processing
new tests and it will try to further advance tests that have already started.

Required No

Default 10

New in version 3.10.0.

.general[].remote_detect

Required No

Default false

Try to auto-detect processor information of remote partitions as well. This may slow down the initialization of
the framework, since it involves submitting auto-detection jobs to the remote partitions. For more information
on how ReFrame auto-detects processor information, you may refer to Auto-detecting processor information.

New in version 3.7.0.

.general[].remote_workdir

Required No

Default "."

The temporary directory prefix that will be used to create a fresh ReFrame clone, in order to auto-detect the
processor information of a remote partition.

New in version 3.7.0.

.general[].ignore_check_conflicts

Required No

Default false

Ignore test name conflicts when loading tests.

Deprecated since version 3.8.0: This option will be removed in a future version.

.general[].trap_job_errors

Required No

Default false

Trap command errors in the generated job scripts and let them exit immediately.

New in version 3.2.

.general[].keep_stage_files

Required No

Default false

Keep stage files of tests even if they succeed.

188 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

.general[].module_map_file

Required No

Default ""

File containing module mappings.

.general[].module_mappings

Required No

Default []

A list of module mappings. If specified through the environment variable, the mappings must be separated by
commas. If specified from command line, multiple module mappings are defined by passing the command line
option multiple times.

.general[].non_default_craype

Required No

Default false

Test a non-default Cray Programming Environment. This will emit some special instructions in the generated
build and job scripts. See also --non-default-craype for more details.

.general[].purge_environment

Required No

Default false

Purge any loaded environment modules before running any tests.

.general[].report_file

Required No

Default "${HOME}/.reframe/reports/run-report.json"

The file where ReFrame will store its report.

New in version 3.1.

Changed in version 3.2: Default value has changed to avoid generating a report file per session.

.general[].report_junit

Required No

Default null

The file where ReFrame will store its report in JUnit format. The report adheres to the XSD schema here.

New in version 3.6.0.

.general[].resolve_module_conflicts

Required No

Default true

ReFrame by default resolves any module conflicts and emits the right sequence of module unload and module
load commands, in order to load the requested modules. This option disables this behavior if set to false.

You should avoid using this option for modules system that cannot handle module conflicts automatically, such
as early Tmod verions.

2.7. ReFrame Manuals 189

https://github.com/windyroad/JUnit-Schema/blob/master/JUnit.xsd

ReFrame Documentation, Release 3.10.0

Disabling the automatic module conflict resolution, however, can be useful when modules in a remote system
partition are not present on the host where ReFrame runs. In order to resolve any module conflicts and generate
the right load sequence of modules, ReFrame loads temporarily the requested modules and tracks any conflicts
along the way. By disabling this option, ReFrame will simply emit the requested module load commands
without attempting to load any module.

New in version 3.6.0.

.general[].save_log_files

Required No

Default false

Save any log files generated by ReFrame to its output directory

.general[].target_systems

Required No

Default ["*"]

A list of systems or system/partitions combinations that these general options are valid for. For a detailed de-
scription of this property, you may refer here.

.general[].timestamp_dirs

Required No

Default ""

Append a timestamp to ReFrame directory prefixes. Valid formats are those accepted by the time.strftime()
function. If specified from the command line without any argument, "%FT%T" will be used as a time format.

.general[].unload_modules

Required No

Default []

A list of environment module objects to unload before executing any test. If specified using an the environment
variable, a space separated list of modules is expected. If specified from the command line, multiple modules
can be passed by passing the command line option multiple times.

.general[].use_login_shell

Required No

Default false

Use a login shell for the generated job scripts. This option will cause ReFrame to emit -l in the shebang of shell
scripts. This option, if set to true, may cause ReFrame to fail, if the shell changes permanently to a different
directory during its start up.

.general[].user_modules

Required No

Default []

A list of environment module objects to be loaded before executing any test. If specified using an the environment
variable, a space separated list of modules is expected. If specified from the command line, multiple modules
can be passed by passing the command line option multiple times.

.general[].verbose

Required No

190 Chapter 2. Publications

https://docs.python.org/3.8/library/time.html#time.strftime

ReFrame Documentation, Release 3.10.0

Default 0

Set the verbosity level of the output. The higher the number, the more verbose the output will be. If set to a
negative number, this will decrease the verbosity level.

Module Objects

New in version 3.3.

A module object in ReFrame’s configuration represents an environment module. It can either be a simple string or a
JSON object with the following attributes:

.name

Required Yes

The name of the module.

.collection

Required No

Default false

A boolean value indicating whether this module refers to a module collection. Module collections are treated
differently from simple modules when loading.

path

Required No

Default null

If the module is not present in the default MODULEPATH, the module’s location can be specified here. ReFrame
will make sure to set and restore the MODULEPATH accordingly for loading the module.

New in version 3.5.0.

See also:

Module collections with Environment Modules and Lmod.

Processor Info

New in version 3.5.0.

A processor info object in ReFrame’s configuration is used to hold information about the processor of a system partition
and is made available to the tests through the processor attribute of the current_partition.

.arch

Required No

Default None

The microarchitecture of the processor.

.num_cpus

Required No

Default None

Number of logical CPUs.

2.7. ReFrame Manuals 191

https://modules.readthedocs.io/en/latest/MIGRATING.html#module-collection
https://lmod.readthedocs.io/en/latest/010_user.html#user-collections

ReFrame Documentation, Release 3.10.0

.num_cpus_per_core

Required No

Default None

Number of logical CPUs per core.

.num_cpus_per_socket

Required No

Default None

Number of logical CPUs per socket.

.num_sockets

Required No

Default None

Number of sockets.

.topology

Required No

Default None

Processor topology. An example follows:

'topology': {
'numa_nodes': ['0x000000ff'],
'sockets': ['0x000000ff'],
'cores': ['0x00000003', '0x0000000c',

'0x00000030', '0x000000c0'],
'caches': [

{
'type': 'L3',
'size': 6291456,
'linesize': 64,
'associativity': 0,
'num_cpus': 8,
'cpusets': ['0x000000ff']

},
{

'type': 'L2',
'size': 262144,
'linesize': 64,
'associativity': 4,
'num_cpus': 2,
'cpusets': ['0x00000003', '0x0000000c',

'0x00000030', '0x000000c0']
},
{

'type': 'L1',
'size': 32768,
'linesize': 64,
'associativity': 0,
'num_cpus': 2,

(continues on next page)

192 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'cpusets': ['0x00000003', '0x0000000c',
'0x00000030', '0x000000c0']

}
]

}

Device Info

New in version 3.5.0.

A device info object in ReFrame’s configuration is used to hold information about a specific type of devices in a system
partition and is made available to the tests through the devices attribute of the current_partition.

.type

Required No

Default None

The type of the device, for example "gpu".

.arch

Required No

Default None

The microarchitecture of the device.

.num_devices

Required No

Default None

Number of devices of this type inside the system partition.

2.7.3 Programming APIs

Regression Test API

This page provides a reference guide of the ReFrame API for writing regression tests covering all the relevant details.
Internal data structures and APIs are covered only to the extent that this might be helpful to the final user of the
framework.

Test Base Classes

class reframe.core.pipeline.CompileOnlyRegressionTest(*args, **kwargs)
Bases: reframe.core.pipeline.RegressionTest

Base class for compile-only regression tests.

These tests are by default local and will skip the run phase of the regression test pipeline.

The standard output and standard error of the test will be set to those of the compilation stage.

This class is also directly available under the top-level reframe module.

2.7. ReFrame Manuals 193

ReFrame Documentation, Release 3.10.0

run()
The run stage of the regression test pipeline.

Implemented as no-op.

run_wait()
Wait for this test to finish.

Implemented as no-op

setup(partition, environ, **job_opts)
The setup stage of the regression test pipeline.

Similar to the RegressionTest.setup(), except that no run job is created for this test.

property stderr
The name of the file containing the standard error of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str or None if a run job has not yet been created.

property stdout
The name of the file containing the standard output of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str or None if a run job has not yet been created.

reframe.core.pipeline.DEPEND_BY_ENV = 2
Constant to be passed as the how argument of the RegressionTest.depends_on()method. It denotes that the
test cases of the current test will depend only on the corresponding test cases of the target test that use the same
programming environment.

This constant is directly available under the reframe module.

Deprecated since version 3.3: Please use a callable as the how argument.

reframe.core.pipeline.DEPEND_EXACT = 1
Constant to be passed as the how argument of the depends_on()method. It denotes that test case dependencies
will be explicitly specified by the user.

This constant is directly available under the reframe module.

Deprecated since version 3.3: Please use a callable as the how argument.

reframe.core.pipeline.DEPEND_FULLY = 3
Constant to be passed as the how argument of the RegressionTest.depends_on() method. It denotes that
each test case of this test depends on all the test cases of the target test.

This constant is directly available under the reframe module.

Deprecated since version 3.3: Please use a callable as the how argument.

class reframe.core.pipeline.RegressionMixin(*args, **kwargs)
Bases: object

Base mixin class for regression tests.

Multiple inheritance from more than one RegressionTest class is not allowed in ReFrame. Hence, mixin
classes provide the flexibility to bundle reusable test add-ons, leveraging the metaclass magic implemented in

194 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

ReFrame Documentation, Release 3.10.0

RegressionTestMeta. Using this metaclass allows mixin classes to use powerful ReFrame features, such as
hooks, parameters or variables.

New in version 3.4.2.

class reframe.core.pipeline.RegressionTest(*args, **kwargs)
Bases: reframe.core.pipeline.RegressionMixin, reframe.utility.jsonext.JSONSerializable

Base class for regression tests.

All regression tests must eventually inherit from this class. This class provides the implementation of the pipeline
phases that the regression test goes through during its lifetime.

This class accepts parameters at the class definition, i.e., the test class can be defined as follows:

class MyTest(RegressionTest, param='foo', ...):

where param is one of the following:

Parameters

• pin_prefix – lock the test prefix to the directory where the current class lives.

• require_version – a list of ReFrame version specifications that this test is allowed to run.
A version specification string can have one of the following formats:

– VERSION: Specifies a single version.

– {OP}VERSION, where {OP} can be any of >, >=, <, <=, == and !=. For example, the
version specification string '>=3.5.0' will allow the following test to be loaded only by
ReFrame 3.5.0 and higher. The ==VERSION specification is the equivalent of VERSION.

– V1..V2: Specifies a range of versions.

The test will be selected if any of the versions is satisfied, even if the versions specifications
are conflicting.

• special – allow pipeline stage methods to be overriden in this class.

Note: Changed in version 2.19: Base constructor takes no arguments.

New in version 3.3: The pin_prefix class definition parameter is added.

New in version 3.7.0: The require_verion class definition parameter is added.

Warning: Changed in version 3.4.2: Multiple inheritance with a shared common ancestor is not allowed.

build_locally = True
New in version 3.3.

Always build the source code for this test locally. If set to False, ReFrame will spawn a build job on the
partition where the test will run. Setting this to False is useful when cross-compilation is not supported
on the system where ReFrame is run. Normally, ReFrame will mark the test as a failure if the spawned job
exits with a non-zero exit code. However, certain scheduler backends, such as the squeue do not set it. In
such cases, it is the user’s responsibility to check whether the build phase failed by adding an appropriate
sanity check.

Type boolean : :default: True

2.7. ReFrame Manuals 195

ReFrame Documentation, Release 3.10.0

build_system = None
New in version 2.14.

The build system to be used for this test. If not specified, the framework will try to figure it out automatically
based on the value of sourcepath .

This field may be set using either a string referring to a concrete build system class name (see build systems)
or an instance of reframe.core.buildsystems.BuildSystem . The former is the recommended way.

Type str or reframe.core.buildsystems.BuildSystem .

Default None.

build_time_limit = None
New in version 3.5.1.

The time limit for the build job of the regression test.

It is specified similarly to the time_limit attribute.

Type str or float or int

Default None

check_performance()
The performance checking phase of the regression test pipeline.

Raises reframe.core.exceptions.SanityError – If the performance check fails.

Warning: Changed in version 3.0: You may not override this method directly unless you are in special
test. See here for more details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

check_sanity()
The sanity checking phase of the regression test pipeline.

Raises

• reframe.core.exceptions.SanityError – If the sanity check fails.

• reframe.core.exceptions.ReframeSyntaxError – If the sanity function cannot be
resolved due to ambiguous syntax.

Warning: Changed in version 3.0: You may not override this method directly unless you are in special
test. See here for more details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

cleanup(remove_files=False)
The cleanup phase of the regression test pipeline.

Parameters remove_files – If True, the stage directory associated with this test will be re-
moved.

Warning: Changed in version 3.0: You may not override this method directly unless you are in special
test. See here for more details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

196 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method

ReFrame Documentation, Release 3.10.0

compile()
The compilation phase of the regression test pipeline.

Raises reframe.core.exceptions.ReframeError – In case of errors.

Warning: Changed in version 3.0: You may not override this method directly unless you are in special
test. See here for more details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

compile_complete()
Check if the build phase has completed.

Returns

True if the associated build job has finished, False otherwise.

If no job descriptor is yet associated with this test, True is returned.

Raises reframe.core.exceptions.ReframeError – In case of errors.

compile_wait()
Wait for compilation phase to finish.

New in version 2.13.

Warning: Changed in version 3.0: You may not override this method directly unless you are in special
test. See here for more details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

container_platform = None
New in version 2.20.

The container platform to be used for launching this test.

If this field is set, the test will run inside a container using the specified container runtime. Container-
specific options must be defined additionally after this field is set:

self.container_platform = 'Singularity'
self.container_platform.image = 'docker://ubuntu:18.04'
self.container_platform.commands = ['cat /etc/os-release']

If this field is set, executable and executable_opts attributes are ignored. The container platform’s
commands will be used instead.

Type str or reframe.core.containers.ContainerPlatform .

Default None.

property current_environ
The programming environment that the regression test is currently executing with.

This is set by the framework during the setup() phase.

Type reframe.core.environments.ProgEnvironment.

property current_partition
The system partition the regression test is currently executing on.

2.7. ReFrame Manuals 197

migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

This is set by the framework during the setup() phase.

Type reframe.core.systems.SystemPartition.

property current_system
The system the regression test is currently executing on.

This is set by the framework during the initialization phase.

Type reframe.core.systems.System .

depends_on(target, how=None, *args, **kwargs)
Add a dependency to another test.

Parameters

• target – The name of the test that this one will depend on.

• how – A callable that defines how the test cases of this test depend on the the test cases of
the target test. This callable should accept two arguments:

– The source test case (i.e., a test case of this test) represented as a two-element tuple
containing the names of the partition and the environment of the current test case.

– Test destination test case (i.e., a test case of the target test) represented as a two-element
tuple containing the names of the partition and the environment of the current target test
case.

It should return True if a dependency between the source and destination test cases exists,
False otherwise.

This function will be called multiple times by the framework when the test DAG is con-
structed, in order to determine the connectivity of the two tests.

In the following example, this test depends on T1 when their partitions match, otherwise
their test cases are independent.

def by_part(src, dst):
p0, _ = src
p1, _ = dst
return p0 == p1

self.depends_on('T0', how=by_part)

The framework offers already a set of predefined relations between the test cases of inter-
dependent tests. See the reframe.utility.udeps for more details.

The default how function is reframe.utility.udeps.by_case(), where test cases on
different partitions and environments are independent.

See also:

• How Test Dependencies Work In ReFrame

• Test Case Dependencies Management

New in version 2.21.

Changed in version 3.3: Dependencies between test cases from different partitions are now allowed. The
how argument now accepts a callable.

Deprecated since version 3.3: Passing an integer to the how argument as well as using the subdeps argu-
ment is deprecated.

198 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

descr
A detailed description of the test.

Type str

Default self.display_name

property display_name
A human-readable version of the name this test.

This name contains a string representation of the various parameters of this specific test variant.

Type str

Note: The display name may not be unique.

New in version 3.10.0.

exclusive_access = False
Specify whether this test needs exclusive access to nodes.

Type boolean

Default False

executable
The name of the executable to be launched during the run phase.

If this variable is undefined when entering the compile pipeline stage, it will be set to os.path.join('.',
self.unique_name). Classes that override the compile stage may leave this variable undefined.

Type str

Default required

Changed in version 3.7.3: Default value changed from os.path.join('.', self.unique_name) to
required.

executable_opts = []
List of options to be passed to the executable.

Type List[str]

Default []

extra_resources = {}
New in version 2.8.

Extra resources for this test.

This field is for specifying custom resources needed by this test. These resources are defined in the configu-
ration of a system partition. For example, assume that two additional resources, named gpu and datawarp,
are defined in the configuration file as follows:

'resources': [
{

'name': 'gpu',
'options': ['--gres=gpu:{num_gpus_per_node}']

},
{

'name': 'datawarp',
'options': [

(continues on next page)

2.7. ReFrame Manuals 199

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
config_reference.html#.systems{[}{]}.partitions{[}{]}.resources
config_reference.html#.systems{[}{]}.partitions{[}{]}.resources

ReFrame Documentation, Release 3.10.0

(continued from previous page)

'#DW jobdw capacity={capacity}',
'#DW stage_in source={stagein_src}'

]
}

]

A regression test may then instantiate the above resources by setting the extra_resources attribute as
follows:

self.extra_resources = {
'gpu': {'num_gpus_per_node': 2}
'datawarp': {

'capacity': '100GB',
'stagein_src': '/foo'

}
}

The generated batch script (for Slurm) will then contain the following lines:

#SBATCH --gres=gpu:2
#DW jobdw capacity=100GB
#DW stage_in source=/foo

Notice that if the resource specified in the configuration uses an alternative directive prefix (in this case
#DW), this will replace the standard prefix of the backend scheduler (in this case #SBATCH)

If the resource name specified in this variable does not match a resource name in the partition configura-
tion, it will be simply ignored. The num_gpus_per_node attribute translates internally to the _rfm_gpu
resource, so that setting self.num_gpus_per_node = 2 is equivalent to the following:

self.extra_resources = {'_rfm_gpu': {'num_gpus_per_node': 2}}

Type Dict[str, Dict[str, object]]

Default {}

Note: Changed in version 2.9: A new more powerful syntax was introduced that allows also custom job
script directive prefixes.

property fixture_variant
The point in the fixture space for the test.

This can be seen as an index to the fixture space representing a unique combination of the fixture variants.
This number is directly mapped from variant_num.

Type int

getdep(target, environ=None, part=None)
Retrieve the test case of a target dependency.

This is a low-level method. The @require_deps decorators should be preferred.

Parameters

• target – The name of the target dependency to be retrieved.

200 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#int

ReFrame Documentation, Release 3.10.0

• environ – The name of the programming environment that will be used to retrieve the test
case of the target test. If None, RegressionTest.current_environ will be used.

New in version 2.21.

Changed in version 3.8.0: Setting environ or part to '*' will skip the match check on the environment
and partition, respectively.

info()
Provide live information for this test.

This method is used by the front-end to print the status message during the test’s execution. This function
is also called to provide the message for the check_info logging attribute. By default, it returns a message
reporting the test name, the current partition and the current programming environment that the test is
currently executing on.

New in version 2.10.

Returns a string with an informational message about this test

Note: When overriding this method, you should pay extra attention on how you use the RegressionTest’s
attributes, because this method may be called at any point of the test’s lifetime.

is_fixture()
Check if the test is a fixture.

is_local()
Check if the test will execute locally.

A test executes locally if the local attribute is set or if the current partition’s scheduler does not support
job submission.

property job
The job descriptor associated with this test.

This is set by the framework during the setup() phase.

Type reframe.core.schedulers.Job.

keep_files = []
List of files to be kept after the test finishes.

By default, the framework saves the standard output, the standard error and the generated shell script that
was used to run this test.

These files will be copied over to the test’s output directory during the cleanup() phase.

Directories are also accepted in this field.

Relative path names are resolved against the stage directory.

Type List[str]

Default []

Changed in version 3.3: This field accepts now also file glob patterns.

local = False
Always execute this test locally.

Type boolean

Default False

2.7. ReFrame Manuals 201

config_reference.html#.logging{[}{]}.handlers{[}{]}.format

ReFrame Documentation, Release 3.10.0

property logger
A logger associated with this test.

You can use this logger to log information for your test.

maintainers = []
List of people responsible for this test.

When the test fails, this contact list will be printed out.

Type List[str]

Default []

max_pending_time = None
New in version 3.0.

The maximum time a job can be pending before starting running.

Time duration is specified as of the time_limit attribute.

Type str or datetime.timedelta

Default None

modules = []
List of modules to be loaded before running this test.

These modules will be loaded during the setup() phase.

Type List[str]

Default []

name
The name of the test.

This is an alias of unique_name.

Warning: Setting the name of a test is deprecated and will be disabled in the future. If you were
setting the name of a test to circumvent the old long parameterized test names in order to reference
them in dependency chains, please refer to Depending on Parameterized Tests for more details on how
to achieve this.

Changed in version 3.10.0: Setting the name attribute is deprecated.

num_cpus_per_task = None
Number of CPUs per task required by this test.

Ignored if None.

Type integral or None

Default None

num_gpus_per_node = 0
Number of GPUs per node required by this test. This attribute is translated internally to the _rfm_gpu
resource. For more information on test resources, have a look at the extra_resources attribute.

Type integral

Default 0

202 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta

ReFrame Documentation, Release 3.10.0

num_tasks = 1
Number of tasks required by this test.

If the number of tasks is set to a number <=0, ReFrame will try to flexibly allocate the number of tasks,
based on the command line option --flex-alloc-nodes. A negative number is used to indicate the
minimum number of tasks required for the test. In this case the minimum number of tasks is the absolute
value of the number, while Setting num_tasks to 0 is equivalent to setting it to -num_tasks_per_node.

Type integral

Default 1

Note: Changed in version 2.15: Added support for flexible allocation of the number of tasks if the number
of tasks is set to 0.

Changed in version 2.16: Negative num_tasks is allowed for specifying the minimum number of required
tasks by the test.

num_tasks_per_core = None
Number of tasks per core required by this test.

Ignored if None.

Type integral or None

Default None

num_tasks_per_node = None
Number of tasks per node required by this test.

Ignored if None.

Type integral or None

Default None

num_tasks_per_socket = None
Number of tasks per socket required by this test.

Ignored if None.

Type integral or None

Default None

property outputdir
The output directory of the test.

This is set during the setup() phase.

New in version 2.13.

Type str.

property param_variant
The point in the parameter space for the test.

This can be seen as an index to the paraemter space representing a unique combination of the parameter
values. This number is directly mapped from variant_num.

Type int

2.7. ReFrame Manuals 203

manpage.html#cmdoption-flex-alloc-nodes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ReFrame Documentation, Release 3.10.0

perf_patterns
Patterns for verifying the performance of this test.

Refer to the ReFrame Tutorials for concrete usage examples.

If set to None, no performance checking will be performed.

Type A dictionary with keys of type str and deferrable expressions (i.e., the result of a sanity
function) as values. None is also allowed.

Default None

perf_variables = {}
The performance variables associated with the test.

In this context, a performance variable is a key-value pair, where the key is the desired variable name and
the value is the deferred performance expression (i.e. the result of a deferrable performance function) that
computes or extracts the performance variable’s value.

By default, ReFrame will populate this field during the test’s instantiation with all the member functions
decorated with the @performance_function decorator. If no performance functions are present in the
class, no performance checking or reporting will be carried out.

This mapping may be extended or replaced by other performance variables that may be defined in any
pipeline hook executing before the performance stage. To this end, deferred performance functions can be
created inline using the utility make_performance_function().

Refer to the ReFrame Tutorials for concrete usage examples.

Type A dictionary with keys of type str and deferred performance expressions as values (see
Deferrable performance functions).

Default Collection of performance variables associated to each of the member functions deco-
rated with the @performance_function decorator.

New in version 3.8.0.

poll()
See run_complete().

Deprecated since version 3.2.

postbuild_cmds = []
New in version 3.0.

List of shell commands to be executed after a successful compilation.

These commands are emitted in the script after the actual build commands generated by the selected build
system.

Type List[str]

Default []

postrun_cmds = []
New in version 3.0.

List of shell commands to execute after the parallel launch command.

See prerun_cmds for a more detailed description of the semantics.

Type List[str]

Default []

204 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

prebuild_cmds = []
New in version 3.0.

List of shell commands to be executed before compiling.

These commands are emitted in the build script before the actual build commands generated by the selected
build system.

Type List[str]

Default []

property prefix
The prefix directory of the test.

Type str.

prerun_cmds = []
New in version 3.0.

List of shell commands to execute before the parallel launch command.

These commands do not execute in the context of ReFrame. Instead, they are emitted in the generated job
script just before the actual job launch command.

Type List[str]

Default []

readonly_files = []
List of files or directories (relative to the sourcesdir) that will be symlinked in the stage directory and
not copied.

You can use this variable to avoid copying very large files to the stage directory.

Type List[str]

Default []

reference = {}
The set of reference values for this test.

The reference values are specified as a scoped dictionary keyed on the performance variables defined in
perf_patterns and scoped under the system/partition combinations. The reference itself is a four-tuple
that contains the reference value, the lower and upper thresholds and the measurement unit.

An example follows:

self.reference = {
'sys0:part0': {

'perfvar0': (50, -0.1, 0.1, 'Gflop/s'),
'perfvar1': (20, -0.1, 0.1, 'GB/s')

},
'sys0:part1': {

'perfvar0': (100, -0.1, 0.1, 'Gflop/s'),
'perfvar1': (40, -0.1, 0.1, 'GB/s')

}
}

Type A scoped dictionary with system names as scopes or None

Default {}

2.7. ReFrame Manuals 205

https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Note: Changed in version 3.0: The measurement unit is required. The user should explicitly specify None
if no unit is available.

run()
The run phase of the regression test pipeline.

This call is non-blocking. It simply submits the job associated with this test and returns.

Warning: Changed in version 3.0: You may not override this method directly unless you are in special
test. See here for more details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

run_complete()
Check if the run phase has completed.

Returns

True if the associated job has finished, False otherwise.

If no job descriptor is yet associated with this test, True is returned.

Raises reframe.core.exceptions.ReframeError – In case of errors.

Warning: You may not override this method directly unless you are in special test. See here for more
details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

run_wait()
Wait for the run phase of this test to finish.

Raises reframe.core.exceptions.ReframeError – In case of errors.

Warning: You may not override this method directly unless you are in special test. See here for more
details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

sanity_patterns
Refer to the ReFrame Tutorials for concrete usage examples.

If not set, a sanity error may be raised during sanity checking if no other sanity checking functions already
exist.

Type A deferrable expression (i.e., the result of a sanity function)

Default required

Note: Changed in version 2.9: The default behaviour has changed and it is now considered a sanity failure
if this attribute is set to required.

If a test doesn’t care about its output, this must be stated explicitly as follows:

206 Chapter 2. Publications

migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method

ReFrame Documentation, Release 3.10.0

self.sanity_patterns = sn.assert_true(1)

Changed in version 3.6: The default value has changed from None to required.

setup(partition, environ, **job_opts)
The setup phase of the regression test pipeline.

Parameters

• partition – The system partition to set up this test for.

• environ – The environment to set up this test for.

• job_opts – Options to be passed through to the backend scheduler. When overriding this
method users should always pass through job_opts to the base class method.

Raises reframe.core.exceptions.ReframeError – In case of errors.

Warning: Changed in version 3.0: You may not override this method directly unless you are in special
test. See here for more details.

Changed in version 3.4: Overriding this method directly in no longer allowed. See here for more details.

skip(msg=None)
Skip test.

Parameters msg – A message explaining why the test was skipped.

New in version 3.5.1.

skip_if(cond, msg=None)
Skip test if condition is true.

Parameters

• cond – The condition to check for skipping the test.

• msg – A message explaining why the test was skipped.

New in version 3.5.1.

skip_if_no_procinfo(msg=None)
Skip test if no processor topology information is available.

This method has effect only if called after the setup stage.

Parameters msg – A message explaining why the test was skipped. If not specified, a default
message will be used.

New in version 3.9.1.

sourcepath = ''
The path to the source file or source directory of the test.

It must be a path relative to the sourcesdir, pointing to a subfolder or a file contained in sourcesdir.
This applies also in the case where sourcesdir is a Git repository.

If it refers to a regular file, this file will be compiled using the SingleSource build system. If it refers to
a directory, ReFrame will try to infer the build system to use for the project and will fall back in using the
Make build system, if it cannot find a more specific one.

Type str

2.7. ReFrame Manuals 207

migration_2_to_3.html#force-override-a-pipeline-method
migration_2_to_3.html#force-override-a-pipeline-method
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Default ''

sourcesdir = 'src'
The directory containing the test’s resources.

This directory may be specified with an absolute path or with a path relative to the location of the test. Its
contents will always be copied to the stage directory of the test.

This attribute may also accept a URL, in which case ReFrame will treat it as a Git repository and will try
to clone its contents in the stage directory of the test.

If set to None, the test has no resources an no action is taken.

Type str or None

Default 'src' if such a directory exists at the test level, otherwise None

Note: Changed in version 2.9: Allow None values to be set also in regression tests with a compilation
phase

Changed in version 2.10: Support for Git repositories was added.

Changed in version 3.0: Default value is now conditionally set to either 'src' or None.

property stagedir
The stage directory of the test.

This is set during the setup() phase.

Type str.

property stderr
The name of the file containing the standard error of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str or None if a run job has not yet been created.

property stdout
The name of the file containing the standard output of the test.

This is set during the setup() phase.

This attribute is evaluated lazily, so it can by used inside sanity expressions.

Type str or None if a run job has not yet been created.

strict_check = True
Mark this test as a strict performance test.

If a test is marked as non-strict, the performance checking phase will always succeed, unless the --strict
command-line option is passed when invoking ReFrame.

Type boolean

Default True

tags = set()
Set of tags associated with this test.

This test can be selected from the frontend using any of these tags.

Type Set[str]

208 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Default an empty set

time_limit = None
Time limit for this test.

Time limit is specified as a string in the form <days>d<hours>h<minutes>m<seconds>s or as number
of seconds. If set to None, the time_limit of the current system partition will be used.

Type str or float or int

Default None

Note: Changed in version 2.15: This attribute may be set to None.

Warning: Changed in version 3.0: The old syntax using a (h, m, s) tuple is deprecated.

Changed in version 3.2: - The old syntax using a (h, m, s) tuple is dropped. - Support of timedelta
objects is dropped. - Number values are now accepted.

Changed in version 3.5.1: The default value is now None and it can be set globally per partition via the
configuration.

property unique_name
The unique name of this test.

Type str

New in version 3.10.0.

use_multithreading = None
Specify whether this tests needs simultaneous multithreading enabled.

Ignored if None.

Type boolean or None

Default None

valid_prog_environs
List of programming environments supported by this test.

If * is in the list then all programming environments are supported by this test.

Type List[str]

Default required

Note: Changed in version 2.12: Programming environments can now be specified using wildcards.

Changed in version 2.17: Support for wildcards is dropped.

Changed in version 3.3: Default value changed from [] to None.

Changed in version 3.6: Default value changed from None to required.

valid_systems
List of systems supported by this test. The general syntax for systems is <sysname>[:<partname>]. Both
<sysname> and <partname> accept the value * to mean any value. * is an alias of *:*

Type List[str]

2.7. ReFrame Manuals 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Default None

Changed in version 3.3: Default value changed from [] to None.

Changed in version 3.6: Default value changed from None to required.

variables = {}
Environment variables to be set before running this test.

These variables will be set during the setup() phase.

Type Dict[str, str]

Default {}

property variant_num
The variant number of the test.

This number should be treated as a unique ID representing a unique combination of the available parameter
and fixture variants.

Type int

wait()
See run_wait().

Deprecated since version 3.2.

class reframe.core.pipeline.RunOnlyRegressionTest(*args, **kwargs)
Bases: reframe.core.pipeline.RegressionTest

Base class for run-only regression tests.

This class is also directly available under the top-level reframe module.

compile()
The compilation phase of the regression test pipeline.

This is a no-op for this type of test.

compile_wait()
Wait for compilation phase to finish.

This is a no-op for this type of test.

run()
The run phase of the regression test pipeline.

The resources of the test are copied to the stage directory and the rest of execution is delegated to the
RegressionTest.run().

setup(partition, environ, **job_opts)
The setup stage of the regression test pipeline.

Similar to the RegressionTest.setup(), except that no build job is created for this test.

210 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#int

ReFrame Documentation, Release 3.10.0

Test Decorators

@reframe.core.decorators.parameterized_test(*inst)
Class decorator for registering multiple instantiations of a test class.

The decorated class must derive from reframe.core.pipeline.RegressionTest. This decorator is also
available directly under the reframe module.

Parameters inst – The different instantiations of the test. Each instantiation argument may be either
a sequence or a mapping.

New in version 2.13.

Note: This decorator does not instantiate any test. It only registers them. The actual instantiation happens
during the loading phase of the test.

Deprecated since version 3.6.0: Please use the parameter() built-in instead.

@reframe.core.decorators.required_version(*versions)
Class decorator for specifying the required ReFrame versions for the following test.

If the test is not compatible with the current ReFrame version it will be skipped.

Parameters versions – A list of ReFrame version specifications that this test is allowed to run. A
version specification string can have one of the following formats:

1. VERSION: Specifies a single version.

2. {OP}VERSION, where {OP} can be any of >, >=, <, <=, == and !=. For example, the version
specification string '>=3.5.0' will allow the following test to be loaded only by ReFrame
3.5.0 and higher. The ==VERSION specification is the equivalent of VERSION.

3. V1..V2: Specifies a range of versions.

You can specify multiple versions with this decorator, such as @required_version('3.5.1',
'>=3.5.6'), in which case the test will be selected if any of the versions is satisfied, even if the
versions specifications are conflicting.

New in version 2.13.

Changed in version 3.5.0: Passing ReFrame version numbers that do not comply with the semantic versioning
specification is deprecated. Examples of non-compliant version numbers are 3.5 and 3.5-dev0. These should
be written as 3.5.0 and 3.5.0-dev.0.

Deprecated since version 3.5.0: Please set the require_version parameter in the class definition instead.

@reframe.core.decorators.simple_test
Class decorator for registering tests with ReFrame.

The decorated class must derive from reframe.core.pipeline.RegressionTest. This decorator is also
available directly under the reframe module.

New in version 2.13.

2.7. ReFrame Manuals 211

https://semver.org/

ReFrame Documentation, Release 3.10.0

Built-in types

New in version 3.4.2.

ReFrame provides built-in types which facilitate the process of writing extensible regression tests (i.e. a test library).
These builtins are only available when used directly in the class body of classes derived from any of the Test Base
Classes. Through builtins, ReFrame internals are able to pre-process and validate the test input before the actual test
creation takes place. This provides the ReFrame internals with further control over the user’s input, making the process
of writing regression tests less error-prone. In essence, these builtins exert control over the test creation, and they allow
adding and/or modifying certain attributes of the regression test.

Note: The built-in types described below can only be used to declare class variables and must never be part of any
container type. Ignoring this restriction will result in undefined behavior.

class MyTest(rfm.RegressionMixin):
p0 = parameter([1, 2]) # Correct
p1 = [parameter([1, 2])] # Undefined behavior

RegressionMixin.parameter(values=None, inherit_params=False, filter_params=None, fmt=None)
Inserts or modifies a regression test parameter. At the class level, these parameters are stored in a separate names-
pace referred to as the parameter space. If a parameter with a matching name is already present in the parameter
space of a parent class, the existing parameter values will be combined with those provided by this method fol-
lowing the inheritance behavior set by the arguments inherit_params and filter_params. Instead, if no
parameter with a matching name exists in any of the parent parameter spaces, a new regression test parameter is
created. A regression test can be parameterized as follows:

class Foo(rfm.RegressionTest):
variant = parameter(['A', 'B'])
print(variant) # Error: a parameter may only be accessed from the class␣

→˓instance.

@run_after('init')
def do_something(self):

if self.variant == 'A':
do_this()

else:
do_other()

One of the most powerful features of these built-in functions is that they store their input information at the class
level. However, a parameter may only be accessed from the class instance and accessing it directly from the
class body is disallowed. With this approach, extending or specializing an existing parameterized regression test
becomes straightforward, since the test attribute additions and modifications made through built-in functions in
the parent class are automatically inherited by the child test. For instance, continuing with the example above,
one could override the do_something() hook in the Foo regression test as follows:

class Bar(Foo):
@run_after('init')
def do_something(self):

if self.variant == 'A':
override_this()

else:
override_other()

212 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Moreover, a derived class may extend, partially extend and/or modify the parameter values provided in the base
class as shown below.

class ExtendVariant(Bar):
Extend the full set of inherited variant parameter values to ['A', 'B', 'C']
variant = parameter(['C'], inherit_params=True)

class PartiallyExtendVariant(Bar):
Extend a subset of the inherited variant parameter values to ['A', 'D']
variant = parameter(['D'], inherit_params=True,

filter_params=lambda x: x[:1])

class ModifyVariant(Bar):
Modify the variant parameter values to ['AA', 'BA']
variant = parameter(inherit_params=True,

filter_params=lambda x: map(lambda y: y+'A', x))

A parameter with no values is referred to as an abstract parameter (i.e. a parameter that is declared but not
defined). Therefore, classes with at least one abstract parameter are considered abstract classes.

class AbstractA(Bar):
variant = parameter()

class AbstractB(Bar):
variant = parameter(inherit_params=True, filter_params=lambda x: [])

Parameters

• values – An iterable containing the parameter values.

• inherit_params – If True, the parameter values defined in any base class will be inherited.
In this case, the parameter values provided in the current class will extend the set of inherited
parameter values. If the parameter does not exist in any of the parent parameter spaces, this
option has no effect.

• filter_params – Function to filter/modify the inherited parameter values that may have
been provided in any of the parent parameter spaces. This function must accept a single
iterable argument and return an iterable. It will be called with the inherited parameter values
and it must return the filtered set of parameter values. This function will only have an effect
if used with inherit_params=True.

• fmt – A formatting function that will be used to format the values of this parameter in the
test’s display_name. This function should take as argument the parameter value and return
a string representation of the value. If the returned value is not a string, it will be converted
using the str() function.

New in version 3.10.0: The fmt argument is added.

RegressionMixin.variable(*types, value=None, field=None, **kwargs)
Inserts a new regression test variable. Declaring a test variable through the variable() built-in allows for a
more robust test implementation than if the variables were just defined as regular test attributes (e.g. self.a =
10). Using variables declared through the variable() built-in guarantees that these regression test variables
will not be redeclared by any child class, while also ensuring that any values that may be assigned to such variables
comply with its original declaration. In essence, declaring test variables with the variable() built-in removes
any potential test errors that might be caused by accidentally overriding a class attribute. See the example below.

2.7. ReFrame Manuals 213

https://docs.python.org/3/library/constants.html#True

ReFrame Documentation, Release 3.10.0

class Foo(rfm.RegressionTest):
my_var = variable(int, value=8)
not_a_var = my_var - 4

@run_after('init')
def access_vars(self):

print(self.my_var) # prints 8.
self.my_var = 'override' # Error: my_var must be an int!
self.not_a_var = 'override' # However, this would work. Dangerous!
self.my_var = 10 # tests may also assign values the standard way

Here, the argument value in the variable() built-in sets the default value for the variable. This value may be
accessed directly from the class body, as long as it was assigned before either in the same class body or in the class
body of a parent class. This behavior extends the standard Python data model, where a regular class attribute
from a parent class is never available in the class body of a child class. Hence, using the variable() built-in
enables us to directly use or modify any variables that may have been declared upstream the class inheritance
chain, without altering their original value at the parent class level.

class Bar(Foo):
print(my_var) # prints 8
print(not_a_var) # This is standard Python and raises a NameError

Since my_var is available, we can also update its value:
my_var = 4

Bar inherits the full declaration of my_var with the original type-checking.
my_var = 'override' # Wrong type error again!

@run_after('init')
def access_vars(self):

print(self.my_var) # prints 4
print(self.not_a_var) # prints 4

print(Foo.my_var) # prints 8
print(Bar.my_var) # prints 4

Here, Bar inherits the variables from Foo and can see that my_var has already been declared in the parent
class. Therefore, the value of my_var is updated ensuring that the new value complies to the original variable
declaration. However, the value of my_var at Foo remains unchanged.

These examples above assumed that a default value can be provided to the variables in the bases tests, but that
might not always be the case. For example, when writing a test library, one might want to leave some variables
undefined and force the user to set these when using the test. As shown in the example below, imposing such
requirement is as simple as not passing any value to the variable() built-in, which marks the given variable
as required.

Test as written in the library
class EchoBaseTest(rfm.RunOnlyRegressionTest):
what = variable(str)

valid_systems = ['*']
valid_prog_environs = ['*']

(continues on next page)

214 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

@run_before('run')
def set_executable(self):

self.executable = f'echo {self.what}'

@sanity_function
def assert_what(self):

return sn.assert_found(fr'{self.what}')

Test as written by the user
@rfm.simple_test
class HelloTest(EchoBaseTest):
what = 'Hello'

A parameterized test with type-checking
@rfm.simple_test
class FoodTest(EchoBaseTest):
param = parameter(['Bacon', 'Eggs'])

@run_after('init')
def set_vars_with_params(self):

self.what = self.param

Similarly to a variable with a value already assigned to it, the value of a required variable may be set either
directly in the class body, on the __init__() method, or in any other hook before it is referenced. Otherwise an
error will be raised indicating that a required variable has not been set. Conversely, a variable with a default value
already assigned to it can be made required by assigning it the required keyword. However, this required
keyword is only available in the class body.

class MyRequiredTest(HelloTest):
what = required

Running the above test will cause the set_exec_and_sanity() hook from EchoBaseTest to throw an error
indicating that the variable what has not been set.

Parameters

• *types – the supported types for the variable.

• value – the default value assigned to the variable. If no value is provided, the variable is set
as required.

• field – the field validator to be used for this variable. If no field argument is provided,
it defaults to reframe.core.fields.TypedField. The provided field validator by this
argument must derive from reframe.core.fields.Field.

• **kwargs – kwargs to be forwarded to the constructor of the field validator.

RegressionMixin.fixture(cls, *, scope='test', action='fork', variants='all', variables=None)
Declare a new fixture in the current regression test. A fixture is a regression test that creates, prepares and/or
manages a resource for another regression test. Fixtures may contain other fixtures and so on, forming a directed
acyclic graph. A parent fixture (or a regular regression test) requires the resources managed by its child fixtures in
order to run, and it may only access these fixture resources after its setup pipeline stage. The execution of parent
fixtures is postponed until all their respective children have completed execution. However, the destruction of
the resources managed by a fixture occurs in reverse order, only after all the parent fixtures have been destroyed.

2.7. ReFrame Manuals 215

ReFrame Documentation, Release 3.10.0

This destruction of resources takes place during the cleanup pipeline stage of the regression test. Fixtures
must not define the members valid_systems and valid_prog_environs. These variables are defined based
on the values specified in the parent test, ensuring that the fixture runs with a suitable system partition and
programming environment combination. A fixture’s name attribute may be internally mangled depending on the
arguments passed during the fixture declaration. Hence, manually setting or modifying the name attribute in the
fixture class is disallowed, and breaking this restriction will result in undefined behavior.

Warning: The fixture name mangling is considered an internal framework mechanism and it may change
in future versions without any notice. Users must not express any logic in their tests that relies on a given
fixture name mangling scheme.

By default, the resources managed by a fixture are private to the parent test. However, it is possible to share these
resources across different tests by passing the appropriate fixture scope argument. The different scope levels are
independent from each other and a fixture only executes once per scope, where all the tests that belong to that
same scope may use the same resources managed by a given fixture instance. The available scopes are:

• session: This scope encloses all the tests and fixtures that run in the full ReFrame session. This may
include tests that use different system partition and programming environment combinations. The fixture
class must derive from RunOnlyRegressionTest to avoid any implicit dependencies on the partition or
the programming environment used.

• partition: This scope spans across a single system partition. This may include different tests that
run on the same partition but use different programming environments. Fixtures with this scope
must be independent of the programming environment, which restricts the fixture class to derive from
RunOnlyRegressionTest.

• environment: The extent of this scope covers a single combination of system partition and programming
environment. Since the fixture is guaranteed to have the same partition and programming environment as
the parent test, the fixture class can be any derived class from RegressionTest.

• test: This scope covers a single instance of the parent test, where the resources provided by the fixture are
exclusive to each parent test instance. The fixture class can be any derived class from RegressionTest.

Rather than specifying the scope at the fixture class definition, ReFrame fixtures set the scope level from the
consumer side (i.e. when used by another test or fixture). A test may declare multiple fixtures using the same
class, where fixtures with different scopes are guaranteed to point to different instances of the fixture class. On
the other hand, when two or more fixtures use the same fixture class and have the same scope, these different
fixtures will point to the same underlying resource if the fixtures refer to the same variant of the fixture class.
The example below illustrates the different fixture scope usages:

class MyFixture(rfm.RunOnlyRegressionTest):
'''Manage some resource'''
my_var = variable(int, value=1)
...

@rfm.simple_test
class TestA(rfm.RegressionTest):

valid_systems = ['p1', 'p2']
valid_prog_environs = ['e1', 'e2']
f1 = fixture(MyFixture, scope='session') # Shared throughout the full␣

→˓session
f2 = fixture(MyFixture, scope='partition') # Shared for each supported␣

→˓partition
(continues on next page)

216 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

f3 = fixture(MyFixture, scope='environment') # Shared for each supported␣
→˓part+environ

f4 = fixture(MyFixture, scope='test') # Private evaluation of MyFixture
...

@rfm.simple_test
class TestB(rfm.RegressionTest):

valid_systems = ['p1']
valid_prog_environs = ['e1']
f1 = fixture(MyFixture, scope='test') # Another private instance of␣

→˓MyFixture
f2 = fixture(MyFixture, scope='environment') # Same as f3 in TestA for p1 + e1
f3 = fixture(MyFixture, scope='session') # Same as f1 in TestA
...

@run_after('setup')
def access_fixture_resources(self):

'''Dummy pipeline hook to illustrate fixture resource access.'''
assert self.f1.my_var is not self.f2.my_var
assert self.f1.my_var is not self.f3.my_var

TestA supports two different valid systems and another two valid programming environments. Assuming that
both environments are supported by each of the system partitions 'p1' and 'p2', this test will execute a total of
four times. This test uses the very simple MyFixture fixture multiple times using different scopes, where fixture
f1 (session scope) will be shared across the four test instances, and fixture f4 (test scope) will be executed
once per test instance. On the other hand, f2 (partition scope) will run once per partition supported by test
TestA, and the multiple per-partition executions (i.e. for each programming environment) will share the same
underlying resource for f2. Lastly, f3 will run a total of four times, which is once per partition and environment
combination. This simple TestA shows how multiple instances from the same test can share resources, but the
real power behind fixtures is illustrated with TestB, where this resource sharing is extended across different tests.
For simplicity, TestB only supports a single partition 'p1' and programming environment 'e1', and similarly
to TestA, f1 (test scope) causes a private evaluation of the fixture MyFixture. However, the resources managed
by fixtures f2 (environment scope) and f3 (session scope) are shared with Test1.

Fixtures are treated by ReFrame as first-class ReFrame tests, which means that these classes can use the same
built-in functionalities as in regular tests decorated with @rfm.simple_test. This includes the parameter()
built-in, where fixtures may have more than one variant. When this occurs, a parent test may select to either treat
a parameterized fixture as a test parameter, or instead, to gather all the fixture variants from a single instance of
the parent test. In essence, fixtures implement fork-join model whose behavior may be controlled through the
action argument. This argument may be set to one of the following options:

• fork: This option parameterizes the parent test as a function of the fixture variants. The fixture handle will
resolve to a single instance of the fixture.

• join: This option gathers all the variants from a fixture into a single instance of the parent test. The fixture
handle will point to a list containing all the fixture variants.

A test may declare multiple fixtures with different action options, where the default action option is 'fork'.
The example below illustrates the behavior of these two different options.

class ParamFix(rfm.RegressionTest):
'''Manage some resource'''
p = parameter(range(5)) # A simple test parameter

(continues on next page)

2.7. ReFrame Manuals 217

ReFrame Documentation, Release 3.10.0

(continued from previous page)

...

@rfm.simple_test
class TestC(rfm.RegressionTest):

Parameterize TestC for each ParamFix variant
f = fixture(ParamFix, action='fork')
...

@run_after('setup')
def access_fixture_resources(self):

print(self.f.p) # Prints the fixture's variant parameter value

@rfm.simple_test
class TestD(rfm.RegressionTest):

Gather all fixture variants into a single test
f = fixture(ParamFix, action='join')
...

@run_after('setup')
def reduce_range(self):

'''Sum all the values of p for each fixture variant'''
res = functools.reduce(lambda x, y: x+y, (fix.p for fix in self.f))
n = len(self.f)-1
assert res == (n*n + n)/2

Here ParamFix is a simple fixture class with a single parameter. When the test TestC uses this fixture
with a 'fork' action, the test is implicitly parameterized over each variant of ParamFix. Hence, when the
access_fixture_resources() post-setup hook accesses the fixture f, it only access a single instance of the
ParamFix fixture. On the other hand, when this same fixture is used with a 'join' action by TestD, the test
is not parameterized and all the ParamFix instances are gathered into f as a list. Thus, the post-setup pipeline
hook reduce_range() can access all the fixture variants and compute a reduction of the different p values.

When declaring a fixture, a parent test may select a subset of the fixture variants through the variants argument.
This variant selection can be done by either passing an iterable containing valid variant indices (see Test variants
for further information on how the test variants are indexed), or instead, passing a mapping with the parameter
name (of the fixture class) as keys and filtering functions as values. These filtering functions are unary functions
that return the value of a boolean expression on the values of the specified parameter, and they all must evaluate
to True for at least one of the fixture class variants. See the example below for an illustration on how to filter-out
fixture variants.

class ComplexFixture(rfm.RegressionTest):
A fixture with 400 different variants.
p0 = parameter(range(100))
p1 = parameter(['a', 'b', 'c', 'd'])
...

@rfm.simple_test
class TestE(rfm.RegressionTest):

Select the fixture variants with boolean conditions
foo = fixture(ComplexFixture,

variants={'p0': lambda x: x<10, 'p1': lambda x: x=='d'})
(continues on next page)

218 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

(continued from previous page)

Select the fixture variants by index
bar = fixture(ComplexFixture, variants=range(300,310))
...

A parent test may also specify the value of different variables in the fixture class to be set before its instantiation.
Each variable must have been declared in the fixture class with the variable() built-in, otherwise it is silently
ignored. This variable specification is equivalent to deriving a new class from the fixture class, and setting these
variable values in the class body of a newly derived class. Therefore, when fixture declarations use the same
fixture class and pass different values to the variables argument, the fixture class is interpreted as a different
class for each of these fixture declarations. See the example below.

class Fixture(rfm.RegressionTest):
v = variable(int, value=1)
...

@rfm.simple_test
class TestF(rfm.RegressionTest):

foo = fixture(Fixture)
bar = fixture(Fixture, variables={'v':5})
baz = fixture(Fixture, variables={'v':10})
...

@run_after('setup')
def print_fixture_variables(self):

print(self.foo.v) # Prints 1
print(self.bar.v) # Prints 5
print(self.baz.v) # Prints 10

The test TestF declares the fixtures foo, bar and baz using the same Fixture class. If no variables were
set in bar and baz, this would result into the same fixture being declared multiple times in the same scope
(implicitly set to 'test'), which would lead to a single instance of Fixture being referred to by foo, bar and
baz. However, in this case ReFrame identifies that the declared fixtures pass different values to the variables
argument in the fixture declaration, and executes these three fixtures separately.

Note: Mappings passed to the variables argument that define the same class variables in different order are
interpreted as the same value. The two fixture declarations below are equivalent, and both foo and bar will
point to the same instance of the fixture class MyResource.

foo = fixture(MyResource, variables={'a':1, 'b':2})
bar = fixture(MyResource, variables={'b':2, 'a':1})

Parameters

• cls – A class derived from RegressionTest that manages a given resource. The base from
this class may be further restricted to other derived classes of RegressionTest depending
on the scope parameter.

• scope – Sets the extent to which other regression tests may share the resources managed by
a fixture. The available scopes are, from more to less restrictive, 'test', 'environment',
'partition' and 'session'. By default a fixture’s scope is set to 'test', which makes
the resource private to the test that uses the fixture. This means that when multiple regression

2.7. ReFrame Manuals 219

ReFrame Documentation, Release 3.10.0

tests use the same fixture class with a 'test' scope, the fixture will run once per regression
test. When the scope is set to 'environment', the resources managed by the fixture are
shared across all the tests that use the fixture and run on the same system partition and use
the same programming environment. When the scope is set to 'partition', the resources
managed by the fixture are shared instead across all the tests that use the fixture and run
on the same system partition. Lastly, when the scope is set to 'session', the resources
managed by the fixture are shared across the full ReFrame session. Fixtures with either
'partition' or 'session' scopes may be shared across different regression tests under
different programming environments, and for this reason, when using these two scopes, the
fixture class cls is required to derive from RunOnlyRegressionTest.

• action – Set the behavior of a parameterized fixture to either 'fork' or 'join'. With
a 'fork' action, a parameterized fixture effectively parameterizes the regression test. On
the other hand, a 'join' action gathers all the fixture variants into the same instance of the
regression test. By default, the action parameter is set to 'fork'.

• variants – Filter or sub-select a subset of the variants from a parameterized fixture. This
argument can be either an iterable with the indices from the desired variants, or a mapping
containing unary functions that return the value of a boolean expression on the values of a
given parameter.

• variables – Mapping to set the values of fixture’s variables. The variables are set after the
fixture class has been created (i.e. after the class body has executed) and before the fixture
class is instantiated.

New in version 3.9.0.

Built-in functions

ReFrame provides the following built-in functions, which are only available in the class body of classes deriving from
RegressionMixin.

@RegressionMixin.sanity_function(func)
Decorate a member function as the sanity function of the test.

This decorator will convert the given function into a deferrable() and mark it to be executed during the test’s
sanity stage. When this decorator is used, manually assigning a value to sanity_patterns in the test is not
allowed.

Decorated functions may be overridden by derived classes, and derived classes may also decorate a different
method as the test’s sanity function. Decorating multiple member functions in the same class is not allowed.
However, a RegressionTest may inherit from multiple RegressionMixin classes with their own sanity func-
tions. In this case, the derived class will follow Python’s MRO to find a suitable sanity function.

New in version 3.7.0.

@RegressionMixin.performance_function(unit, *, perf_key=None)
Decorate a member function as a performance function of the test.

This decorator converts the decorated method into a performance deferrable function (see “Deferrable perfor-
mance functions” for more details) whose evaluation is deferred to the performance stage of the regression test.
The decorated function must take a single argument without a default value (i.e. self) and any number of ar-
guments with default values. A test may decorate multiple member functions as performance functions, where
each of the decorated functions must be provided with the units of the performance quantities to be extracted
from the test. These performance units must be of type str. Any performance function may be overridden in a
derived class and multiple bases may define their own performance functions. In the event of a name conflict,

220 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#class.__mro__
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

the derived class will follow Python’s MRO to choose the appropriate performance function. However, defining
more than one performance function with the same name in the same class is disallowed.

The full set of performance functions of a regression test is stored under perf_variables as key-value pairs,
where, by default, the key is the name of the decorated member function, and the value is the deferred performance
function itself. Optionally, the key under which a performance function is stored in perf_variables can be
customised by passing the desired key as the perf_key argument to this decorator.

New in version 3.8.0.

@RegressionMixin.deferrable(func)
Converts the decorated method into a deferrable function.

See Deferrable Functions Reference for further information on deferrable functions.

New in version 3.7.0.

RegressionMixin.bind(func, name=None)
Bind a free function to a regression test.

By default, the function is bound with the same name as the free function. However, the function can be bound
using a different name with the name argument.

Parameters

• func – external function to be bound to a class.

• name – bind the function under a different name.

New in version 3.6.2.

@RegressionMixin.require_deps(func)
Decorator to denote that a function will use the test dependencies.

The arguments of the decorated function must be named after the dependencies that the function intends to use.
The decorator will bind the arguments to a partial realization of the getdep() function, such that conceptually
the new function arguments will be the following:

new_arg = functools.partial(getdep, orig_arg_name)

The converted arguments are essentially functions accepting a single argument, which is the target test’s pro-
gramming environment. Additionally, this decorator will attach the function to run after the test’s setup phase,
but before any other “post-setup” pipeline hook.

Warning: Changed in version 3.7.0: Using this function from the reframe or reframe.core.
decorators modules is now deprecated. You should use the built-in function described here.

Pipeline Hooks

ReFrame provides built-in functions that allow attaching arbitrary functions to run before and/or after a given stage of
the execution pipeline. Once attached to a given stage, these functions are referred to as pipeline hooks. A hook may
be attached to multiple pipeline stages and multiple hooks may also be attached to the same pipeline stage. Pipeline
hooks attached to multiple stages will be executed on each pipeline stage the hook was attached to. Pipeline stages with
multiple hooks attached will execute these hooks in the order in which they were attached to the given pipeline stage. A
derived class will inherit all the pipeline hooks defined in its bases, except for those whose hook function is overridden
by the derived class. A function that overrides a pipeline hook from any of the base classes will not be a pipeline hook
unless the overriding function is explicitly reattached to any pipeline stage. In the event of a name clash arising from
multiple inheritance, the inherited pipeline hook will be chosen following Python’s MRO.

2.7. ReFrame Manuals 221

https://docs.python.org/3/library/stdtypes.html#class.__mro__
https://docs.python.org/3/library/stdtypes.html#class.__mro__

ReFrame Documentation, Release 3.10.0

A function may be attached to any of the following stages (listed in order of execution): init, setup, compile, run,
sanity, performance and cleanup. The init stage refers to the test’s instantiation and it runs before entering the
execution pipeline. Therefore, a test function cannot be attached to run before the init stage. Hooks attached to any
other stage will run exactly before or after this stage executes. So although a “post-init” and a “pre-setup” hook will
both run after a test has been initialized and before the test goes through the first pipeline stage, they will execute in
different times: the post-init hook will execute right after the test is initialized. The framework will then continue with
other activities and it will execute the pre-setup hook just before it schedules the test for executing its setup stage.

Pipeline hooks are executed in reverse MRO order, i.e., the hooks of the least specialized class will be executed first.
In the following example, BaseTest.x() will execute before DerivedTest.y():

class BaseTest(rfm.RegressionTest):
@run_after('setup')
def x(self):

'''Hook x'''

class DerivedTest(BaseTeset):
@run_after('setup')
def y(self):

'''Hook y'''

Note: Pipeline hooks do not execute in the test’s stage directory. However, the test’s stagedir can be accessed by
explicitly changing the working directory from within the hook function itself (see the change_dir utility for further
details):

import reframe.utility.osext as osext

class MyTest(rfm.RegressionTest):
...
@run_after('run')
def my_post_run_hook(self):

Access the stage directory
with osext.change_dir(self.stagedir):

...

Warning: Changed in version 3.7.0: Declaring pipeline hooks using the same name functions from the reframe
or reframe.core.decorators modules is now deprecated. You should use the built-in functions described in
this section instead.

Warning: Changed in version 3.9.2: Execution of pipeline hooks until this version was implementation-defined.
In practice, hooks of a derived class were executed before those of its parents.

This version defines the execution order of hooks, which now follows a strict reverse MRO order, so that parent
hooks will execute before those of derived classes. Tests that relied on the execution order of hooks might break
with this change.

@RegressionMixin.run_before(stage)
Decorator for attaching a function to a given pipeline stage.

The function will run just before the specified pipeline stage and it cannot accept any arguments except self.

222 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

This decorator can be stacked, in which case the function will be attached to multiple pipeline stages. See above
for the valid stage argument values.

@RegressionMixin.run_after(stage)
Decorator for attaching a function to a given pipeline stage.

This is analogous to run_before(), except that the hook will execute right after the stage it was attached to.
This decorator also supports 'init' as a valid stage argument, where in this case, the hook will execute right
after the test is initialized (i.e. after the __init__() method is called) and before entering the test’s pipeline. In
essence, a post-init hook is equivalent to defining additional __init__() functions in the test. The following
code

class MyTest(rfm.RegressionTest):
@run_after('init')
def foo(self):

self.x = 1

is equivalent to

class MyTest(rfm.RegressionTest):
def __init__(self):

self.x = 1

Changed in version 3.5.2: Add support for post-init hooks.

Test variants

Through the parameter() and fixture() builtins, a regression test may store multiple versions or variants of a
regression test at the class level. During class creation, the test’s parameter and fixture spaces are constructed and
combined, assigning a unique index to each of the available test variants. In most cases, the user does not need to be
aware of all the internals related to this variant indexing, since ReFrame will run by default all the available variants for
each of the registered tests. On the other hand, in more complex use cases such as setting dependencies across different
test variants, or when performing some complex variant sub-selection on a fixture declaration, the user may need to
access some of this low-level information related to the variant indexing. Therefore, classes that derive from the base
RegressionMixin provide classmethods and properties to query these data.

Warning: When selecting test variants through their variant index, no index ordering should ever be assumed,
being the user’s responsibility to ensure on each ReFrame run that the selected index corresponds to the desired
parameter and/or fixture variants.

RegressionMixin.num_variants
Total number of variants of the test.

classmethod RegressionMixin.get_variant_nums(**conditions)
Get the variant numbers that meet the specified conditions.

The given conditions enable filtering the parameter space of the test. Filtering the fixture space is not allowed.

Filter out the test variants where my_param is greater than 3
cls.get_variant_nums(my_param=lambda x: x < 4)

The returned list of variant numbers can be passed to variant_name() in order to retrieve the actual test name.

Parameters conditions – keyword arguments where the key is the test parameter name and the
value is either a single value or a unary function that evaluates to True if the parameter point

2.7. ReFrame Manuals 223

https://docs.python.org/3/library/constants.html#True

ReFrame Documentation, Release 3.10.0

must be kept, False otherwise. If a single value is passed this is implicitly converted to the
equality function, such that

get_variant_nums(p=10)

is equivalent to

get_variant_nums(p=lambda x: x == 10)

classmethod RegressionMixin.variant_name(variant_num=None)
Return the name of the test variant with a specific variant number.

Parameters variant_num – An integer in the range of [0, cls.num_variants).

Environments and Systems

class reframe.core.environments.Environment(name, modules=None, variables=None, extras=None)
Bases: reframe.utility.jsonext.JSONSerializable

This class abstracts away an environment to run regression tests.

It is simply a collection of modules to be loaded and environment variables to be set when this environment is
loaded by the framework.

Warning: Users may not create Environment objects directly.

property extras
User defined properties defined in the configuration.

New in version 3.9.1.

Type Dict[str, object]

property modules
The modules associated with this environment.

Type List[str]

property modules_detailed
A view of the modules associated with this environment in a detailed format.

Each module is represented as a dictionary with the following attributes:

• name: the name of the module.

• collection: True if the module name refers to a module collection.

Type List[Dict[str, object]]

New in version 3.3.

property name
The name of this environment.

Type str

property variables
The environment variables associated with this environment.

224 Chapter 2. Publications

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Type OrderedDict[str, str]

class reframe.core.environments.ProgEnvironment(name, modules=None, variables=None, extras=None,
cc='cc', cxx='CC', ftn='ftn', nvcc='nvcc',
cppflags=None, cflags=None, cxxflags=None,
fflags=None, ldflags=None, **kwargs)

Bases: reframe.core.environments.Environment

A class representing a programming environment.

This type of environment adds also properties for retrieving the compiler and compilation flags.

Warning: Users may not create ProgEnvironment objects directly.

property cc
The C compiler of this programming environment.

Type str

property cflags
The C compiler flags of this programming environment.

Type List[str]

property cppflags
The preprocessor flags of this programming environment.

Type List[str]

property cxx
The C++ compiler of this programming environment.

Type str

property cxxflags
The C++ compiler flags of this programming environment.

Type List[str]

property fflags
The Fortran compiler flags of this programming environment.

Type List[str]

property ftn
The Fortran compiler of this programming environment.

Type str

property ldflags
The linker flags of this programming environment.

Type List[str]

class reframe.core.environments._EnvironmentSnapshot(name='env_snapshot')
Bases: reframe.core.environments.Environment

An environment snapshot.

restore()
Restore this environment snapshot.

reframe.core.environments.snapshot()
Create an environment snapshot

2.7. ReFrame Manuals 225

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Returns An instance of _EnvironmentSnapshot.

class reframe.core.systems.DeviceInfo(info)
Bases: reframe.core.systems._ReadOnlyInfo, reframe.utility.jsonext.JSONSerializable

A representation of a device inside ReFrame.

You can access all the keys of the device configuration object.

New in version 3.5.0.

Warning: Users may not create DeviceInfo objects directly.

property device_type
The type of the device.

Type str or None

property info
All the available information from the configuration.

Type dict

property num_devices
Number of devices of this type.

It will return 1 if it wasn’t set in the configuration.

Type integral

class reframe.core.systems.ProcessorInfo(info)
Bases: reframe.core.systems._ReadOnlyInfo, reframe.utility.jsonext.JSONSerializable

A representation of a processor inside ReFrame.

You can access all the keys of the processor configuration object.

New in version 3.5.0.

Warning: Users may not create ProcessorInfo objects directly.

property info
All the available information from the configuration.

Type dict

property num_cores
Total number of cores.

Type integral or None

property num_cores_per_numa_node
Number of cores per NUMA node.

Type integral or None

property num_cores_per_socket
Number of cores per socket.

Type integral or None

226 Chapter 2. Publications

config_reference.html#device-info
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
config_reference.html#processor-info
https://docs.python.org/3/library/stdtypes.html#dict

ReFrame Documentation, Release 3.10.0

property num_numa_nodes
Number of NUMA nodes.

Type integral or None

class reframe.core.systems.System(name, descr, hostnames, modules_system, preload_env, prefix,
outputdir, resourcesdir, stagedir, partitions)

Bases: reframe.utility.jsonext.JSONSerializable

A representation of a system inside ReFrame.

Warning: Users may not create System objects directly.

property descr
The description of this system.

Type str

property hostnames
The hostname patterns associated with this system.

Type List[str]

json()
Return a JSON object representing this system.

property modules_system
The modules system name associated with this system.

Type reframe.core.modules.ModulesSystem

property name
The name of this system.

Type str

property outputdir
The ReFrame output directory prefix associated with this system.

Type str

property partitions
The system partitions associated with this system.

Type List[SystemPartition]

property prefix
The ReFrame prefix associated with this system.

Type str

property preload_environ
The environment to load whenever ReFrame runs on this system.

New in version 2.19.

Type reframe.core.environments.Environment

property resourcesdir
Global resources directory for this system.

This directory may be used for storing large files related to regression tests. The value of this directory is
controlled by the resourcesdir configuration parameter.

2.7. ReFrame Manuals 227

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
config_reference.html#.systems{[}{]}.resourcesdir

ReFrame Documentation, Release 3.10.0

Type str

property stagedir
The ReFrame stage directory prefix associated with this system.

Type str

class reframe.core.systems.SystemPartition(parent, name, sched_type, launcher_type, descr, access,
container_environs, resources, local_env, environs,
max_jobs, prepare_cmds, processor, devices, extras)

Bases: reframe.utility.jsonext.JSONSerializable

A representation of a system partition inside ReFrame.

Warning: Users may not create SystemPartition objects directly.

property access
The scheduler options for accessing this system partition.

Type List[str]

property container_environs
Environments associated with the different container platforms.

Type Dict[str, Environment]

property descr
The description of this partition.

Type str

property devices
A list of devices in the current partition.

New in version 3.5.0.

Type List[reframe.core.systems.DeviceInfo]

environment(name)
Return the partition environment named name.

property environs
The programming environments associated with this system partition.

Type List[ProgEnvironment]

property extras
User defined properties defined in the configuration.

New in version 3.5.0.

Type Dict[str, object]

property fullname
Return the fully-qualified name of this partition.

The fully-qualified name is of the form <parent-system-name>:<partition-name>.

Type str

json()
Return a JSON object representing this system partition.

228 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

property launcher
See launcher_type.

Deprecated since version 3.2: Please use launcher_type instead.

property launcher_type
The type of the backend launcher of this partition.

New in version 3.2.

Type a subclass of reframe.core.launchers.JobLauncher.

property local_env
The local environment associated with this partition.

Type Environment

property max_jobs
The maximum number of concurrent jobs allowed on this partition.

Type integral

property name
The name of this partition.

Type str

property prepare_cmds
Commands to be emitted before loading the modules.

Type List[str]

property processor
Processor information for the current partition.

New in version 3.5.0.

Type reframe.core.systems.ProcessorInfo

property resources
The resources template strings associated with this partition.

This is a dictionary, where the key is the name of a resource and the value is the scheduler options or
directives associated with this resource.

Type Dict[str, List[str]]

property scheduler
The backend scheduler of this partition.

Type reframe.core.schedulers.JobScheduler.

Note: Changed in version 2.8: Prior versions returned a string representing the scheduler and job launcher
combination.

Changed in version 3.2: The property now stores a JobScheduler instance.

2.7. ReFrame Manuals 229

https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Job Schedulers and Parallel Launchers

class reframe.core.schedulers.Job(name, workdir='.', script_filename=None, stdout=None, stderr=None,
max_pending_time=None, sched_flex_alloc_nodes=None,
sched_access=[], sched_exclusive_access=None, sched_options=None)

Bases: reframe.utility.jsonext.JSONSerializable

A job descriptor.

A job descriptor is created by the framework after the “setup” phase and is associated with the test.

Warning: Users may not create a job descriptor directly.

property completion_time
The completion time of this job as a floating point number expressed in seconds since the epoch, in UTC.

This attribute is None if the job hasn’t been finished yet, or if ReFrame runtime hasn’t perceived it yet.

The accuracy of this timestamp depends on the backend scheduler. The slurm scheduler backend relies
on job accounting and returns the actual termination time of the job. The rest of the backends report as
completion time the moment when the framework realizes that the spawned job has finished. In this case,
the accuracy depends on the execution policy used. If tests are executed with the serial execution policy,
this is close to the real completion time, but if the asynchronous execution policy is used, it can differ
significantly.

Type float or None

property exitcode
The exit code of this job.

This may or may not be set depending on the scheduler backend.

New in version 2.21.

Type int or None

property jobid
The ID of this job.

New in version 2.21.

Changed in version 3.2: Job ID type is now a string.

Type str or None

launcher
The (parallel) program launcher that will be used to launch the (parallel) executable of this job.

Users are allowed to explicitly set the current job launcher, but this is only relevant in rare situations, such
as when you want to wrap the current launcher command. For this specific scenario, you may have a look
at the reframe.core.launchers.LauncherWrapper class.

The following example shows how you can replace the current partition’s launcher for this test with the
“local” launcher:

from reframe.core.backends import getlauncher

@rfm.run_after('setup')
def set_launcher(self):

self.job.launcher = getlauncher('local')()

230 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Type reframe.core.launchers.JobLauncher

property nodelist
The list of node names assigned to this job.

This attribute is None if no nodes are assigned to the job yet. This attribute is set reliably only for the
slurm backend, i.e., Slurm with accounting enabled. The squeue scheduler backend, i.e., Slurm without
accounting, might not set this attribute for jobs that finish very quickly. For the local scheduler backend,
this returns an one-element list containing the hostname of the current host.

This attribute might be useful in a flexible regression test for determining the actual nodes that were assigned
to the test. For more information on flexible node allocation, see the --flex-alloc-nodes command-line
option

This attribute is not supported by the pbs scheduler backend.

New in version 2.17.

Type List[str] or None

options
Options to be passed to the backend job scheduler.

Type List[str]

Default []

property state
The state of this job.

The value of this field is scheduler-specific.

New in version 2.21.

Type :class`str` or None

property submit_time
The submission time of this job as a floating point number expressed in seconds since the epoch, in UTC.

This attribute is None if the job hasn’t been submitted yet.

This attribute is set right after the job is submitted and can vary significantly from the time the jobs starts
running, depending on the scheduler.

Type float or None

class reframe.core.launchers.JobLauncher
Bases: abc.ABC

Abstract base class for job launchers.

A job launcher is the executable that actually launches a distributed program to multiple nodes, e.g., mpirun,
srun etc.

Warning: Users may not create job launchers directly.

Note: Changed in version 2.8: Job launchers do not get a reference to a job during their initialization.

abstract command(job)
The launcher command to be emitted for a specific job.

2.7. ReFrame Manuals 231

manpage.html#cmdoption-flex-alloc-nodes
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC

ReFrame Documentation, Release 3.10.0

Launcher backends provide concrete implementations of this method.

Parameters job – A job descriptor.

Returns the basic launcher command as a list of tokens.

options
List of options to be passed to the job launcher invocation.

Type List[str]

Default []

run_command(job)
The full launcher command to be emitted for a specific job.

This includes any user options.

Parameters job – a job descriptor.

Returns the launcher command as a string.

class reframe.core.launchers.LauncherWrapper(target_launcher, wrapper_command,
wrapper_options=[])

Bases: reframe.core.launchers.JobLauncher

Wrap a launcher object so as to modify its invocation.

This is useful for parallel debuggers. For example, to launch a regression test using the ARM DDT debugger,
you can do the following:

@rfm.run_after('setup')
def set_launcher(self):

self.job.launcher = LauncherWrapper(self.job.launcher, 'ddt',
['--offline'])

If the current system partition uses native Slurm for job submission, this setup will generate the following com-
mand in the submission script:

ddt --offline srun <test_executable>

If the current partition uses mpirun instead, it will generate

ddt --offline mpirun -np <num_tasks> ... <test_executable>

Parameters

• target_launcher – The launcher to wrap.

• wrapper_command – The wrapper command.

• wrapper_options – List of options to pass to the wrapper command.

command(job)
The launcher command to be emitted for a specific job.

Launcher backends provide concrete implementations of this method.

Parameters job – A job descriptor.

Returns the basic launcher command as a list of tokens.

232 Chapter 2. Publications

https://www.arm.com/products/development-tools/server-and-hpc/forge

ReFrame Documentation, Release 3.10.0

reframe.core.backends.getlauncher(name)
Retrieve the reframe.core.launchers.JobLauncher concrete implementation for a parallel launcher back-
end.

Parameters name – The registered name of the launcher backend.

reframe.core.backends.getscheduler(name)
Retrieve the reframe.core.schedulers.JobScheduler concrete implementation for a scheduler backend.

Parameters name – The registered name of the scheduler backend.

Runtime Services

class reframe.core.runtime.RuntimeContext(site_config)
Bases: object

The runtime context of the framework.

There is a single instance of this class globally in the framework.

New in version 2.13.

get_option(option)
Get a configuration option.

Parameters option – The option to be retrieved.

Returns The value of the option.

property modules_system
The environment modules system used in the current host.

Type reframe.core.modules.ModulesSystem .

property output_prefix
The output directory prefix.

Type str

property stage_prefix
The stage directory prefix.

Type str

property system
The current host system.

Type reframe.core.systems.System

reframe.core.runtime.is_env_loaded(environ)
Check if environment is loaded.

Parameters environ (Environment) – Environment to check for.

Returns True if this environment is loaded, False otherwise.

reframe.core.runtime.loadenv(*environs)
Load environments in the current Python context.

Parameters environs (List[Environment]) – A list of environments to load.

Returns A tuple containing snapshot of the current environment upon entry to this function and a
list of shell commands required to load the environments.

Return type Tuple[_EnvironmentSnapshot, List[str]]

2.7. ReFrame Manuals 233

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

class reframe.core.runtime.module_use(*paths)
Bases: object

Context manager for temporarily modifying the module path.

reframe.core.runtime.runtime()
Get the runtime context of the framework.

New in version 2.13.

Returns A reframe.core.runtime.RuntimeContext object.

class reframe.core.runtime.temp_environment(modules=[], variables=[])
Bases: object

Context manager to temporarily change the environment.

Modules Systems

class reframe.core.modules.ModulesSystem(backend)
Bases: object

A modules system.

available_modules(substr=None)
Return a list of available modules that contain substr in their name.

Return type List[str]

conflicted_modules(name, collection=False, path=None)
Return the list of the modules conflicting with module name.

If module name resolves to multiple real modules, then the returned list will be the concatenation of the
conflict lists of all the real modules.

Parameters

• name – The name of the module.

• collection – The module is a “module collection” (TMod4/LMod only).

• path – The path where the module resides if not in the default MODULEPATH.

Returns A list of conflicting module names.

Changed in version 3.3: The collection argument is added.

Changed in version 3.5.0: The path argument is added.

emit_load_commands(name, collection=False, path=None)
Return the appropriate shell commands for loading a module.

Module mappings are not taken into account by this function.

Parameters

• name – The name of the module to load.

• collection – The module is a “module collection” (TMod4/LMod only)

• path – The path where the module resides if not in the default MODULEPATH.

Returns A list of shell commands.

234 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Changed in version 3.3: The collection argument was added and module mappings are no more taken
into account by this function.

Changed in version 3.5.0: The path argument is added.

emit_unload_commands(name, collection=False, path=None)
Return the appropriate shell commands for unloading a module.

Module mappings are not taken into account by this function.

Parameters

• name – The name of the module to unload.

• collection – The module is a “module collection” (TMod4/LMod only)

• path – The path where the module resides if not in the default MODULEPATH.

Returns A list of shell commands.

Changed in version 3.3: The collection argument was added and module mappings are no more taken
into account by this function.

Changed in version 3.5.0: The path argument is added.

execute(cmd, *args)
Execute an arbitrary module command.

Parameters

• cmd – The command to execute, e.g., load, restore etc.

• args – The arguments to pass to the command.

Returns The command output.

is_module_loaded(name)
Check if module name is loaded.

If module name refers to multiple real modules, this method will return True only if all the referees are
loaded.

load_module(name, collection=False, path=None, force=False)
Load the module name.

Parameters

• collection – The module is a “module collection” (TMod4/Lmod only)

• path – The path where the module resides if not in the default MODULEPATH.

• force – If set, forces the loading, unloading first any conflicting modules currently loaded.
If module name refers to multiple real modules, all of the target modules will be loaded.

Returns A list of two-element tuples, where each tuple contains the module that was loaded and
the list of modules that had to be unloaded first due to conflicts. This list will be normally
of size one, but it can be longer if there is mapping that maps module name to multiple other
modules.

Changed in version 3.3: - The collection argument is added. - This function now returns a list of tuples.

Changed in version 3.5.0: - The path argument is added. - The force argument is now the last argument.

loaded_modules()
Return a list of loaded modules.

Return type List[str]

2.7. ReFrame Manuals 235

https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

property name
The name of this module system.

property searchpath
The module system search path as a list of directories.

searchpath_add(*dirs)
Add dirs to the module system search path.

searchpath_remove(*dirs)
Remove dirs from the module system search path.

unload_all()
Unload all loaded modules.

unload_module(name, collection=False, path=None)
Unload module name.

Parameters

• name – The name of the module to unload. If module name is resolved to multiple real
modules, all the referred to modules will be unloaded in reverse order.

• collection – The module is a “module collection” (TMod4 only)

• path – The path where the module resides if not in the default MODULEPATH.

Changed in version 3.3: The collection argument was added.

Changed in version 3.5.0: The path argument is added.

property version
The version of this module system.

Build Systems

New in version 2.14.

ReFrame delegates the compilation of the regression test to a build system. Build systems in ReFrame are entities that
are responsible for generating the necessary shell commands for compiling a code. Each build system defines a set of
attributes that users may set in order to customize their compilation. An example usage is the following:

self.build_system = 'SingleSource'
self.build_system.cflags = ['-fopenmp']

Users simply set the build system to use in their regression tests and then they configure it. If no special configuration
is needed for the compilation, users may completely ignore the build systems. ReFrame will automatically pick one
based on the regression test attributes and will try to compile the code.

All build systems in ReFrame derive from the abstract base class reframe.core.buildsystems.BuildSystem .
This class defines a set of common attributes, such us compilers, compilation flags etc. that all subclasses inherit. It is
up to the concrete build system implementations on how to use or not these attributes.

class reframe.core.buildsystems.Autotools(*args, **kwargs)
Bases: reframe.core.buildsystems.ConfigureBasedBuildSystem

A build system for compiling Autotools-based projects.

This build system will emit the following commands:

1. Create a build directory if builddir is not None and change to it.

236 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

2. Invoke configure to configure the project by setting the corresponding flags for compilers and compiler
flags.

3. Issue make to compile the code.

class reframe.core.buildsystems.BuildSystem(*args, **kwargs)
Bases: object

The abstract base class of any build system.

Concrete build systems inherit from this class and must override the emit_build_commands() abstract func-
tion.

cc = ''
The C compiler to be used. If empty and flags_from_environ is True, the compiler defined in the
current programming environment will be used.

Type str

Default ''

cflags = []
The C compiler flags to be used. If empty and flags_from_environ is True, the corresponding flags
defined in the current programming environment will be used.

Type List[str]

Default []

cppflags = []
The preprocessor flags to be used. If empty and flags_from_environ is True, the corresponding flags
defined in the current programming environment will be used.

Type List[str]

Default []

cxx = ''
The C++ compiler to be used. If empty and flags_from_environ is True, the compiler defined in the
current programming environment will be used.

Type str

Default ''

cxxflags = []
The C++ compiler flags to be used. If empty and flags_from_environ is True, the corresponding flags
defined in the current programming environment will be used.

Type List[str]

Default []

fflags = []
The Fortran compiler flags to be used. If empty and flags_from_environ is True, the corresponding
flags defined in the current programming environment will be used.

Type List[str]

Default []

flags_from_environ = True
Set compiler and compiler flags from the current programming environment if not specified otherwise.

Type bool

2.7. ReFrame Manuals 237

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

ReFrame Documentation, Release 3.10.0

Default True

ftn = ''
The Fortran compiler to be used. If empty and flags_from_environ is True, the compiler defined in the
current programming environment will be used.

Type str

Default ''

ldflags = []
The linker flags to be used. If empty and flags_from_environ is True, the corresponding flags defined
in the current programming environment will be used.

Type List[str]

Default []

nvcc = ''
The CUDA compiler to be used. If empty and flags_from_environ is True, the compiler defined in the
current programming environment will be used.

Type str

Default ''

class reframe.core.buildsystems.BuildSystemMeta(name, bases, namespace, **kwargs)
Bases: reframe.core.meta.RegressionTestMeta, abc.ABCMeta

Build systems metaclass.

class reframe.core.buildsystems.CMake(*args, **kwargs)
Bases: reframe.core.buildsystems.ConfigureBasedBuildSystem

A build system for compiling CMake-based projects.

This build system will emit the following commands:

1. Create a build directory if builddir is not None and change to it.

2. Invoke cmake to configure the project by setting the corresponding CMake flags for compilers and compiler
flags.

3. Issue make to compile the code.

class reframe.core.buildsystems.ConfigureBasedBuildSystem(*args, **kwargs)
Bases: reframe.core.buildsystems.BuildSystem

Abstract base class for configured-based build systems.

builddir = None
The CMake build directory, where all the generated files will be placed.

Type str

Default None

config_opts = []
Additional configuration options to be passed to the CMake invocation.

Type List[str]

Default []

make_opts = []
Options to be passed to the subsequent make invocation.

238 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/abc.html#abc.ABCMeta
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Type List[str]

Default []

max_concurrency = 1
Same as for the Make build system.

Type integer

Default 1

srcdir = None
The top-level directory of the code.

This is set automatically by the framework based on the reframe.core.pipeline.RegressionTest.
sourcepath attribute.

Type str

Default None

class reframe.core.buildsystems.EasyBuild(*args, **kwargs)
Bases: reframe.core.buildsystems.BuildSystem

A build system for building test code using EasyBuild.

ReFrame will use EasyBuild to build and install the code in the test’s stage directory by default. ReFrame
uses environment variables to configure EasyBuild for running, so users can pass additional options to the eb
command and modify the default behaviour.

New in version 3.5.0.

easyconfigs = []
The list of easyconfig files to build and install. This field is required.

Type List[str]

Default []

emit_package = False
Instruct EasyBuild to emit a package for the built software. This will essentially pass the --package option
to eb.

Type bool

Default False

options = []
Options to pass to the eb command.

Type List[str]

Default []

package_opts = {}
Options controlling the package creation from EasyBuild. For each key/value pair of this dictionary, Re-
Frame will pass --package-{key}={val} to the EasyBuild invocation.

Type Dict[str, str]

Default {}

prefix = 'easybuild'
Default prefix for the EasyBuild installation.

Relative paths will be appended to the stage directory of the test. ReFrame will set the following environ-
ment variables before running EasyBuild.

2.7. ReFrame Manuals 239

https://docs.python.org/3/library/stdtypes.html#str
https://easybuild.io/
https://docs.python.org/3/library/functions.html#bool

ReFrame Documentation, Release 3.10.0

export EASYBUILD_BUILDPATH={prefix}/build
export EASYBUILD_INSTALLPATH={prefix}
export EASYBUILD_PREFIX={prefix}
export EASYBUILD_SOURCEPATH={prefix}

Users can change these defaults by passing specific options to the eb command.

Type str

Default easybuild

class reframe.core.buildsystems.Make(*args, **kwargs)
Bases: reframe.core.buildsystems.BuildSystem

A build system for compiling codes using make.

The generated build command has the following form:

make -j [N] [-f MAKEFILE] [-C SRCDIR] CC="X" CXX="X" FC="X" NVCC="X" CPPFLAGS="X"␣
→˓CFLAGS="X" CXXFLAGS="X" FCFLAGS="X" LDFLAGS="X" OPTIONS

The compiler and compiler flags variables will only be passed if they are not None. Their value is determined
by the corresponding attributes of BuildSystem . If you want to completely disable passing these variables
to the make invocation, you should make sure not to set any of the correspoding attributes and set also the
BuildSystem.flags_from_environ flag to False.

makefile = None
Instruct build system to use this Makefile. This option is useful when having non-standard Makefile names.

Type str

Default None

max_concurrency = 1
Limit concurrency for make jobs. This attribute controls the -j option passed to make. If not None, make
will be invoked as make -j max_concurrency. Otherwise, it will invoked as make -j.

Type integer

Default 1

Note: Changed in version 2.19: The default value is now 1

options = []
Append these options to the make invocation. This variable is also useful for passing variables or targets
to make.

Type List[str]

Default []

srcdir = None
The top-level directory of the code.

This is set automatically by the framework based on the reframe.core.pipeline.RegressionTest.
sourcepath attribute.

Type str

Default None

240 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

class reframe.core.buildsystems.SingleSource(*args, **kwargs)
Bases: reframe.core.buildsystems.BuildSystem

A build system for compiling a single source file.

The generated build command will have the following form:

COMP CPPFLAGS XFLAGS SRCFILE -o EXEC LDFLAGS

• COMP is the required compiler for compiling SRCFILE. This build system will automatically detect the
programming language of the source file and pick the correct compiler. See also the SingleSource.lang
attribute.

• CPPFLAGS are the preprocessor flags and are passed to any compiler.

• XFLAGS is any of CFLAGS, CXXFLAGS or FCFLAGS depending on the programming language of the source
file.

• SRCFILE is the source file to be compiled. This is set up automatically by the framework. See also the
SingleSource.srcfile attribute.

• EXEC is the executable to be generated. This is also set automatically by the framework. See also the
SingleSource.executable attribute.

• LDFLAGS are the linker flags.

For CUDA codes, the language assumed is C++ (for the compilation flags) and the compiler used is
BuildSystem.nvcc.

executable = None
The executable file to be generated.

This is set automatically by the framework based on the reframe.core.pipeline.RegressionTest.
executable attribute.

Type str or None

include_path = []
The include path to be used for this compilation.

All the elements of this list will be appended to the BuildSystem.cppflags, by prepending to each of
them the -I option.

Type List[str]

Default []

lang = None
The programming language of the file that needs to be compiled. If not specified, the build system will try to
figure it out automatically based on the extension of the source file. The automatically detected extensions
are the following:

• C: .c and .upc.

• C++: .cc, .cp, .cxx, .cpp, .CPP, .c++ and .C.

• Fortran: .f, .for, .ftn, .F, .FOR, .fpp, .FPP, .FTN, .f90, .f95, .f03, .f08, .F90, .F95, .F03 and .F08.

• CUDA: .cu.

Type str or None

2.7. ReFrame Manuals 241

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

srcfile = None
The source file to compile. This is automatically set by the framework based on the reframe.core.
pipeline.RegressionTest.sourcepath attribute.

Type str or None

class reframe.core.buildsystems.Spack(*args, **kwargs)
Bases: reframe.core.buildsystems.BuildSystem

A build system for building test code using Spack.

ReFrame will use a user-provided Spack environment in order to build and test a set of specs.

New in version 3.6.1.

emit_load_cmds = True
Emit the necessary spack load commands before running the test.

Type bool

Default True

environment = None
The Spack environment to use for building this test.

ReFrame will activate and install this environment. This environment will also be used to run the test.

spack env activate -V -d <environment directory>

ReFrame looks for environments in the test’s sourcesdir.

If this field is None, the default, the environment name will be automatically set to rfm_spack_env.

Type str or None

Default None

Note: Changed in version 3.7.3: The field is no longer required and the Spack environment will be
automatically created if not provided.

install_opts = []
Options to pass to spack install

Type List[str]

Default []

install_tree = None
The directory where Spack will install the packages requested by this test.

After activating the Spack environment, ReFrame will set the install_tree Spack configuration in the given
environment with the following command:

spack config add "config:install_tree:root:<install tree>"

Relative paths are resolved against the test’s stage directory. If this field and the Spack environment are
both None, the default, the install directory will be automatically set to opt/spack. If this field None but the
Spack environment is not, then install_tree will not be set automatically and the install tree of the given
environment will not be overridden.

Type str or None

Default None

242 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://spack.io/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

New in version 3.7.3.

specs = []
A list of additional specs to build and install within the given environment.

ReFrame will add the specs to the active environment by emititing the following command:

spack add spec1 spec2 ... specN

If no spec is passed, ReFrame will simply install what is prescribed by the environment.

Type List[str]

Default []

Container Platforms

New in version 2.20.

class reframe.core.containers.ContainerPlatform
Bases: abc.ABC

The abstract base class of any container platform.

command
The command to be executed within the container.

If no command is given, then the default command of the corresponding container image is going to be
executed.

New in version 3.5.0: Changed the attribute name from commands to command and its type to a string.

Type str or None

Default None

commands
The commands to be executed within the container.

Deprecated since version 3.5.0: Please use the command field instead.

Type list[str]

Default []

image
The container image to be used for running the test.

Type str or None

Default None

mount_points
List of mount point pairs for directories to mount inside the container.

Each mount point is specified as a tuple of (/path/in/host, /path/in/container). The stage di-
rectory of the ReFrame test is always mounted under /rfm_workdir inside the container, independelty of
this field.

Type list[tuple[str, str]]

Default []

options
Additional options to be passed to the container runtime when executed.

2.7. ReFrame Manuals 243

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Type list[str]

Default []

pull_image
Pull the container image before running.

This does not have any effect for the Singularity container platform.

New in version 3.5.

Type bool

Default True

workdir
The working directory of ReFrame inside the container.

This is the directory where the test’s stage directory is mounted inside the container. This directory is
always mounted regardless if mount_points is set or not.

Deprecated since version 3.5: Please use the options field to set the working directory.

Type str

Default /rfm_workdir

class reframe.core.containers.Docker
Bases: reframe.core.containers.ContainerPlatform

Container platform backend for running containers with Docker.

class reframe.core.containers.Sarus
Bases: reframe.core.containers.ContainerPlatform

Container platform backend for running containers with Sarus.

with_mpi
Enable MPI support when launching the container.

Type boolean

Default False

class reframe.core.containers.Shifter
Bases: reframe.core.containers.Sarus

Container platform backend for running containers with Shifter.

class reframe.core.containers.Singularity
Bases: reframe.core.containers.ContainerPlatform

Container platform backend for running containers with Singularity.

with_cuda
Enable CUDA support when launching the container.

Type boolean

Default False

244 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://www.docker.com/
https://sarus.readthedocs.io
https://www.nersc.gov/research-and-development/user-defined-images/
https://sylabs.io/

ReFrame Documentation, Release 3.10.0

The reframe module

The reframe module offers direct access to the basic test classes, constants and decorators.

class reframe.CompileOnlyRegressionTest
See reframe.core.pipeline.CompileOnlyRegressionTest.

class reframe.RegressionTest
See reframe.core.pipeline.RegressionTest.

class reframe.RunOnlyRegressionTest
See reframe.core.pipeline.RunOnlyRegressionTest.

reframe.DEPEND_BY_ENV
See reframe.core.pipeline.DEPEND_BY_ENV .

reframe.DEPEND_EXACT
See reframe.core.pipeline.DEPEND_EXACT.

reframe.DEPEND_FULLY
See reframe.core.pipeline.DEPEND_FULLY .

@reframe.parameterized_test
See @reframe.core.decorators.parameterized_test.

@reframe.require_deps
Deprecated since version 3.7.0: Please use the require_deps() built-in function

@reframe.required_version
See @reframe.core.decorators.required_version.

@reframe.run_after
Deprecated since version 3.7.0: Please use the run_after() built-in function

@reframe.run_before
Deprecated since version 3.7.0: Please use the run_before() built-in function

@reframe.simple_test
See @reframe.core.decorators.simple_test.

Mapping of Test Attributes to Job Scheduler Backends

Test at-
tribute

Slurm
option

Torque option PBS option

num_tasks--ntasks1 -l nodes={num_tasks//
num_tasks_per_node}:ppn={num_tasks_per_node*num_cpus_per_task}

-l select={num_tasks//
num_tasks_per_node}:mpiprocs={num_tasks_per_node}:ncpus={num_tasks_per_node*num_cpus_per_task}

num_tasks_per_node--ntasks-per-nodesee num_tasks see num_tasks
num_tasks_per_core--ntasks-per-coren/a n/a
num_tasks_per_socket--ntasks-per-socketn/a n/a
num_cpus_per_task--cpus-per-tasksee num_tasks see num_tasks
time_limit--time=hh:mm:ss-l walltime=hh:mm:ss -l walltime=hh:mm::ss
exclusive_access--exclusiven/a n/a
use_smt --hint=[no]multithreadn/a n/a

If any of the attributes is set to None it will not be emitted at all in the job script. In cases that the attribute is required,
it will be set to 1.
1 The --nodes option may also be emitted if the use_nodes_option scheduler configuration parameter is set.

2.7. ReFrame Manuals 245

ReFrame Documentation, Release 3.10.0

Deferrable Functions Reference

Deferrable functions are the functions whose execution may be postponed to a later time after they are called. The key
characteristic of these functions is that they store their arguments when they are called, and the execution itself does
not occur until the function is evaluated either explicitly or implicitly.

ReFrame provides an ample set of deferrable utilities and it also allows users to write their own deferrable functions
when needed. Please refer to “Understanding the Mechanism of Deferrable Functions” for a hands-on explanation on
how deferrable functions work and how to create custom deferrable functions.

Explicit evaluation of deferrable functions

Deferrable functions may be evaluated at any time by calling evaluate() on their return value or by passing the
deferred function itself to the evaluate() free function. These evaluate() functions take an optional bool argument
cache, which can be used to cache the evaluation of the deferrable function. Hence, if caching is enabled on a given
deferrable function, any subsequent calls to evaluate() will simply return the previously cached results.

Changed in version 3.8.0: Support of cached evaluation is added.

Implicit evaluation of deferrable functions

Deferrable functions may also be evaluated implicitly in the following situations:

• When you try to get their truthy value by either explicitly or implicitly calling bool on their return value. This
implies that when you include the result of a deferrable function in an if statement or when you apply the and,
or or not operators, this will trigger their immediate evaluation.

• When you try to iterate over their result. This implies that including the result of a deferrable function in a for
statement will trigger its evaluation immediately.

• When you try to explicitly or implicitly get its string representation by calling str on its result. This implies that
printing the return value of a deferrable function will automatically trigger its evaluation.

Categories of deferrable functions

Currently ReFrame provides three broad categories of deferrable functions:

1. Deferrable replacements of certain Python built-in functions. These functions simply delegate their execution to
the actual built-ins.

2. Assertion functions. These functions are used to assert certain conditions and they either return True or raise
SanityError with a message describing the error. Users may provide their own formatted messages through
the msg argument. For example, in the following call to assert_eq() the {0} and {1} placeholders will obtain
the actual arguments passed to the assertion function.

assert_eq(a, 1, msg="{0} is not equal to {1}")

If in the user provided message more placeholders are used than the arguments of the assert function (except the
msg argument), no argument substitution will be performed in the user message.

3. Utility functions. They include, but are not limited to, functions to iterate over regex matches in a file, extracting
and converting values from regex matches, computing statistical information on series of data etc.

246 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/compound_stmts.html#for

ReFrame Documentation, Release 3.10.0

Deferrable performance functions

New in version 3.8.0.

Deferrable performance functions are a special type of deferrable functions which are intended for measuring a given
quantity. Therefore, this kind of deferrable functions have an associated unit that can be used to interpret the re-
turn values from these functions. The unit of a deferrable performance function can be accessed through the pub-
lic member unit. Regular deferrable functions can be promoted to deferrable performance functions using the
make_performance_function() utility. Also, this utility allows to create performance functions directly from any
callable.

List of deferrable functions and utilities

@reframe.utility.sanity.deferrable(func)
Deferrable decorator.

Converts the decorated free function into a deferrable function.

import reframe.utility.sanity as sn

@sn.deferrable
def myfunc(*args):

do_sth()

@reframe.utility.sanity.sanity_function(func)
Please use the reframe.core.pipeline.RegressionMixin.deferrable() decorator when possible. Al-
ternatively, please use the reframe.utility.sanity.deferrable() decorator instead.

Warning: Not to be mistaken with sanity_function() built-in.

Deprecated since version 3.8.0.

reframe.utility.sanity.abs(x)
Replacement for the built-in abs() function.

reframe.utility.sanity.all(iterable)
Replacement for the built-in all() function.

reframe.utility.sanity.allx(iterable)
Same as the built-in all() function, except that it returns False if iterable is empty.

New in version 2.13.

reframe.utility.sanity.and_(a, b)
Deferrable version of the and operator.

Returns a and b.

reframe.utility.sanity.any(iterable)
Replacement for the built-in any() function.

reframe.utility.sanity.assert_bounded(val, lower=None, upper=None, msg=None)
Assert that lower <= val <= upper.

2.7. ReFrame Manuals 247

https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/reference/expressions.html#and
https://docs.python.org/3/library/functions.html#any

ReFrame Documentation, Release 3.10.0

Parameters

• val – The value to check.

• lower – The lower bound. If None, it defaults to -inf.

• upper – The upper bound. If None, it defaults to inf.

• msg – The error message to use if the assertion fails. You may use {0} . . . {N} as placehold-
ers for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_eq(a, b, msg=None)
Assert that a == b.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_false(x, msg=None)
Assert that x is evaluated to False.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_found(patt, filename, msg=None, encoding='utf-8')
Assert that regex pattern patt is found in the file filename.

Parameters

• patt – The regex pattern to search. Any standard Python regular expression is accepted.
The re.MULTILINE flag is set for the pattern search.

• filename – The name of the file to examine or a file descriptor as in open(). Any OSError
raised while processing the file will be propagated as a reframe.core.exceptions.
SanityError.

• msg – The error message to use if the assertion fails. You may use {0} . . . {N} as placehold-
ers for the function arguments.

• encoding – The name of the encoding used to decode the file.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_found_s(patt, string, msg=None)
Assert that regex pattern patt is found in the string string.

Parameters

• patt – as in assert_found().

• string – The string to examine.

• msg – as in assert_found(). You may use {0} . . . {N} as placeholders for the function
arguments.

248 Chapter 2. Publications

https://docs.python.org/3/library/re.html#regular-expression-syntax
https://docs.python.org/3/library/re.html#re.MULTILINE
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/exceptions.html#OSError

ReFrame Documentation, Release 3.10.0

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

New in version 3.4.1.

reframe.utility.sanity.assert_ge(a, b, msg=None)
Assert that a >= b.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_gt(a, b, msg=None)
Assert that a > b.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_in(item, container, msg=None)
Assert that item is in container.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_le(a, b, msg=None)
Assert that a <= b.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_lt(a, b, msg=None)
Assert that a < b.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_ne(a, b, msg=None)
Assert that a != b.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

2.7. ReFrame Manuals 249

ReFrame Documentation, Release 3.10.0

reframe.utility.sanity.assert_not_found(patt, filename, msg=None, encoding='utf-8')
Assert that regex pattern patt is not found in the file filename.

This is the inverse of assert_found().

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_not_found_s(patt, string, msg=None)
Assert that regex pattern patt is not found in string.

This is the inverse of assert_found_s().

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

New in version 3.4.1.

reframe.utility.sanity.assert_not_in(item, container, msg=None)
Assert that item is not in container.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.assert_reference(val, ref, lower_thres=None, upper_thres=None, msg=None)
Assert that value val respects the reference value ref.

Parameters

• val – The value to check.

• ref – The reference value.

• lower_thres – The lower threshold value expressed as a negative decimal fraction of the
reference value. Must be in [-1, 0] for ref >= 0.0 and in [-inf, 0] for ref < 0.0. If None, no
lower thresholds is applied.

• upper_thres – The upper threshold value expressed as a decimal fraction of the reference
value. Must be in [0, inf] for ref >= 0.0 and in [0, 1] for ref < 0.0. If None, no upper thresholds
is applied.

• msg – The error message to use if the assertion fails. You may use {0} . . . {N} as placehold-
ers for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails or if the lower and upper
thresholds do not have appropriate values.

reframe.utility.sanity.assert_true(x, msg=None)
Assert that x is evaluated to True.

Parameters msg – The error message to use if the assertion fails. You may use {0} . . . {N} as
placeholders for the function arguments.

Returns True on success.

Raises reframe.core.exceptions.SanityError – if assertion fails.

reframe.utility.sanity.avg(iterable)
Return the average of all the elements of iterable.

250 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

reframe.utility.sanity.chain(*iterables)
Replacement for the itertools.chain() function.

reframe.utility.sanity.contains(seq, key)
Deferrable version of the in operator.

Returns key in seq.

reframe.utility.sanity.count(iterable)
Return the element count of iterable.

This is similar to the built-in len(), except that it can also handle any argument that supports iteration, including
generators.

reframe.utility.sanity.count_uniq(iterable)
Return the unique element count of iterable.

reframe.utility.sanity.defer(x)
Defer the evaluation of variable x.

New in version 2.21.

reframe.utility.sanity.enumerate(iterable, start=0)
Replacement for the built-in enumerate() function.

reframe.utility.sanity.evaluate(expr, cache=False)
Evaluate a deferred expression.

If expr is not a deferred expression, it will be returned as is. If expr is a deferred expression and cache is
True, the results of the deferred expression will be cached and subsequent calls to evaluate() on this deferred
expression (when cache=False) will simply return the previously cached result.

Parameters

• expr – The expression to be evaluated.

• cache – Cache the result of this evaluation.

Note: When the cache argument is passed as True, a deferred expression will always be evaluated and its
results will be re-cached. This may replace any other results that may have been cached in previous evaluations.

New in version 2.21.

Changed in version 3.8.0: The cache argument is added.

reframe.utility.sanity.extractall(patt, filename, tag=0, conv=None, encoding='utf-8')
Extract all values from the capturing group tag of a matching regex patt in the file filename.

Parameters

• patt – The regex pattern to search. Any standard Python regular expression is accepted.
The re.MULTILINE flag is set for the pattern search.

• filename – The name of the file to examine or a file descriptor as in open().

• encoding – The name of the encoding used to decode the file.

• tag – The regex capturing group to be extracted. Group 0 refers always to the whole match.
Since the file is processed line by line, this means that group 0 returns the whole line that
was matched.

• conv – A callable or iterable of callables taking a single argument and returning a new value.
If not an iterable, it will be used to convert the extracted values for all the capturing groups

2.7. ReFrame Manuals 251

https://docs.python.org/3/library/itertools.html#itertools.chain
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/re.html#regular-expression-syntax
https://docs.python.org/3/library/re.html#re.MULTILINE
https://docs.python.org/3/library/functions.html#open

ReFrame Documentation, Release 3.10.0

specified in tag. Otherwise, each conversion function will be used to convert the value
extracted from the corresponding capturing group in tag. If more conversion functions are
supplied than the corresponding capturing groups in tag, the last conversion function will
be used for the additional capturing groups.

Returns A list of tuples of converted values extracted from the capturing groups specified in tag, if
tag is an iterable. Otherwise, a list of the converted values extracted from the single capturing
group specified in tag.

Raises reframe.core.exceptions.SanityError – In case of errors.

Changed in version 3.1: Multiple regex capturing groups are now supporetd via tag and multiple conversion
functions can be used in conv.

reframe.utility.sanity.extractall_s(patt, string, tag=0, conv=None)

Extract all values from the capturing group tag of a matching regex patt in string.

arg patt as in extractall().

‘ :arg string: The string to examine.

arg tag as in extractall().

arg conv as in extractall().

returns same as extractall().

New in version 3.4.1.

reframe.utility.sanity.extractiter(patt, filename, tag=0, conv=None, encoding='utf-8')
Get an iterator over the values extracted from the capturing group tag of a matching regex patt in the file
filename.

This function is equivalent to extractall() except that it returns a generator object, instead of a list, which
you can use to iterate over the extracted values.

reframe.utility.sanity.extractiter_s(patt, string, tag=0, conv=None)
Get an iterator over the values extracted from the capturing group tag of a matching regex patt in string.

This function is equivalent to extractall_s() except that it returns a generator object, instead of a list, which
you can use to iterate over the extracted values.

New in version 3.4.1.

reframe.utility.sanity.extractsingle(patt, filename, tag=0, conv=None, item=0, encoding='utf-8')
Extract a single value from the capturing group tag of a matching regex patt in the file filename.

This function is equivalent to extractall(patt, filename, tag, conv)[item], except that it raises a
SanityError if item is out of bounds.

Parameters

• patt – as in extractall().

• filename – as in extractall().

• encoding – as in extractall().

• tag – as in extractall().

• conv – as in extractall().

• item – the specific element to extract.

Returns The extracted value.

252 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Raises reframe.core.exceptions.SanityError – In case of errors.

reframe.utility.sanity.extractsingle_s(patt, string, tag=0, conv=None, item=0)
Extract a single value from the capturing group tag of a matching regex patt in string.

This function is equivalent to extractall_s(patt, string, tag, conv)[item], except that it raises a
SanityError if item is out of bounds.

Parameters

• patt – as in extractall_s().

• string – as in extractall_s().

• tag – as in extractall_s().

• conv – as in extractall_s().

• item – the specific element to extract.

Returns The extracted value.

Raises reframe.core.exceptions.SanityError – In case of errors.

New in version 3.4.1.

reframe.utility.sanity.filter(function, iterable)
Replacement for the built-in filter() function.

reframe.utility.sanity.findall(patt, filename, encoding='utf-8')
Get all matches of regex patt in filename.

Parameters

• patt – The regex pattern to search. Any standard Python regular expression is accepted.
The re.MULTILINE flag is set for the pattern search.

• filename – The name of the file to examine.

• encoding – The name of the encoding used to decode the file.

Returns A list of raw regex match objects.

Raises reframe.core.exceptions.SanityError – In case an OSError is raised while process-
ing filename.

reframe.utility.sanity.findall_s(patt, string)
Get all matches of regex patt in string.

Parameters

• patt – as in findall()

• string – The string to examine.

Returns same as finall().

New in version 3.4.1.

reframe.utility.sanity.finditer(patt, filename, encoding='utf-8')
Get an iterator over the matches of the regex patt in filename.

This function is equivalent to findall() except that it returns a generator object instead of a list, which you can
use to iterate over the raw matches.

reframe.utility.sanity.finditer_s(patt, string)
Get an iterator over the matches of the regex patt in string.

2.7. ReFrame Manuals 253

https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/re.html#regular-expression-syntax
https://docs.python.org/3/library/re.html#re.MULTILINE
https://docs.python.org/3/library/re.html#match-objects
https://docs.python.org/3/library/exceptions.html#OSError

ReFrame Documentation, Release 3.10.0

This function is equivalent to findall_s() except that it returns a generator object instead of a list, which you
can use to iterate over the raw matches.

New in version 3.4.1.

reframe.utility.sanity.getattr(obj, attr, *args)
Replacement for the built-in getattr() function.

reframe.utility.sanity.getitem(container, item)
Get item from container.

container may refer to any container that can be indexed.

Raises reframe.core.exceptions.SanityError – In case item cannot be retrieved from
container.

reframe.utility.sanity.glob(pathname, *, recursive=False)
Replacement for the glob.glob() function.

reframe.utility.sanity.hasattr(obj, name)
Replacement for the built-in hasattr() function.

reframe.utility.sanity.iglob(pathname, recursive=False)
Replacement for the glob.iglob() function.

reframe.utility.sanity.len(s)
Replacement for the built-in len() function.

reframe.utility.sanity.make_performance_function(func, unit, *args, **kwargs)
Convert a callable or deferred expression into a performance function.

If func is a deferred expression, the performance function will be built by extending this deferred expression
into a deferred performance expression. Otherwise, a new deferred performance expression will be created from
the function func(). The argument unit is the unit associated with the deferrable performance expression, and
*args and **kwargs are the arguments to be captured by this deferred expression. See deferrable functions
reference for further information on deferrable functions.

New in version 3.8.0.

reframe.utility.sanity.map(function, *iterables)
Replacement for the built-in map() function.

reframe.utility.sanity.max(*args)
Replacement for the built-in max() function.

reframe.utility.sanity.min(*args)
Replacement for the built-in min() function.

reframe.utility.sanity.not_(a)
Deferrable version of the not operator.

Returns not a.

reframe.utility.sanity.or_(a, b)
Deferrable version of the or operator.

Returns a or b.

reframe.utility.sanity.path_exists(path)
Replacement for the os.path.exists() function.

New in version 3.4.

reframe.utility.sanity.path_isdir(path)
Replacement for the os.path.isdir() function.

254 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#getattr
https://docs.python.org/3/library/glob.html#glob.glob
https://docs.python.org/3/library/functions.html#hasattr
https://docs.python.org/3/library/glob.html#glob.iglob
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/reference/expressions.html#not
https://docs.python.org/3/reference/expressions.html#or
https://docs.python.org/3/library/os.path.html#os.path.exists
https://docs.python.org/3/library/os.path.html#os.path.isdir

ReFrame Documentation, Release 3.10.0

New in version 3.4.

reframe.utility.sanity.path_isfile(path)
Replacement for the os.path.isfile() function.

New in version 3.4.

reframe.utility.sanity.path_islink(path)
Replacement for the os.path.islink() function.

New in version 3.4.

reframe.utility.sanity.print(obj, *, sep=' ', end='\n', file=None, flush=False)
Replacement for the built-in print() function.

The only difference is that this function takes a single object argument and it returns that, so that you can use it
transparently inside a complex sanity expression. For example, you could write the following to print the matches
returned from the extractall() function:

@sanity_function
def my_sanity_fn(self):

return sn.assert_eq(
sn.count(sn.print(sn.extract_all(...))), 10

)

If file is None, print() will print its arguments to the standard output. Unlike the builtin print() function,
we don’t bind the file argument to sys.stdout by default. This would capture sys.stdout at the time this
function is defined and would prevent it from seeing changes to sys.stdout, such as redirects, in the future.

Changed in version 3.4: This function accepts now a single object argument in contrast to the built-in print()
function, which accepts multiple.

reframe.utility.sanity.reversed(seq)
Replacement for the built-in reversed() function.

reframe.utility.sanity.round(number, *args)
Replacement for the built-in round() function.

reframe.utility.sanity.setattr(obj, name, value)
Replacement for the built-in setattr() function.

reframe.utility.sanity.sorted(iterable, *args)
Replacement for the built-in sorted() function.

reframe.utility.sanity.sum(iterable, *args)
Replacement for the built-in sum() function.

reframe.utility.sanity.zip(*iterables)
Replacement for the built-in zip() function.

Utility Functions

New in version 3.3.

This is a collection of utility functions and classes that are used by the framework but can also be useful when writing
regression tests. Functions or classes marked as draft should be used with caution, since they might change or be
replaced without a deprecation warning.

2.7. ReFrame Manuals 255

https://docs.python.org/3/library/os.path.html#os.path.isfile
https://docs.python.org/3/library/os.path.html#os.path.islink
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#setattr
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/functions.html#zip

ReFrame Documentation, Release 3.10.0

General Utilities

class reframe.utility.MappingView(mapping)
Bases: collections.abc.Mapping

A read-only view of a mapping.

See collections.abc.Mapping for a list of supported of operations.

get(key, default=None)
Return the value mapped to key or default, if key does not exist.

Parameters

• key – The key to look up.

• default – The default value to return if the key is not present.

Returns The value associated to the requested key.

items()
Return a set-like object providing a view on the underlying mapping’s items.

keys()
Return a set-like object providing a view on the underlying mapping’s keys.

values()
Return a set-like object providing a view on the underlying mapping’s values.

class reframe.utility.OrderedSet(*args)
Bases: collections.abc.MutableSet

An ordered set.

This container behaves like a normal set but remembers the insertion order of its elements. It can also inter-
operate with standard Python sets.

Operations between ordered sets respect the order of the elements of the operands. For example, if x and y are
both ordered sets, then x | y will be a new ordered set with the (unique) elements of x and y in the order they
appear in x and y. The same holds for all the other set operations.

add(elem)
See same method in set.

clear()
See same method in set.

difference(*others)
See same method in set.

discard(elem)
See same method in set.

intersection(*others)
See same method in set.

isdisjoint(other)
See same method in set.

issubset(other)
See same method in set.

issuperset(other)
See same method in set.

256 Chapter 2. Publications

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

ReFrame Documentation, Release 3.10.0

pop()
See same method in set.

remove(elem)
See same method in set.

symmetric_difference(other)
See same method in set.

union(*others)
See same method in set.

class reframe.utility.ScopedDict(mapping={}, scope_sep=':', global_scope='*')
Bases: collections.UserDict

This is a special dictionary that imposes scopes on its keys.

When a key is not found, it will be searched up in the scope hierarchy. If not found even at the global scope, a
KeyError will be raised.

A scoped dictionary is initialized using a two-level normal dictionary that defines the different scopes and the keys
inside them. Scopes can be nested by concatenating them using the : separator by default: scope:subscope.
Below is an example of a scoped dictionary that also demonstrates key lookup:

d = ScopedDict({
'a': {'k1': 1, 'k2': 2},
'a:b': {'k1': 3, 'k3': 4},
'*': {'k1': 7, 'k3': 9, 'k4': 10}

})

assert d['a:k1'] == 1 # resolved in the scope 'a'
assert d['a:k3'] == 9 # resolved in the global scope
assert d['a:b:k1'] == 3 # resolved in the scope 'a:b'
assert d['a:b:k2'] == 2 # resolved in the scope 'a'
assert d['a:b:k4'] == 10 # resolved in the global scope
d['a:k5'] # KeyError
d['*:k2'] # KeyError

If no scope is specified in the key lookup, the global scope is assumed. For example, d['k1'] will return 7.
The syntaxes d[':k1'] and d['*:k1'] are all equivalent. If you try to retrieve a whole scope, e.g., d['a:b'],
KeyError will be raised. For retrieving scopes, you should use the scope() function.

Key deletion follows the same resolution mechanism as key retrieval, except that you are allowed to delete whole
scopes. For example, del d['*'] will delete the global scope, such that subsequent access of d['a:k3'] will
raise a KeyError. If a key specification matches both a key and scope, the key will be deleted and not the scope.

Parameters

• mapping – A two-level mapping of the form

{
scope1: {k1: v1, k2: v2},
scope2: {k1: v1, k3: v3}

}

Both the scope keys and the actual dictionary keys must be strings, otherwise a TypeError
will be raised.

• scope_sep – A character that separates the scopes.

2.7. ReFrame Manuals 257

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/collections.html#collections.UserDict
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#TypeError

ReFrame Documentation, Release 3.10.0

• global_scope – A key that represents the global scope.

property global_scope_mark
The key representing the global scope of this dictionary.

scope(name)
Retrieve a whole scope.

Parameters scope – The name of the scope to retrieve.

Returns A dictionary with the keys that are within the requested scope.

property scope_separator
The scope separator of this dictionary.

update(other)
Update this dictionary from the values of a two-level mapping as described above.

Parameters other – A two-level mapping defining scopes and keys.

class reframe.utility.SequenceView(container)
Bases: collections.abc.Sequence

A read-only view of a sequence.

See collections.abc.Sequence for a list of supported of operations.

Parameters container – The container to create a view on.

Raises TypeError – If the container does not fulfill the collections.abc.Sequence interface.

Note: You can concatenate a SequenceView with a container of the same type as the underlying container of
the view, in which case a new container with the concatenated elements will be returned.

count(value)
Count occurrences of value in the container.

Parameters value – The value to search for.

Returns The number of occurrences.

index(value, start=0, stop=None)
Return the first index of value.

Parameters

• value – The value to search for.

• start – The position where the search starts.

• stop – The position where the search stops. The element at this position is not looked at.
If None, this equals to the sequence’s length.

Returns The index of the first element found that equals value.

Raises ValueError – if the value is not present.

reframe.utility.allx(iterable)
Same as the built-in all(), except that it returns False if iterable is empty.

reframe.utility.attr_validator(validate_fn)
Validate object attributes recursively.

258 Chapter 2. Publications

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#all

ReFrame Documentation, Release 3.10.0

This returns a function which you can call with the object to check. It will return True if the validate_fn()
returns True for all object attributes recursively. If the object to be validated is an iterable, its elements will be
validated individually.

Parameters validate_fn – A callable that validates an object. It takes a single argument, which is
the object to validate.

Returns A validation function that will perform the actual validation. It accepts a single argument,
which is the object to validate. It returns a two-element tuple, containing the result of the valida-
tion as a boolean and a formatted string indicating the faulty attribute.

Note: Objects defining __slots__ are passed directly to the validate_fn function.

New in version 3.3.

reframe.utility.decamelize(s, delim='_')
Decamelize a string.

For example, MyBaseClass will be converted to my_base_class. The delimiter may be changed by setting the
delim argument.

Parameters

• s – A string in camel notation.

• delim – The delimiter that will be used to separate words.

Returns The converted string.

reframe.utility.find_modules(substr, environ_mapping=None)
Return all modules in the current system that contain substr in their name.

This function is a generator and will yield tuples of partition, environment and module combinations for each
partition of the current system and for each environment of a partition.

The environ_mapping argument allows you to map module name patterns to ReFrame environments. This is
useful for flat module name schemes, in order to avoid incompatible combinations of modules and environments.

You can use this function to parametrize regression tests over the available environment modules. The following
example will generate tests for all the available netcdf packages in the system:

@rfm.simple_test
class MyTest(rfm.RegressionTest):

module_info = parameter(find_modules('netcdf'))

@rfm.run_after('init')
def apply_module_info(self):

s, e, m = self.module_info
self.valid_systems = [s]
self.valid_prog_environs = [e]
self.modules = [m]
...

The following example shows the use of environ_mapping with flat module name schemes. In this example,
the toolchain for which the package was built is encoded in the module’s name. Using the environ_mapping
argument we can map module name patterns to ReFrame environments, so that invalid combinations are pruned:

2.7. ReFrame Manuals 259

ReFrame Documentation, Release 3.10.0

my_find_modules = functools.partial(find_modules, environ_mapping={
r'.*CrayGNU.*': 'PrgEnv-gnu',
r'.*CrayIntel.*': 'PrgEnv-intel',
r'.*CrayCCE.*': 'PrgEnv-cray'

})

@rfm.simple_test
class MyTest(rfm.RegressionTest):

module_info = parameter(my_find_modules('GROMACS'))

@rfm.run_after('init')
def apply_module_info(self):

s, e, m = self.module_info
self.valid_systems = [s]
self.valid_prog_environs = [e]
self.modules = [m]
...

Parameters

• substr – A substring that the returned module names must contain.

• environ_mapping – A dictionary mapping regular expressions to environment names.

Returns An iterator that iterates over tuples of the module, partition and environment name combi-
nations that were found.

reframe.utility.import_module_from_file(filename, force=False)
Import module from file.

Parameters

• filename – The path to the filename of a Python module.

• force – Force reload of module in case it is already loaded.

Returns The loaded Python module.

reframe.utility.is_copyable(obj)
Check if an object can be copied with copy.deepcopy(), without performing the copy.

This is a superset of is_picklable(). It returns True also in the following cases:

• The object defines a __copy__() method.

• The object defines a __deepcopy__() method.

• The object is a function.

• The object is a builtin type.

New in version 3.3.

reframe.utility.is_picklable(obj)
Check if an object can be pickled.

New in version 3.3.

reframe.utility.is_trivially_callable(fn, *, non_def_args=0)
Check that a callable object is trivially callable.

260 Chapter 2. Publications

https://docs.python.org/3/library/copy.html#copy.deepcopy

ReFrame Documentation, Release 3.10.0

An object is trivially callable when it can be invoked by providing just an expected number of non-default argu-
ments to its call method. For example, (non-static) member functions expect a single argument without a default
value, which will passed as cls or self during invocation depending on whether the function is a classmethod
or not, respectively. On the other hand, member functions that are static methods are not passed any values by
default when invoked. Therefore, these functions can only be trivially callable when their call method expects
no arguments by default.

Parameters

• fn – A callable to be tested if its trivially callable.

• non_def_args – The number of non-default arguments the callable fn expects when in-
voked.

Returns This function returns True if the expected number of arguments matches the value of
non_def_args. Otherwise, it returns False.

reframe.utility.longest(*iterables)
Return the longest sequence.

This function raises a TypeError if any of the iterables is not Sized.

Parameters iterables – The iterables to check.

Returns The longest iterable.

reframe.utility.nodelist_abbrev(nodes)
Create an abbreviated string representation of the node list.

For example, the node list

['nid001', 'nid002', 'nid010', 'nid011', 'nid012', 'nid510', 'nid511']

will be abbreviated as follows:

nid00[1-2],nid0[10-12],nid51[0-1]

New in version 3.5.3.

Parameters nodes – The node list to abbreviate.

Returns The abbreviated list representation.

reframe.utility.ppretty(value, htchar=' ', lfchar='\n', indent=4, basic_offset=0, repr=<built-in function
repr>)

Format value in a pretty way.

If value is a container, this function will recursively format the container’s elements.

Parameters

• value – The value to be formatted.

• htchar – Horizontal-tab character.

• lfchar – Linefeed character.

• indent – Number of htchar characters for every indentation level.

• basic_offset – Basic offset for the representation, any additional indentation space is
added to the basic_offset.

• repr – A repr()-like function that will be used for printing values. This function is allowed
to accept all the arguments of ppretty() except the repr argument.

2.7. ReFrame Manuals 261

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sized

ReFrame Documentation, Release 3.10.0

Returns A formatted string of value.

reframe.utility.repr(obj, htchar=' ', lfchar='\n', indent=4, basic_offset=0)
A repr() replacement function for debugging purposes printing all object attributes recursively.

This function does not follow the standard repr() convention, but it prints each object as a set of key/value
pairs along with its memory location. It also keeps track of the already visited objects, and abbreviates their
representation.

Parameters obj – The object to be dumped. For the rest of the arguments, see ppretty().

Returns The formatted object dump.

reframe.utility.shortest(*iterables)
Return the shortest sequence.

This function raises a TypeError if any of the iterables is not Sized.

Parameters iterables – The iterables to check.

Returns The shortest iterable.

System Utilities

class reframe.utility.osext.change_dir(dir_name)
Bases: object

Context manager to temporarily change the current working directory.

Parameters dir_name – The directory to temporarily change to.

reframe.utility.osext.concat_files(dst, *files, sep='\n', overwrite=False)
Concatenate files into dst.

Parameters

• dst – The name of the output file.

• files – The files to concatenate.

• sep – The separator to use during concatenation.

• overwrite – Overwrite the output file if it already exists.

Raises

• TypeError – In case files it not an iterable object.

• ValueError – In case output already exists and ovewrite is False.

reframe.utility.osext.copytree(src, dst, symlinks=False, ignore=None, copy_function=<function copy2>,
ignore_dangling_symlinks=False, dirs_exist_ok=False)

Compatibility version of shutil.copytree() for Python < 3.8.

This function will automatically delegate to shutil.copytree() for Python versions >= 3.8.

reframe.utility.osext.copytree_virtual(src, dst, file_links=None, symlinks=False,
copy_function=<function copy2>,
ignore_dangling_symlinks=False, dirs_exist_ok=False)

Copy src to dst, but create symlinks for the files listed in file_links.

If file_links is empty or None, this is equivalent to copytree(). The rest of the arguments are passed as-is to
copytree(). Paths in file_links must be relative to src. If you try to pass '.' in file_links, an OSError
will be raised.

262 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sized
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/shutil.html#shutil.copytree
https://docs.python.org/3/library/shutil.html#shutil.copytree
https://docs.python.org/3/library/exceptions.html#OSError

ReFrame Documentation, Release 3.10.0

reframe.utility.osext.cray_cdt_version()
Return the Cray Development Toolkit (CDT) version or None if the version cannot be retrieved.

reframe.utility.osext.cray_cle_info(filename='/etc/opt/cray/release/cle-release')
Return the Cray Linux Environment (CLE) release information.

Parameters filename – The file that contains the CLE release information

Returns A named tuple with the following attributes that correspond to the release information:
release, build, date, arch, network, patchset.

reframe.utility.osext.expandvars(s)
Expand environment variables in s and perform any command substitution.

This function is the same as os.path.expandvars(), except that it also recognizes the syntax of shell command
substitution: $(cmd) or `cmd`.

reframe.utility.osext.follow_link(path)
Return the final target of a symlink chain.

If path is not a symlink, it will be returned as is.

reframe.utility.osext.force_remove_file(filename)
Remove filename ignoring FileNotFoundError.

reframe.utility.osext.git_clone(url, targetdir=None, opts=None, timeout=5)
Clone a git repository from a URL.

Parameters

• url – The URL to clone from.

• opts – List of options to be passed to the git clone command

• timeout – Timeout in seconds when checking if the url is a valid repository.

• targetdir – The directory where the repository will be cloned to. If None, a new directory
will be created with the repository name as if git clone {url} was issued.

reframe.utility.osext.git_repo_exists(url, timeout=5)
Check if URL refers to a valid Git repository.

Parameters

• url – The URL to check.

• timeout – Timeout in seconds.

Returns True if URL is a Git repository, False otherwise or if timeout is reached.

reframe.utility.osext.git_repo_hash(commit='HEAD', short=True, wd=None)
Return the SHA1 hash of a Git commit.

Parameters

• commit – The commit to look at.

• short – Return a short hash. This always corresponds to the first 8 characters of the long
hash. We don’t rely on Git for the short hash, since depending on the version it might return
either 7 or 8 characters.

• wd – Change to this directory before retrieving the hash. If None, ReFrame’s install prefix
will be used.

Returns The Git commit hash or None if the hash could not be retrieved.

2.7. ReFrame Manuals 263

https://docs.python.org/3/library/os.path.html#os.path.expandvars
https://docs.python.org/3/library/exceptions.html#FileNotFoundError

ReFrame Documentation, Release 3.10.0

reframe.utility.osext.inpath(entry, pathvar)
Check if entry is in path.

Parameters

• entry – The entry to look for.

• pathvar – A path variable in the form ‘entry1:entry2:entry3’.

Returns True if the entry exists in the path variable, False otherwise.

reframe.utility.osext.is_interactive()
Check if the current Python session is interactive.

reframe.utility.osext.is_url(s)
Check if string is a URL.

reframe.utility.osext.mkstemp_path(*args, **kwargs)
Create a temporary file and return its path.

This is a wrapper to tempfile.mkstemp() except that it closes the temporary file as soon as it creates it and
returns the path.

args and kwargs passed through to tempfile.mkstemp().

reframe.utility.osext.osgroup()
Return the group name of the current OS user.

If the group name cannot be retrieved, None will be returned.

reframe.utility.osext.osuser()
Return the name of the current OS user.

If the user name cannot be retrieved, None will be returned.

reframe.utility.osext.reframe_version()
Return ReFrame version.

If ReFrame’s installation contains the repository metadata and the current version is a pre-release version, the
repository’s hash will be appended to the actual version.

reframe.utility.osext.rmtree(*args, max_retries=3, **kwargs)
Persistent version of shutil.rmtree().

If shutil.rmtree() fails with ENOTEMPTY or EBUSY, ignore the error and retry up to max_retries times to
delete the directory.

This version of rmtree() is mostly provided to work around a race condition between when sacct reports a
job as completed and when the Slurm epilog runs. See gh #291 for more information. Furthermore, it offers a
work around for NFS file systems where stale file handles may be present during the rmtree() call, causing it
to throw a busy device/resource error. See gh #712 for more information.

args and kwargs are passed through to shutil.rmtree().

If onerror is specified in kwargs and it is not None, this function is completely equivalent to shutil.
rmtree().

Parameters

• args – Arguments to be passed through to shutil.rmtree().

• max_reties – Maximum number of retries if the target directory cannot be deleted.

• kwargs – Keyword arguments to be passed through to shutil.rmtree().

264 Chapter 2. Publications

https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp
https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://github.com/eth-cscs/reframe/issues/291
https://github.com/eth-cscs/reframe/issues/712
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/library/shutil.html#shutil.rmtree
https://docs.python.org/3/library/shutil.html#shutil.rmtree

ReFrame Documentation, Release 3.10.0

reframe.utility.osext.run_command(cmd, check=False, timeout=None, shell=False, log=True)
Run command synchronously.

This function will block until the command executes or the timeout is reached. It essentially calls
run_command_async() and waits for the command’s completion.

Parameters

• cmd – The command to execute as a string or a sequence. See run_command_async() for
more details.

• check – Raise an error if the command exits with a non-zero exit code.

• timeout – Timeout in seconds.

• shell – Spawn a new shell to execute the command.

• log – Log the execution of the command through ReFrame’s logging facility.

Returns A subprocess.CompletedProcess object with information about the command’s out-
come.

Raises

• reframe.core.exceptions.SpawnedProcessError – If check is True and the com-
mand fails.

• reframe.core.exceptions.SpawnedProcessTimeout – If the command times out.

reframe.utility.osext.run_command_async(cmd, stdout=- 1, stderr=- 1, shell=False, log=True,
**popen_args)

Run command asynchronously.

A wrapper to subprocess.Popen with the following tweaks:

• It always passes universal_newlines=True to Popen.

• If shell=False and cmd is a string, it will lexically split cmd using shlex.split(cmd).

Parameters

• cmd – The command to run either as a string or a sequence of arguments.

• stdout – Same as the corresponding argument of Popen. Default is subprocess.PIPE.

• stderr – Same as the corresponding argument of Popen. Default is subprocess.PIPE.

• shell – Same as the corresponding argument of Popen.

• log – Log the execution of the command through ReFrame’s logging facility.

• popen_args – Any additional arguments to be passed to Popen.

Returns A new Popen object.

reframe.utility.osext.samefile(path1, path2)
Check if paths refer to the same file.

If paths exist, this is equivalent to os.path.samefile(). If only one of the paths exists and is a symbolic link,
it will be followed and its final target will be compared to the other path. If both paths do not exist, a simple
string comparison will be performed (after the paths have been normalized).

reframe.utility.osext.subdirs(dirname, recurse=False)
Get the list of subdirectories of dirname including dirname.

If recurse is True, this function will retrieve all subdirectories in pre-order.

2.7. ReFrame Manuals 265

https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.PIPE
https://docs.python.org/3/library/subprocess.html#subprocess.PIPE
https://docs.python.org/3/library/os.path.html#os.path.samefile

ReFrame Documentation, Release 3.10.0

Parameters

• dirname – The directory to start searching.

• recurse – If True, then recursively search for subdirectories.

Returns The list of subdirectories found.

reframe.utility.osext.unique_abs_paths(paths, prune_children=True)
Get the unique absolute paths from a given list of paths.

Parameters

• paths – An iterable of paths.

• prune_children – Discard paths that are children of other paths in the list.

Raises TypeError – In case paths it not an iterable object.

Type Checking Utilities

Dynamic recursive type checking of collections.

This module defines types for collections, such as lists, dictionaries etc., that you can use with the isinstance()
builtin function to recursively type check all the elements of the collection. Suppose you have a list of integers, suchs
as [1, 2, 3], the following checks should be true:

l = [1, 2, 3]
assert isinstance(l, List[int]) == True
assert isinstance(l, List[float]) == False

Aggregate types can be combined in an arbitrary depth, so that you can type check any complex data strcture:

d = {'a': [1, 2], 'b': [3, 4]}
assert isisntance(d, Dict) == True
assert isisntance(d, Dict[str, List[int]]) == True

This module offers the following aggregate types:

List[T]
A list with elements of type T.

Set[T]
A set with elements of type T.

Dict[K,V]
A dictionary with keys of type K and values of type V.

Tuple[T]
A tuple with elements of type T.

Tuple[T1,T2,...,Tn]
A tuple with n elements, whose types are exactly T1, T2, . . . , Tn in that order.

Str[patt]
A string type whose members are all the strings matching the regular expression patt.

266 Chapter 2. Publications

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#isinstance

ReFrame Documentation, Release 3.10.0

Implementation details

Internally, this module leverages metaclasses and the __isinstancecheck__() method to customize the behaviour
of the isinstance() builtin.

By implementing also the __getitem__() accessor method, this module follows the look-and-feel of the type hints
proposed in PEP484. This method returns a new type that is a subtype of the base container type. Using the facilities
of abc.ABCMeta, builtin types, such as list, str etc. are registered as subtypes of the base container types offered
by this module. The type hierarchy of the types defined in this module is the following (example shown for List, but
it is analogous for the rest of the types):

type
|
|
|

List
/ |
/ |
/ |

list List[T]

In the above example T may refer to any type, so that List[List[int]] is an instance of List, but not an instance
of List[int].

class reframe.utility.typecheck.Bool(*args, **kwargs)
Bases: object

A boolean type accepting implicit conversions from strings.

This type represents a boolean value but allows implicit conversions from str. More specifically, the following
conversions are supported:

• The strings 'yes', 'true' and '1' are converted to True.

• The strings 'no', 'false' and '0' are converted to False.

The built-in bool type is registered as a subclass of this type.

Boolean test variables that are meant to be set properly from the command line must be declared of this type and
not bool.

class reframe.utility.typecheck.ConvertibleType(name, bases, namespace, **kwargs)
Bases: abc.ABCMeta

A type that support conversions from other types.

This is a metaclass that allows classes that use it to support arbitrary conversions from other types using a cast-like
syntax without having to change their constructor:

new_obj = convertible_type(another_type)

For example, a class whose constructor accepts and int may need to support a cast-from-string conversion. This
is particular useful if you want a custom-typed test variable to be able to be set from the command line using
the -S option.

In order to support such conversions, a class must use this metaclass and define a class method, named as
__rfm_cast_<type>__, for each of the type conversion that needs to support .

The following is an example of a class X that its normal constructor accepts two arguments but it also allows
conversions from string:

2.7. ReFrame Manuals 267

https://docs.python.org/3/library/functions.html#isinstance
https://www.python.org/dev/peps/pep-0484/
https://docs.python.org/3/library/abc.html#abc.ABCMeta
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/abc.html#abc.ABCMeta
https://docs.python.org/3/library/functions.html#int

ReFrame Documentation, Release 3.10.0

class X(metaclass=ConvertibleType):
def __init__(self, x, y):

self.data = (x, y)

@classmethod
def __rfm_cast_str__(cls, s):

return X(*(int(x) for x in s.split(',', maxsplit=1)))

assert X(2, 3).data == X('2,3').data

New in version 3.8.0.

Test Case Dependencies Management

Managing the test case “micro-dependencies” between two tests.

This module defines a set of basic functions that can be used with the how argument of the reframe.core.pipeline.
RegressionTest.depends_on() function to control how the individual dependencies between the test cases of two
tests are formed.

All functions take two arguments, the source and destination vertices of an edge in the test case dependency subgraph
that connects two tests. In the relation “T0 depends on T1”, the source are the test cases of “T0” and the destination
are the test cases of “T1.” The source and destination arguments are two-element tuples containing the names of the
partition and the environment of the corresponding test cases. These functions return True if there is an edge connecting
the two test cases or False otherwise.

A how function will be called by the framework multiple times when the test DAG is built. More specifically, for each
test dependency relation, it will be called once for each test case combination of the two tests.

The how functions essentially split the test case subgraph of two dependent tests into fully connected components based
on the values of their supported partitions and environments.

The How Test Dependencies Work In ReFrame page contains more information about test dependencies and shows
visually the test case subgraph connectivity that the different how functions described here achieve.

New in version 3.3.

reframe.utility.udeps.by_case(src, dst)
The test cases of two dependent tests will be split by partition and by environment.

Test cases from different partitions and different environments are independent.

reframe.utility.udeps.by_env(src, dst)
The test cases of two dependent tests will be split by environment.

Test cases from different environments are independent.

reframe.utility.udeps.by_part(src, dst)
The test cases of two dependent tests will be split by partition.

Test cases from different partitions are independent.

reframe.utility.udeps.by_xcase(src, dst)
The test cases of two dependent tests will be split by the exclusive disjunction (XOR) of their partitions and
environments.

Test cases from the same environment and the same partition are independent.

reframe.utility.udeps.by_xenv(src, dst)
The test cases of two dependent tests will be split by the exclusive disjunction (XOR) of their environments.

268 Chapter 2. Publications

ReFrame Documentation, Release 3.10.0

Test cases from the same environment are independent.

reframe.utility.udeps.by_xpart(src, dst)
The test cases of two dependent tests will be split by the exclusive disjunction (XOR) of their partitions.

Test cases from the same partition are independent.

reframe.utility.udeps.fully(src, dst)
The test cases of two dependent tests will be fully connected.

ReFrame Errors

When writing ReFrame tests, you don’t need to check for any exceptions raised. The runtime will take care of finalizing
your test and continuing execution.

Dealing with ReFrame errors is only useful if you are extending ReFrame’s functionality, either by modifying its core
or by creating new regression test base classes for fulfilling your specific needs.

Warning: This API is considered a developer’s API, so it can change from version to version without a deprecation
warning.

exception reframe.core.exceptions.AbortTaskError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised by the runtime inside a regression task to denote that it has been aborted due to an external reason (e.g.,
keyboard interrupt, fatal error in other places etc.)

exception reframe.core.exceptions.BuildError(stdout, stderr, prefix=None)
Bases: reframe.core.exceptions.ReframeError

Raised when a build fails.

exception reframe.core.exceptions.BuildSystemError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a build system is not configured properly.

exception reframe.core.exceptions.ConfigError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a configuration error occurs.

exception reframe.core.exceptions.ContainerError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a container platform is not configured properly.

exception reframe.core.exceptions.DependencyError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a dependency problem is encountered.

exception reframe.core.exceptions.EnvironError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when an error related to an environment occurs.

exception reframe.core.exceptions.FailureLimitError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when the limit of test failures has been reached.

2.7. ReFrame Manuals 269

ReFrame Documentation, Release 3.10.0

exception reframe.core.exceptions.ForceExitError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when ReFrame execution must be forcefully ended, e.g., after a SIGTERM was received.

exception reframe.core.exceptions.JobBlockedError(msg=None, jobid=None)
Bases: reframe.core.exceptions.JobError

Raised by job schedulers when a job is blocked indefinitely.

exception reframe.core.exceptions.JobError(msg=None, jobid=None)
Bases: reframe.core.exceptions.ReframeError

Raised for job related errors.

property jobid
The job ID of the job that encountered the error.

exception reframe.core.exceptions.JobNotStartedError(msg=None, jobid=None)
Bases: reframe.core.exceptions.JobError

Raised when trying an operation on a unstarted job.

exception reframe.core.exceptions.JobSchedulerError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a job scheduler encounters an error condition.

exception reframe.core.exceptions.LoggingError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when an error related to logging has occurred.

exception reframe.core.exceptions.NameConflictError(*args)
Bases: reframe.core.exceptions.RegressionTestLoadError

Raised when there is a name clash in the test suite.

exception reframe.core.exceptions.PerformanceError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised to denote an error in performance checking, e.g., when a performance reference is not met.

exception reframe.core.exceptions.PipelineError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a condition prevents the regression test pipeline to continue and the error may not be described by
another more specific exception.

exception reframe.core.exceptions.ReframeBaseError(*args)
Bases: BaseException

Base exception for any ReFrame error.

This exception base class offers a specialized __str__() method that concatenates the messages of a chain
of exceptions by inspecting their __cause__ field. For example, the following piece of code will print error
message 2: error message 1:

from reframe.core.exceptions import *

def foo():
raise ReframeError('error message 1)

(continues on next page)

270 Chapter 2. Publications

https://docs.python.org/3/library/exceptions.html#BaseException

ReFrame Documentation, Release 3.10.0

(continued from previous page)

def bar():
try:

foo()
except ReframeError as e:

raise ReframeError('error message 2') from e

if __name__ == '__main__':
try:

bar()
except Exception as e:

print(e)

exception reframe.core.exceptions.ReframeError(*args)
Bases: reframe.core.exceptions.ReframeBaseError, Exception

Base exception for soft errors.

Soft errors may be treated by simply printing the exception’s message and trying to continue execution if possible.

exception reframe.core.exceptions.ReframeFatalError(*args)
Bases: reframe.core.exceptions.ReframeBaseError

A fatal framework error.

Execution must be aborted.

exception reframe.core.exceptions.ReframeSyntaxError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when the syntax of regression tests is incorrect.

exception reframe.core.exceptions.RegressionTestLoadError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when the regression test cannot be loaded.

exception reframe.core.exceptions.SanityError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised to denote an error in sanity checking.

exception reframe.core.exceptions.SkipTestError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a test needs to be skipped.

exception reframe.core.exceptions.SpawnedProcessError(args, stdout, stderr, exitcode)
Bases: reframe.core.exceptions.ReframeError

Raised when a spawned OS command has failed.

property command
The command that the spawned process tried to execute.

property exitcode
The exit code of the process.

property stderr
The standard error of the process as a string.

property stdout
The standard output of the process as a string.

2.7. ReFrame Manuals 271

https://docs.python.org/3/library/exceptions.html#Exception

ReFrame Documentation, Release 3.10.0

exception reframe.core.exceptions.SpawnedProcessTimeout(args, stdout, stderr, timeout)
Bases: reframe.core.exceptions.SpawnedProcessError

Raised when a spawned OS command has timed out.

property timeout
The timeout of the process.

exception reframe.core.exceptions.StatisticsError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised to denote an error in dealing with statistics.

exception reframe.core.exceptions.TaskDependencyError(*args)
Bases: reframe.core.exceptions.ReframeError

Raised inside a regression task by the runtime when one of its dependencies has failed.

exception reframe.core.exceptions.TaskExit(*args)
Bases: reframe.core.exceptions.ReframeError

Raised when a regression task must exit the pipeline prematurely.

reframe.core.exceptions.is_exit_request(exc_type, exc_value, tb)
Check if the error is a request to exit.

reframe.core.exceptions.is_severe(exc_type, exc_value, tb)
Check if exception is a severe one.

reframe.core.exceptions.is_user_error(exc_type, exc_value, tb)
Check if error is a user programming error.

A user error is any of AttributeError, NameError, TypeError or ValueError and the exception is thrown
from user context.

reframe.core.exceptions.user_frame(exc_type, exc_value, tb)
Return a user frame from the exception’s traceback.

As user frame is considered the first frame that is outside from reframe module.

Returns A frame object or None if no user frame was found.

reframe.core.exceptions.what(exc_type, exc_value, tb)
A short description of the error.

2.8 ReFrame Test Library (experimental)

This is a collection of generic tests that you can either run out-of-the-box by specializing them for your system using
the -S option or create your site-specific tests by building upon them.

272 Chapter 2. Publications

https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

ReFrame Documentation, Release 3.10.0

2.8.1 Scientific Applications

class hpctestlib.sciapps.amber.nve.amber_nve_check(*args, **kwargs)
Bases: reframe.core.pipeline.RunOnlyRegressionTest

Amber NVE test.

Amber is a suite of biomolecular simulation programs. It began in the late 1970’s, and is maintained by an active
development community.

This test is parametrized over the benchmark type (see benchmark_info) and the variant of the code (see
variant). Each test instance executes the benchmark, validates numerically its output and extracts and reports
a performance metric.

assert_energy_readout()
Assert that the obtained energy meets the required tolerance.

benchmark
The name of the benchmark that this test encodes.

This is set from the corresponding value in the benchmark_info parameter pack during initialization.

Type str

Required Yes

benchmark_info = <reframe.core.parameters.TestParam object>
Parameter pack encoding the benchmark information.

The first element of the tuple refers to the benchmark name, the second is the energy reference and the third
is the tolerance threshold.

Type Tuple[str, float, float]

Values

[
('Cellulose_production_NVE', -443246.0, 5.0E-05),
('FactorIX_production_NVE', -234188.0, 1.0E-04),
('JAC_production_NVE_4fs', -44810.0, 1.0E-03),
('JAC_production_NVE', -58138.0, 5.0E-04)

]

energy_ref
Energy value reference.

This is set from the corresponding value in the benchmark_info parameter pack during initialization.

Type float

Required Yes

energy_tol
Energy value tolerance.

This is set from the corresponding value in the benchmark_info parameter pack during initialization.

Type float

Required Yes

input_file
The input file to use.

2.8. ReFrame Test Library (experimental) 273

https://ambermd.org/
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

This is set to mdin.CPU or mdin.GPU depending on the test variant during initialization.

Type str

Required Yes

num_tasks
See num_tasks.

The mpi variant of the test requires num_tasks > 1.

Required Yes

output_file = 'amber.out'
The output file to pass to the Amber executable.

Type str

Required No

Default 'amber.out'

perf()
The performance of the benchmark expressed in ns/day.

class hpctestlib.sciapps.gromacs.benchmarks.gromacs_check(*args, **kwargs)
Bases: reframe.core.pipeline.RunOnlyRegressionTest

GROMACS benchmark test.

GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the Newtonian equations of
motion for systems with hundreds to millions of particles.

The benchmarks consist on a set of different inputs files that vary in the number of atoms and can be found in the
following repository, which is also versioned: https://github.com/victorusu/GROMACS_Benchmark_Suite/.

Each test instance validates numerically its output and extracts and reports a performance metric.

assert_energy_readout()
Assert that the obtained energy meets the benchmark tolerances.

property bench_name
The benchmark name.

Type str

benchmark_info = <reframe.core.parameters.TestParam object>
Parameter pack encoding the benchmark information.

The first element of the tuple refers to the benchmark name, the second is the energy reference and the third
is the tolerance threshold.

Type Tuple[str, float, float]

Values

benchmark_version = '1.0.0'
The version of the benchmark suite to use.

Type str

Default '1.0.0'

property energy_ref
The energy reference value for this benchmark.

Type str

274 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.gromacs.org/
https://github.com/victorusu/GROMACS_Benchmark_Suite/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

property energy_tol
The energy tolerance value for this benchmark.

Type str

nb_impl = <reframe.core.parameters.TestParam object>
Parameter encoding the implementation of the non-bonded calculations

Type str

Values ['cpu', 'gpu']

2.8.2 Data Analytics

class hpctestlib.data_analytics.spark.spark_checks.compute_pi_check(*args, **kwargs)
Bases: reframe.core.pipeline.RunOnlyRegressionTest

Test Apache Spark by computing PI.

Apache Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Java,
Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set
of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning,
GraphX for graph processing, and Structured Streaming for incremental computation and stream processing (see
spark.apache.org).

This test checks that Spark is functioning correctly. To do this, it is necessary to define the tolerance of acceptable
deviation. The tolerance is used to check that the computations are executed correctly, by comparing the value of
pi calculated to the one obtained from the math library. The default assumption is that Spark is already installed
on the system under test.

assert_pi_readout()
Assert that the obtained pi value meets the specified tolerances.

exec_cores = 1
The number of cores per each Spark executor

Type int

Required No

Default 1

executor_memory
Amount of memory to use per executor process, following the JVM memory strings convention, i.e a
number with a size unit suffix (“k”, “m”, “g” or “t”) (e.g. 512m, 2g)

Type str

Required Yes

num_workers = 1
The number of Spark workers per node

Type int

Required No

Default 1

spark_local_dirs = '/tmp'
The local directories used by Spark

Type str

2.8. ReFrame Test Library (experimental) 275

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

ReFrame Documentation, Release 3.10.0

Required No

Default ‘/tmp’

spark_prefix
The Spark installation prefix path

Type str

Required Yes

tolerance = 0.01
The absolute tolerance of the computed value of PI

Type float

Required No

Default 0.01

variant = <reframe.core.parameters.TestParam object>
Parameter encoding the variant of the test.

Type str

Values ['spark', 'pyspark']

2.8.3 Python

class hpctestlib.python.numpy.numpy_ops.numpy_ops_check(*args, **kwargs)
Bases: reframe.core.pipeline.RunOnlyRegressionTest

NumPy basic operations test.

NumPy is the fundamental package for scientific computing in Python. It provides a multidimensional array
object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast op-
erations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier
transforms, basic linear algebra, basic statistical operations, random simulation and much more.

This test test performs some fundamental NumPy linear algebra operations (matrix product, SVD, Cholesky de-
composition, eigendecomposition, and inverse matrix calculation) and users the execution time as a performance
metric. The default assumption is that NumPy is already installed on the currest system.

time_cholesky()
Time of the cholesky kernel in seconds.

time_dot()
Time of the dot kernel in seconds.

time_eigendec()
Time of the eigendec kernel in seconds.

time_inv()
Time of the inv kernel in seconds.

time_svd()
Time of the svd kernel in seconds.

276 Chapter 2. Publications

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/

ReFrame Documentation, Release 3.10.0

2.8.4 Interactive Computing

class hpctestlib.interactive.jupyter.ipcmagic.ipcmagic_check(*args, **kwargs)
Bases: reframe.core.pipeline.RunOnlyRegressionTest

Test ipcmagic via a distributed TensorFlow training with ipyparallel.

ipcmagic is a Python package and collection of CLI scripts for controlling clusters for Jupyter. For more infor-
mation, please have a look here.

This test checks the ipcmagic performance. To do this, a single-layer neural network is trained against a noisy
linear function. The parameters of the fitted linear function are returned in the end along with the resulting loss
function. The default assumption is that ipcmagic is already installed on the system under test.

assert_successful_execution()
Checks that the program is running on 2 different nodes (nids are different), that IPCMagic is configured
and returns the correct end-of-program message (returns the slope parameter in the end).

2.8.5 Machine Learning

class hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check(*args, **kwargs)
Bases: reframe.core.pipeline.RunOnlyRegressionTest

Run a synthetic CNN benchmark with TensorFlow2 and Horovod.

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosys-
tem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and develop-
ers easily build and deploy ML powered applications. For more information, refer to https://www.tensorflow.org/.

Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
The goal of Horovod is to make distributed deep learning fast and easy to use. For more information refer to
https://github.com/horovod/horovod.

This test runs the Horovod tensorflow2_synthentic_benchmark.py example, checks its sanity and extracts
the GPU performance.

batch_size = 32
The size of the batch used during the learning of models.

Type int

Default 32

benchmark_version = 'v0.21.0'
The version of Horovod to use.

Type str

Default 'v0.21.0'

model = 'InceptionV3'
The name of the model to use for this benchmark.

Type str

Default 'InceptionV3'

num_batches_per_iter = 5
The number of batches per iteration.

Type int

Default 5

2.8. ReFrame Test Library (experimental) 277

https://github.com/eth-cscs/ipcluster_magic
https://user.cscs.ch/tools/interactive/jupyterlab/#ipython
https://www.tensorflow.org/
https://github.com/horovod/horovod
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ReFrame Documentation, Release 3.10.0

num_iters = 5
The number of iterations.

Type int

Default 5

num_warmup_batches = 5
The number of warmup batches

Type int

Default 5

throughput_iteration()
The average GPU throughput per iteration in images/s.

throughput_total()
The total GPU throughput of the benchmark in images/s.

class hpctestlib.ml.pytorch.horovod.pytorch_cnn_check(*args, **kwargs)
Bases: reframe.core.pipeline.RunOnlyRegressionTest

Run a synthetic CNN benchmark with PyTorch and Horovod.

PyTorch is a Python package that provides tensor computation like NumPy with strong GPU acceleration and
deep neural networks built on a tape-based autograd system. For more information, refer to https://pytorch.org/.

Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
The goal of Horovod is to make distributed deep learning fast and easy to use. For more information refer to
https://github.com/horovod/horovod.

This test runs the Horovod pytorch_synthentic_benchmark.py example, checks its sanity and extracts the
GPU performance.

batch_size = 64
The size of the batch used during the learning of models.

Type int

Default 64

benchmark_version = 'v0.21.0'
The version of Horovod to use.

Type str

Default 'v0.21.0'

model = 'inception_v3'
The name of the model to use for this benchmark.

Type str

Default 'inception_v3'

num_batches_per_iter = 5
The number of batches per iteration.

Type int

Default 5

num_iters = 5
The number of iterations.

Type int

278 Chapter 2. Publications

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/
https://github.com/horovod/horovod
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

ReFrame Documentation, Release 3.10.0

Default 5

num_warmup_batches = 5
The number of warmup batches

Type int

Default 5

throughput_iteration()
The average GPU throughput per iteration in images/s.

throughput_total()
The total GPU throughput of the benchmark in images/s.

2.8. ReFrame Test Library (experimental) 279

https://docs.python.org/3/library/functions.html#int

ReFrame Documentation, Release 3.10.0

280 Chapter 2. Publications

PYTHON MODULE INDEX

h
hpctestlib.data_analytics.spark.spark_checks,

275
hpctestlib.interactive.jupyter.ipcmagic, 277
hpctestlib.ml.pytorch.horovod, 278
hpctestlib.ml.tensorflow.horovod, 277
hpctestlib.python.numpy.numpy_ops, 276
hpctestlib.sciapps.amber.nve, 273
hpctestlib.sciapps.gromacs.benchmarks, 274

r
reframe.core.buildsystems, 236
reframe.core.containers, 243
reframe.core.environments, 224
reframe.core.exceptions, 269
reframe.core.launchers, 231
reframe.core.pipeline, 193
reframe.core.runtime, 233
reframe.core.schedulers, 230
reframe.core.systems, 226
reframe.utility, 256
reframe.utility.osext, 262
reframe.utility.sanity, 247
reframe.utility.typecheck, 266
reframe.utility.udeps, 268

281

ReFrame Documentation, Release 3.10.0

282 Python Module Index

INDEX

Symbols
.environments[].cc (.environments[] attribute), 177
.environments[].cflags (.environments[] attribute),

177
.environments[].cppflags (.environments[] at-

tribute), 177
.environments[].cxx (.environments[] attribute), 177
.environments[].cxxflags (.environments[] at-

tribute), 177
.environments[].extras (.environments[] attribute),

177
.environments[].fflags (.environments[] attribute),

177
.environments[].ftn (.environments[] attribute), 177
.environments[].ldflags (.environments[] at-

tribute), 178
.environments[].modules (.environments[] at-

tribute), 176
.environments[].name (.environments[] attribute),

176
.environments[].target_systems (.environments[]

attribute), 178
.environments[].variables (.environments[]

attribute), 176
.general[].check_search_path (.general[] at-

tribute), 187
.general[].check_search_recursive (.general[]

attribute), 187
.general[].clean_stagedir (.general[] attribute),

187
.general[].colorize (.general[] attribute), 187
.general[].compact_test_names (.general[] at-

tribute), 187
.general[].dump_pipeline_progress (.general[]

attribute), 187
.general[].git_timeout (.general[] attribute), 187
.general[].ignore_check_conflicts (.general[]

attribute), 188
.general[].keep_stage_files (.general[] attribute),

188
.general[].module_map_file (.general[] attribute),

188

.general[].module_mappings (.general[] attribute),
189

.general[].non_default_craype (.general[] at-
tribute), 189

.general[].pipeline_timeout (.general[] attribute),
188

.general[].purge_environment (.general[] at-
tribute), 189

.general[].remote_detect (.general[] attribute), 188

.general[].remote_workdir (.general[] attribute),
188

.general[].report_file (.general[] attribute), 189

.general[].report_junit (.general[] attribute), 189

.general[].resolve_module_conflicts (.general[]
attribute), 189

.general[].save_log_files (.general[] attribute),
190

.general[].target_systems (.general[] attribute),
190

.general[].timestamp_dirs (.general[] attribute),
190

.general[].trap_job_errors (.general[] attribute),
188

.general[].unload_modules (.general[] attribute),
190

.general[].use_login_shell (.general[] attribute),
190

.general[].user_modules (.general[] attribute), 190

.general[].verbose (.general[] attribute), 190

.logging[].handlers (.logging[] attribute), 179

.logging[].handlers_perflog (.logging[] attribute),
179

.logging[].handlers_perflog[].format (.log-
ging[].handlers_perflog[] attribute), 180

.logging[].handlers_perflog[].level (.log-
ging[].handlers_perflog[] attribute), 179

.logging[].handlers_perflog[].type (.log-
ging[].handlers_perflog[] attribute), 179

.logging[].handlers[].address (.log-
ging[].handlers[] attribute), 183

.logging[].handlers[].append (.log-
ging[].handlers[] attribute), 181

283

ReFrame Documentation, Release 3.10.0

.logging[].handlers[].basedir (.log-
ging[].handlers[] attribute), 182

.logging[].handlers[].datefmt (.log-
ging[].handlers[] attribute), 181

.logging[].handlers[].extras (.log-
ging[].handlers[] attribute), 183

.logging[].handlers[].facility (.log-
ging[].handlers[] attribute), 184

.logging[].handlers[].format (.log-
ging[].handlers[] attribute), 180

.logging[].handlers[].level (.log-
ging[].handlers[] attribute), 179

.logging[].handlers[].name (.logging[].handlers[]
attribute), 181

.logging[].handlers[].prefix (.log-
ging[].handlers[] attribute), 182

.logging[].handlers[].socktype (.log-
ging[].handlers[] attribute), 184

.logging[].handlers[].timestamp (.log-
ging[].handlers[] attribute), 181

.logging[].handlers[].type (.logging[].handlers[]
attribute), 179

.logging[].handlers[].url (.logging[].handlers[]
attribute), 184

.logging[].level (.logging[] attribute), 178

.logging[].target_systems (.logging[] attribute),
179

.modes[].name (.modes[] attribute), 186

.modes[].options (.modes[] attribute), 186

.modes[].target_systems (.modes[] attribute), 186

.schedulers[].ignore_reqnodenotavail (.sched-
ulers[] attribute), 185

.schedulers[].job_submit_timeout (.schedulers[]
attribute), 185

.schedulers[].name (.schedulers[] attribute), 185

.schedulers[].resubmit_on_errors (.schedulers[]
attribute), 186

.schedulers[].target_systems (.schedulers[] at-
tribute), 185

.schedulers[].use_nodes_option (.schedulers[] at-
tribute), 185

.systems[].descr (.systems[] attribute), 169

.systems[].hostnames (.systems[] attribute), 169

.systems[].max_local_jobs (.systems[] attribute),
169

.systems[].modules (.systems[] attribute), 170

.systems[].modules_system (.systems[] attribute),
169

.systems[].name (.systems[] attribute), 169

.systems[].outputdir (.systems[] attribute), 170

.systems[].partitions (.systems[] attribute), 170

.systems[].partitions[].access (.sys-
tems[].partitions[] attribute), 173

.systems[].partitions[].container_platforms

(.systems[].partitions[] attribute), 173
.systems[].partitions[].container_platforms[].modules

(.systems[].partitions[].container_platforms[]
attribute), 175

.systems[].partitions[].container_platforms[].type
(.systems[].partitions[].container_platforms[]
attribute), 174

.systems[].partitions[].container_platforms[].variables
(.systems[].partitions[].container_platforms[]
attribute), 175

.systems[].partitions[].descr (.sys-
tems[].partitions[] attribute), 171

.systems[].partitions[].devices (.sys-
tems[].partitions[] attribute), 174

.systems[].partitions[].environs (.sys-
tems[].partitions[] attribute), 173

.systems[].partitions[].extras (.sys-
tems[].partitions[] attribute), 174

.systems[].partitions[].launcher (.sys-
tems[].partitions[] attribute), 172

.systems[].partitions[].max_jobs (.sys-
tems[].partitions[] attribute), 173

.systems[].partitions[].modules (.sys-
tems[].partitions[] attribute), 173

.systems[].partitions[].name (.sys-
tems[].partitions[] attribute), 171

.systems[].partitions[].prepare_cmds (.sys-
tems[].partitions[] attribute), 174

.systems[].partitions[].processor (.sys-
tems[].partitions[] attribute), 174

.systems[].partitions[].resources (.sys-
tems[].partitions[] attribute), 174

.systems[].partitions[].resources[].name
(.systems[].partitions[].resources[] attribute),
175

.systems[].partitions[].resources[].options
(.systems[].partitions[].resources[] attribute),
175

.systems[].partitions[].scheduler (.sys-
tems[].partitions[] attribute), 171

.systems[].partitions[].time_limit (.sys-
tems[].partitions[] attribute), 173

.systems[].partitions[].variables (.sys-
tems[].partitions[] attribute), 173

.systems[].prefix (.systems[] attribute), 170

.systems[].resourcesdir (.systems[] attribute), 170

.systems[].stagedir (.systems[] attribute), 170

.systems[].variables (.systems[] attribute), 170
_EnvironmentSnapshot (class in re-

frame.core.environments), 225
-C --config-file=FILE

command line option, 159
-J

command line option, 157

284 Index

ReFrame Documentation, Release 3.10.0

-L
command line option, 151

-M
command line option, 158

-R
command line option, 149

-S
command line option, 155

-T
command line option, 150

-V
command line option, 160

--checkpath=PATH
command line option, 149

--ci-generate=FILE
command line option, 151

--cpu-only
command line option, 149

--describe
command line option, 151

--detect-host-topology[=FILE]
command line option, 159

--disable-hook=HOOK
command line option, 154

--dont-restage
command line option, 152

--exclude=NAME
command line option, 151

--exclude-tag=TAG
command line option, 150

--exec-policy=POLICY
command line option, 154

--failed
command line option, 149

--failure-stats
command line option, 159

--flex-alloc-nodes=POLICY
command line option, 157

--force-local
command line option, 154

--gpu-only
command line option, 149

--help
command line option, 159

--ignore-check-conflicts
command line option, 149

--job-option=OPTION
command line option, 157

--keep-stage-files
command line option, 152

--list-detailed[=T|C]
command line option, 151

--list-tags
command line option, 152

--list[=T|C]
command line option, 151

--maintainer=MAINTAINER
command line option, 150

--map-module=MAPPING
command line option, 158

--max-retries=NUM
command line option, 154

--maxfail=NUM
command line option, 154

--mode=MODE
command line option, 154

--module=NAME
command line option, 158

--module-mappings=FILE
command line option, 158

--module-path=PATH
command line option, 158

--name=NAME
command line option, 150

--nocolor
command line option, 159

--non-default-craype
command line option, 158

--output=DIR
command line option, 152

--perflogdir=DIR
command line option, 152

--performance-report
command line option, 159

--prefix=DIR
command line option, 153

--prgenv=NAME
command line option, 150

--purge-env
command line option, 159

--quiet
command line option, 159

--recursive
command line option, 149

--report-file=FILE
command line option, 153

--report-junit=FILE
command line option, 153

--restore-session [REPORT1[,REPORT2,...]]
command line option, 154

--run
command line option, 152

--save-log-files
command line option, 153

--setvar=[TEST.]VAR=VAL
command line option, 155

--show-config [PARAM]
command line option, 159

Index 285

ReFrame Documentation, Release 3.10.0

--skip-performance-check
command line option, 156

--skip-prgenv-check
command line option, 150

--skip-sanity-check
command line option, 156

--skip-system-check
command line option, 150

--stage=DIR
command line option, 153

--strict
command line option, 156

--system=NAME
command line option, 160

--tag=TAG
command line option, 151

--timestamp [TIMEFMT]
command line option, 153

--unload-module=NAME
command line option, 159

--upgrade-config-file=OLD[:NEW]
command line option, 160

--verbose
command line option, 160

--version
command line option, 160

-c
command line option, 149

-h
command line option, 159

-l
command line option, 151

-m
command line option, 158

-n
command line option, 150

-o
command line option, 152

-p
command line option, 150

-q
command line option, 159

-r
command line option, 152

-s
command line option, 153

-t
command line option, 151

-u
command line option, 159

-v
command line option, 160

-x
command line option, 151

A
AbortTaskError, 269
abs() (in module reframe.utility.sanity), 247
access (reframe.core.systems.SystemPartition property),

228
add() (reframe.utility.OrderedSet method), 256
all() (in module reframe.utility.sanity), 247
allx() (in module reframe.utility), 258
allx() (in module reframe.utility.sanity), 247
amber_nve_check (class in

hpctestlib.sciapps.amber.nve), 273
and_() (in module reframe.utility.sanity), 247
any() (in module reframe.utility.sanity), 247
arch (attribute), 191
assert_bounded() (in module reframe.utility.sanity),

247
assert_energy_readout()

(hpctestlib.sciapps.amber.nve.amber_nve_check
method), 273

assert_energy_readout()
(hpctestlib.sciapps.gromacs.benchmarks.gromacs_check
method), 274

assert_eq() (in module reframe.utility.sanity), 248
assert_false() (in module reframe.utility.sanity), 248
assert_found() (in module reframe.utility.sanity), 248
assert_found_s() (in module reframe.utility.sanity),

248
assert_ge() (in module reframe.utility.sanity), 249
assert_gt() (in module reframe.utility.sanity), 249
assert_in() (in module reframe.utility.sanity), 249
assert_le() (in module reframe.utility.sanity), 249
assert_lt() (in module reframe.utility.sanity), 249
assert_ne() (in module reframe.utility.sanity), 249
assert_not_found() (in module reframe.utility.sanity),

249
assert_not_found_s() (in module re-

frame.utility.sanity), 250
assert_not_in() (in module reframe.utility.sanity),

250
assert_pi_readout()

(hpctestlib.data_analytics.spark.spark_checks.compute_pi_check
method), 275

assert_reference() (in module reframe.utility.sanity),
250

assert_successful_execution()
(hpctestlib.interactive.jupyter.ipcmagic.ipcmagic_check
method), 277

assert_true() (in module reframe.utility.sanity), 250
attr_validator() (in module reframe.utility), 258
Autotools (class in reframe.core.buildsystems), 236
available_modules() (re-

frame.core.modules.ModulesSystem method),
234

avg() (in module reframe.utility.sanity), 250

286 Index

ReFrame Documentation, Release 3.10.0

B
batch_size (hpctestlib.ml.pytorch.horovod.pytorch_cnn_check

attribute), 278
batch_size (hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check

attribute), 277
bench_name (hpctestlib.sciapps.gromacs.benchmarks.gromacs_check

property), 274
benchmark (hpctestlib.sciapps.amber.nve.amber_nve_check

attribute), 273
benchmark_info (hpctestlib.sciapps.amber.nve.amber_nve_check

attribute), 273
benchmark_info (hpctestlib.sciapps.gromacs.benchmarks.gromacs_check

attribute), 274
benchmark_version (hpctestlib.ml.pytorch.horovod.pytorch_cnn_check

attribute), 278
benchmark_version (hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check

attribute), 277
benchmark_version (hpctestlib.sciapps.gromacs.benchmarks.gromacs_check

attribute), 274
Bool (class in reframe.utility.typecheck), 267
build_locally (reframe.core.pipeline.RegressionTest

attribute), 195
build_system (reframe.core.pipeline.RegressionTest at-

tribute), 195
build_time_limit (re-

frame.core.pipeline.RegressionTest attribute),
196

builddir (reframe.core.buildsystems.ConfigureBasedBuildSystem
attribute), 238

BuildError, 269
BuildSystem (class in reframe.core.buildsystems), 237
BuildSystemError, 269
BuildSystemMeta (class in reframe.core.buildsystems),

238
built-in function

reframe.utility.sanity.deferrable(), 247
reframe.utility.sanity.sanity_function(),

247
by_case() (in module reframe.utility.udeps), 268
by_env() (in module reframe.utility.udeps), 268
by_part() (in module reframe.utility.udeps), 268
by_xcase() (in module reframe.utility.udeps), 268
by_xenv() (in module reframe.utility.udeps), 268
by_xpart() (in module reframe.utility.udeps), 269

C
cc (reframe.core.buildsystems.BuildSystem attribute), 237
cc (reframe.core.environments.ProgEnvironment prop-

erty), 225
cflags (reframe.core.buildsystems.BuildSystem at-

tribute), 237
cflags (reframe.core.environments.ProgEnvironment

property), 225
chain() (in module reframe.utility.sanity), 250

change_dir (class in reframe.utility.osext), 262
check_performance() (re-

frame.core.pipeline.RegressionTest method),
196

check_sanity() (reframe.core.pipeline.RegressionTest
method), 196

cleanup() (reframe.core.pipeline.RegressionTest
method), 196

clear() (reframe.utility.OrderedSet method), 256
CMake (class in reframe.core.buildsystems), 238
collection (attribute), 191
command (reframe.core.containers.ContainerPlatform at-

tribute), 243
command (reframe.core.exceptions.SpawnedProcessError

property), 271
command line option

-C --config-file=FILE, 159
-J, 157
-L, 151
-M, 158
-R, 149
-S, 155
-T, 150
-V, 160
--checkpath=PATH, 149
--ci-generate=FILE, 151
--cpu-only, 149
--describe, 151
--detect-host-topology[=FILE], 159
--disable-hook=HOOK, 154
--dont-restage, 152
--exclude=NAME, 151
--exclude-tag=TAG, 150
--exec-policy=POLICY, 154
--failed, 149
--failure-stats, 159
--flex-alloc-nodes=POLICY, 157
--force-local, 154
--gpu-only, 149
--help, 159
--ignore-check-conflicts, 149
--job-option=OPTION, 157
--keep-stage-files, 152
--list-detailed[=T|C], 151
--list-tags, 152
--list[=T|C], 151
--maintainer=MAINTAINER, 150
--map-module=MAPPING, 158
--max-retries=NUM, 154
--maxfail=NUM, 154
--mode=MODE, 154
--module=NAME, 158
--module-mappings=FILE, 158
--module-path=PATH, 158

Index 287

ReFrame Documentation, Release 3.10.0

--name=NAME, 150
--nocolor, 159
--non-default-craype, 158
--output=DIR, 152
--perflogdir=DIR, 152
--performance-report, 159
--prefix=DIR, 153
--prgenv=NAME, 150
--purge-env, 159
--quiet, 159
--recursive, 149
--report-file=FILE, 153
--report-junit=FILE, 153
--restore-session

[REPORT1[,REPORT2,...]], 154
--run, 152
--save-log-files, 153
--setvar=[TEST.]VAR=VAL, 155
--show-config [PARAM], 159
--skip-performance-check, 156
--skip-prgenv-check, 150
--skip-sanity-check, 156
--skip-system-check, 150
--stage=DIR, 153
--strict, 156
--system=NAME, 160
--tag=TAG, 151
--timestamp [TIMEFMT], 153
--unload-module=NAME, 159
--upgrade-config-file=OLD[:NEW], 160
--verbose, 160
--version, 160
-c, 149
-h, 159
-l, 151
-m, 158
-n, 150
-o, 152
-p, 150
-q, 159
-r, 152
-s, 153
-t, 151
-u, 159
-v, 160
-x, 151
reframe [OPTION]... ACTION, 148

command() (reframe.core.launchers.JobLauncher
method), 231

command() (reframe.core.launchers.LauncherWrapper
method), 232

commands (reframe.core.containers.ContainerPlatform
attribute), 243

compile() (reframe.core.pipeline.RegressionTest
method), 197

compile() (reframe.core.pipeline.RunOnlyRegressionTest
method), 210

compile_complete() (re-
frame.core.pipeline.RegressionTest method),
197

compile_wait() (reframe.core.pipeline.RegressionTest
method), 197

compile_wait() (reframe.core.pipeline.RunOnlyRegressionTest
method), 210

CompileOnlyRegressionTest (class in re-
frame.core.pipeline), 193

completion_time (reframe.core.schedulers.Job prop-
erty), 230

compute_pi_check (class in
hpctestlib.data_analytics.spark.spark_checks),
275

concat_files() (in module reframe.utility.osext), 262
config_opts (reframe.core.buildsystems.ConfigureBasedBuildSystem

attribute), 238
ConfigError, 269
ConfigureBasedBuildSystem (class in re-

frame.core.buildsystems), 238
conflicted_modules() (re-

frame.core.modules.ModulesSystem method),
234

container_environs (re-
frame.core.systems.SystemPartition property),
228

container_platform (re-
frame.core.pipeline.RegressionTest attribute),
197

ContainerError, 269
ContainerPlatform (class in reframe.core.containers),

243
contains() (in module reframe.utility.sanity), 251
ConvertibleType (class in reframe.utility.typecheck),

267
copytree() (in module reframe.utility.osext), 262
copytree_virtual() (in module reframe.utility.osext),

262
count() (in module reframe.utility.sanity), 251
count() (reframe.utility.SequenceView method), 258
count_uniq() (in module reframe.utility.sanity), 251
cppflags (reframe.core.buildsystems.BuildSystem

attribute), 237
cppflags (reframe.core.environments.ProgEnvironment

property), 225
cray_cdt_version() (in module reframe.utility.osext),

262
cray_cle_info() (in module reframe.utility.osext), 263
current_environ (re-

frame.core.pipeline.RegressionTest property),

288 Index

ReFrame Documentation, Release 3.10.0

197
current_partition (re-

frame.core.pipeline.RegressionTest property),
197

current_system (reframe.core.pipeline.RegressionTest
property), 198

cxx (reframe.core.buildsystems.BuildSystem attribute),
237

cxx (reframe.core.environments.ProgEnvironment prop-
erty), 225

cxxflags (reframe.core.buildsystems.BuildSystem
attribute), 237

cxxflags (reframe.core.environments.ProgEnvironment
property), 225

D
decamelize() (in module reframe.utility), 259
defer() (in module reframe.utility.sanity), 251
DEPEND_BY_ENV (in module reframe.core.pipeline), 194
DEPEND_BY_ENV (reframe.core.containers.reframe

attribute), 245
DEPEND_EXACT (in module reframe.core.pipeline), 194
DEPEND_EXACT (reframe.core.containers.reframe at-

tribute), 245
DEPEND_FULLY (in module reframe.core.pipeline), 194
DEPEND_FULLY (reframe.core.containers.reframe at-

tribute), 245
DependencyError, 269
depends_on() (reframe.core.pipeline.RegressionTest

method), 198
descr (reframe.core.pipeline.RegressionTest attribute),

198
descr (reframe.core.systems.System property), 227
descr (reframe.core.systems.SystemPartition property),

228
device_type (reframe.core.systems.DeviceInfo prop-

erty), 226
DeviceInfo (class in reframe.core.systems), 226
devices (reframe.core.systems.SystemPartition prop-

erty), 228
difference() (reframe.utility.OrderedSet method), 256
discard() (reframe.utility.OrderedSet method), 256
display_name (reframe.core.pipeline.RegressionTest

property), 199
Docker (class in reframe.core.containers), 244

E
EasyBuild (class in reframe.core.buildsystems), 239
easyconfigs (reframe.core.buildsystems.EasyBuild at-

tribute), 239
emit_load_cmds (reframe.core.buildsystems.Spack at-

tribute), 242
emit_load_commands() (re-

frame.core.modules.ModulesSystem method),

234
emit_package (reframe.core.buildsystems.EasyBuild at-

tribute), 239
emit_unload_commands() (re-

frame.core.modules.ModulesSystem method),
235

energy_ref (hpctestlib.sciapps.amber.nve.amber_nve_check
attribute), 273

energy_ref (hpctestlib.sciapps.gromacs.benchmarks.gromacs_check
property), 274

energy_tol (hpctestlib.sciapps.amber.nve.amber_nve_check
attribute), 273

energy_tol (hpctestlib.sciapps.gromacs.benchmarks.gromacs_check
property), 274

enumerate() (in module reframe.utility.sanity), 251
EnvironError, 269
Environment (class in reframe.core.environments), 224
environment (reframe.core.buildsystems.Spack at-

tribute), 242
environment variable

RFM_CHECK_SEARCH_PATH, 148, 149, 163
RFM_CHECK_SEARCH_RECURSIVE, 149, 163
RFM_CLEAN_STAGEDIR, 152, 163
RFM_COLORIZE, 159, 163
RFM_COMPACT_TEST_NAMES, 161–163
RFM_CONFIG_FILE, 159, 163
RFM_GIT_TIMEOUT, 163
RFM_GRAYLOG_ADDRESS, 164
RFM_GRAYLOG_SERVER, 164
RFM_HTTPJSON_URL, 164
RFM_IGNORE_CHECK_CONFLICTS, 149, 164
RFM_IGNORE_REQNODENOTAVAIL, 164
RFM_KEEP_STAGE_FILES, 152, 164
RFM_MODULE_MAP_FILE, 158, 164
RFM_MODULE_MAPPINGS, 158, 165
RFM_NON_DEFAULT_CRAYPE, 159, 165
RFM_OUTPUT_DIR, 152, 165
RFM_PERFLOG_DIR, 153, 165
RFM_PREFIX, 153, 165
RFM_PURGE_ENVIRONMENT, 159, 165
RFM_REMOTE_DETECT, 127, 165
RFM_REMOTE_WORKDIR, 127, 165
RFM_REPORT_FILE, 153, 166
RFM_REPORT_JUNIT, 153, 166
RFM_RESOLVE_MODULE_CONFLICTS, 166
RFM_SAVE_LOG_FILES, 153, 166
RFM_STAGE_DIR, 153, 166
RFM_SYSLOG_ADDRESS, 166
RFM_SYSTEM, 160, 166
RFM_TIMESTAMP_DIRS, 153, 166
RFM_TRAP_JOB_ERRORS, 167
RFM_UNLOAD_MODULES, 159, 167
RFM_USE_LOGIN_SHELL, 167
RFM_USER_MODULES, 158, 167

Index 289

ReFrame Documentation, Release 3.10.0

RFM_VERBOSE, 160, 167
environment() (reframe.core.systems.SystemPartition

method), 228
environments (attribute), 168
environs (reframe.core.systems.SystemPartition prop-

erty), 228
evaluate() (in module reframe.utility.sanity), 251
exclusive_access (re-

frame.core.pipeline.RegressionTest attribute),
199

exec_cores (hpctestlib.data_analytics.spark.spark_checks.compute_pi_check
attribute), 275

executable (reframe.core.buildsystems.SingleSource at-
tribute), 241

executable (reframe.core.pipeline.RegressionTest at-
tribute), 199

executable_opts (re-
frame.core.pipeline.RegressionTest attribute),
199

execute() (reframe.core.modules.ModulesSystem
method), 235

executor_memory (hpctestlib.data_analytics.spark.spark_checks.compute_pi_check
attribute), 275

exitcode (reframe.core.exceptions.SpawnedProcessError
property), 271

exitcode (reframe.core.schedulers.Job property), 230
expandvars() (in module reframe.utility.osext), 263
extra_resources (re-

frame.core.pipeline.RegressionTest attribute),
199

extractall() (in module reframe.utility.sanity), 251
extractall_s() (in module reframe.utility.sanity), 252
extractiter() (in module reframe.utility.sanity), 252
extractiter_s() (in module reframe.utility.sanity),

252
extractsingle() (in module reframe.utility.sanity),

252
extractsingle_s() (in module reframe.utility.sanity),

253
extras (reframe.core.environments.Environment prop-

erty), 224
extras (reframe.core.systems.SystemPartition property),

228

F
FailureLimitError, 269
fflags (reframe.core.buildsystems.BuildSystem at-

tribute), 237
fflags (reframe.core.environments.ProgEnvironment

property), 225
filter() (in module reframe.utility.sanity), 253
find_modules() (in module reframe.utility), 259
findall() (in module reframe.utility.sanity), 253
findall_s() (in module reframe.utility.sanity), 253

finditer() (in module reframe.utility.sanity), 253
finditer_s() (in module reframe.utility.sanity), 253
fixture_variant (re-

frame.core.pipeline.RegressionTest property),
200

flags_from_environ (re-
frame.core.buildsystems.BuildSystem attribute),
237

follow_link() (in module reframe.utility.osext), 263
force_remove_file() (in module re-

frame.utility.osext), 263
ForceExitError, 269
ftn (reframe.core.buildsystems.BuildSystem attribute),

238
ftn (reframe.core.environments.ProgEnvironment prop-

erty), 225
fullname (reframe.core.systems.SystemPartition prop-

erty), 228
fully() (in module reframe.utility.udeps), 269

G
general (attribute), 169
get() (reframe.utility.MappingView method), 256
get_option() (reframe.core.runtime.RuntimeContext

method), 233
get_variant_nums() (re-

frame.core.pipeline.RegressionMixin class
method), 223

getattr() (in module reframe.utility.sanity), 254
getdep() (reframe.core.pipeline.RegressionTest

method), 200
getitem() (in module reframe.utility.sanity), 254
getlauncher() (in module reframe.core.backends), 232
getscheduler() (in module reframe.core.backends),

233
git_clone() (in module reframe.utility.osext), 263
git_repo_exists() (in module reframe.utility.osext),

263
git_repo_hash() (in module reframe.utility.osext), 263
glob() (in module reframe.utility.sanity), 254
global_scope_mark (reframe.utility.ScopedDict prop-

erty), 258
gromacs_check (class in

hpctestlib.sciapps.gromacs.benchmarks),
274

H
hasattr() (in module reframe.utility.sanity), 254
hostnames (reframe.core.systems.System property), 227
hpctestlib.data_analytics.spark.spark_checks

module, 275
hpctestlib.interactive.jupyter.ipcmagic

module, 277
hpctestlib.ml.pytorch.horovod

290 Index

ReFrame Documentation, Release 3.10.0

module, 278
hpctestlib.ml.tensorflow.horovod

module, 277
hpctestlib.python.numpy.numpy_ops

module, 276
hpctestlib.sciapps.amber.nve

module, 273
hpctestlib.sciapps.gromacs.benchmarks

module, 274

I
iglob() (in module reframe.utility.sanity), 254
image (reframe.core.containers.ContainerPlatform at-

tribute), 243
import_module_from_file() (in module re-

frame.utility), 260
include_path (reframe.core.buildsystems.SingleSource

attribute), 241
index() (reframe.utility.SequenceView method), 258
info (reframe.core.systems.DeviceInfo property), 226
info (reframe.core.systems.ProcessorInfo property), 226
info() (reframe.core.pipeline.RegressionTest method),

201
inpath() (in module reframe.utility.osext), 263
input_file (hpctestlib.sciapps.amber.nve.amber_nve_check

attribute), 273
install_opts (reframe.core.buildsystems.Spack at-

tribute), 242
install_tree (reframe.core.buildsystems.Spack at-

tribute), 242
intersection() (reframe.utility.OrderedSet method),

256
ipcmagic_check (class in

hpctestlib.interactive.jupyter.ipcmagic), 277
is_copyable() (in module reframe.utility), 260
is_env_loaded() (in module reframe.core.runtime),

233
is_exit_request() (in module re-

frame.core.exceptions), 272
is_fixture() (reframe.core.pipeline.RegressionTest

method), 201
is_interactive() (in module reframe.utility.osext),

264
is_local() (reframe.core.pipeline.RegressionTest

method), 201
is_module_loaded() (re-

frame.core.modules.ModulesSystem method),
235

is_picklable() (in module reframe.utility), 260
is_severe() (in module reframe.core.exceptions), 272
is_trivially_callable() (in module reframe.utility),

260
is_url() (in module reframe.utility.osext), 264

is_user_error() (in module reframe.core.exceptions),
272

isdisjoint() (reframe.utility.OrderedSet method), 256
issubset() (reframe.utility.OrderedSet method), 256
issuperset() (reframe.utility.OrderedSet method), 256
items() (reframe.utility.MappingView method), 256

J
Job (class in reframe.core.schedulers), 230
job (reframe.core.pipeline.RegressionTest property), 201
JobBlockedError, 270
JobError, 270
jobid (reframe.core.exceptions.JobError property), 270
jobid (reframe.core.schedulers.Job property), 230
JobLauncher (class in reframe.core.launchers), 231
JobNotStartedError, 270
JobSchedulerError, 270
json() (reframe.core.systems.System method), 227
json() (reframe.core.systems.SystemPartition method),

228

K
keep_files (reframe.core.pipeline.RegressionTest at-

tribute), 201
keys() (reframe.utility.MappingView method), 256

L
lang (reframe.core.buildsystems.SingleSource attribute),

241
launcher (reframe.core.schedulers.Job attribute), 230
launcher (reframe.core.systems.SystemPartition prop-

erty), 228
launcher_type (reframe.core.systems.SystemPartition

property), 229
LauncherWrapper (class in reframe.core.launchers),

232
ldflags (reframe.core.buildsystems.BuildSystem at-

tribute), 238
ldflags (reframe.core.environments.ProgEnvironment

property), 225
len() (in module reframe.utility.sanity), 254
load_module() (reframe.core.modules.ModulesSystem

method), 235
loaded_modules() (re-

frame.core.modules.ModulesSystem method),
235

loadenv() (in module reframe.core.runtime), 233
local (reframe.core.pipeline.RegressionTest attribute),

201
local_env (reframe.core.systems.SystemPartition prop-

erty), 229
logger (reframe.core.pipeline.RegressionTest property),

201
logging (attribute), 168

Index 291

ReFrame Documentation, Release 3.10.0

LoggingError, 270
longest() (in module reframe.utility), 261

M
maintainers (reframe.core.pipeline.RegressionTest at-

tribute), 202
Make (class in reframe.core.buildsystems), 240
make_opts (reframe.core.buildsystems.ConfigureBasedBuildSystem

attribute), 238
make_performance_function() (in module re-

frame.utility.sanity), 254
makefile (reframe.core.buildsystems.Make attribute),

240
map() (in module reframe.utility.sanity), 254
MappingView (class in reframe.utility), 256
max() (in module reframe.utility.sanity), 254
max_concurrency (re-

frame.core.buildsystems.ConfigureBasedBuildSystem
attribute), 239

max_concurrency (reframe.core.buildsystems.Make at-
tribute), 240

max_jobs (reframe.core.systems.SystemPartition prop-
erty), 229

max_pending_time (re-
frame.core.pipeline.RegressionTest attribute),
202

min() (in module reframe.utility.sanity), 254
mkstemp_path() (in module reframe.utility.osext), 264
model (hpctestlib.ml.pytorch.horovod.pytorch_cnn_check

attribute), 278
model (hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check

attribute), 277
modes (attribute), 168
module

hpctestlib.data_analytics.spark.spark_checks,
275

hpctestlib.interactive.jupyter.ipcmagic,
277

hpctestlib.ml.pytorch.horovod, 278
hpctestlib.ml.tensorflow.horovod, 277
hpctestlib.python.numpy.numpy_ops, 276
hpctestlib.sciapps.amber.nve, 273
hpctestlib.sciapps.gromacs.benchmarks,

274
reframe.core.buildsystems, 236
reframe.core.containers, 243
reframe.core.environments, 224
reframe.core.exceptions, 269
reframe.core.launchers, 231
reframe.core.pipeline, 193
reframe.core.runtime, 233
reframe.core.schedulers, 230
reframe.core.systems, 226
reframe.utility, 256

reframe.utility.osext, 262
reframe.utility.sanity, 247
reframe.utility.typecheck, 266
reframe.utility.udeps, 268

module_use (class in reframe.core.runtime), 233
modules (reframe.core.environments.Environment prop-

erty), 224
modules (reframe.core.pipeline.RegressionTest at-

tribute), 202
modules_detailed (re-

frame.core.environments.Environment prop-
erty), 224

modules_system (reframe.core.runtime.RuntimeContext
property), 233

modules_system (reframe.core.systems.System prop-
erty), 227

ModulesSystem (class in reframe.core.modules), 234
mount_points (reframe.core.containers.ContainerPlatform

attribute), 243

N
name (attribute), 191
name (reframe.core.environments.Environment property),

224
name (reframe.core.modules.ModulesSystem property),

235
name (reframe.core.pipeline.RegressionTest attribute),

202
name (reframe.core.systems.System property), 227
name (reframe.core.systems.SystemPartition property),

229
NameConflictError, 270
nb_impl (hpctestlib.sciapps.gromacs.benchmarks.gromacs_check

attribute), 275
nodelist (reframe.core.schedulers.Job property), 231
nodelist_abbrev() (in module reframe.utility), 261
not_() (in module reframe.utility.sanity), 254
num_batches_per_iter

(hpctestlib.ml.pytorch.horovod.pytorch_cnn_check
attribute), 278

num_batches_per_iter
(hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check
attribute), 277

num_cores (reframe.core.systems.ProcessorInfo prop-
erty), 226

num_cores_per_numa_node (re-
frame.core.systems.ProcessorInfo property),
226

num_cores_per_socket (re-
frame.core.systems.ProcessorInfo property),
226

num_cpus (attribute), 191
num_cpus_per_core (attribute), 191
num_cpus_per_socket (attribute), 192

292 Index

ReFrame Documentation, Release 3.10.0

num_cpus_per_task (re-
frame.core.pipeline.RegressionTest attribute),
202

num_devices (attribute), 193
num_devices (reframe.core.systems.DeviceInfo prop-

erty), 226
num_gpus_per_node (re-

frame.core.pipeline.RegressionTest attribute),
202

num_iters (hpctestlib.ml.pytorch.horovod.pytorch_cnn_check
attribute), 278

num_iters (hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check
attribute), 277

num_numa_nodes (reframe.core.systems.ProcessorInfo
property), 226

num_sockets (attribute), 192
num_tasks (hpctestlib.sciapps.amber.nve.amber_nve_check

attribute), 274
num_tasks (reframe.core.pipeline.RegressionTest at-

tribute), 202
num_tasks_per_core (re-

frame.core.pipeline.RegressionTest attribute),
203

num_tasks_per_node (re-
frame.core.pipeline.RegressionTest attribute),
203

num_tasks_per_socket (re-
frame.core.pipeline.RegressionTest attribute),
203

num_variants (reframe.core.pipeline.RegressionMixin
attribute), 223

num_warmup_batches (hpctestlib.ml.pytorch.horovod.pytorch_cnn_check
attribute), 279

num_warmup_batches (hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check
attribute), 278

num_workers (hpctestlib.data_analytics.spark.spark_checks.compute_pi_check
attribute), 275

numpy_ops_check (class in
hpctestlib.python.numpy.numpy_ops), 276

nvcc (reframe.core.buildsystems.BuildSystem attribute),
238

O
options (reframe.core.buildsystems.EasyBuild at-

tribute), 239
options (reframe.core.buildsystems.Make attribute), 240
options (reframe.core.containers.ContainerPlatform at-

tribute), 243
options (reframe.core.launchers.JobLauncher at-

tribute), 232
options (reframe.core.schedulers.Job attribute), 231
or_() (in module reframe.utility.sanity), 254
OrderedSet (class in reframe.utility), 256
osgroup() (in module reframe.utility.osext), 264

osuser() (in module reframe.utility.osext), 264
output_file (hpctestlib.sciapps.amber.nve.amber_nve_check

attribute), 274
output_prefix (reframe.core.runtime.RuntimeContext

property), 233
outputdir (reframe.core.pipeline.RegressionTest prop-

erty), 203
outputdir (reframe.core.systems.System property), 227

P
package_opts (reframe.core.buildsystems.EasyBuild at-

tribute), 239
param_variant (reframe.core.pipeline.RegressionTest

property), 203
parameterized_test() (in module re-

frame.core.decorators), 211
partitions (reframe.core.systems.System property), 227
path (None attribute), 191
path_exists() (in module reframe.utility.sanity), 254
path_isdir() (in module reframe.utility.sanity), 254
path_isfile() (in module reframe.utility.sanity), 255
path_islink() (in module reframe.utility.sanity), 255
perf() (hpctestlib.sciapps.amber.nve.amber_nve_check

method), 274
perf_patterns (reframe.core.pipeline.RegressionTest

attribute), 203
perf_variables (reframe.core.pipeline.RegressionTest

attribute), 204
PerformanceError, 270
PipelineError, 270
poll() (reframe.core.pipeline.RegressionTest method),

204
pop() (reframe.utility.OrderedSet method), 256
postbuild_cmds (reframe.core.pipeline.RegressionTest

attribute), 204
postrun_cmds (reframe.core.pipeline.RegressionTest at-

tribute), 204
ppretty() (in module reframe.utility), 261
prebuild_cmds (reframe.core.pipeline.RegressionTest

attribute), 204
prefix (reframe.core.buildsystems.EasyBuild attribute),

239
prefix (reframe.core.pipeline.RegressionTest property),

205
prefix (reframe.core.systems.System property), 227
preload_environ (reframe.core.systems.System prop-

erty), 227
prepare_cmds (reframe.core.systems.SystemPartition

property), 229
prerun_cmds (reframe.core.pipeline.RegressionTest at-

tribute), 205
print() (in module reframe.utility.sanity), 255
processor (reframe.core.systems.SystemPartition prop-

erty), 229

Index 293

ReFrame Documentation, Release 3.10.0

ProcessorInfo (class in reframe.core.systems), 226
ProgEnvironment (class in reframe.core.environments),

225
pull_image (reframe.core.containers.ContainerPlatform

attribute), 244
pytorch_cnn_check (class in

hpctestlib.ml.pytorch.horovod), 278

R
readonly_files (reframe.core.pipeline.RegressionTest

attribute), 205
reference (reframe.core.pipeline.RegressionTest at-

tribute), 205
reframe [OPTION]... ACTION

command line option, 148
reframe.CompileOnlyRegressionTest (class in re-

frame.core.containers), 245
reframe.core.buildsystems

module, 236
reframe.core.containers

module, 243
reframe.core.environments

module, 224
reframe.core.exceptions

module, 269
reframe.core.launchers

module, 231
reframe.core.pipeline

module, 193
reframe.core.runtime

module, 233
reframe.core.schedulers

module, 230
reframe.core.systems

module, 226
reframe.parameterized_test() (in module re-

frame.core.containers), 245
reframe.RegressionTest (class in re-

frame.core.containers), 245
reframe.require_deps() (in module re-

frame.core.containers), 245
reframe.required_version() (in module re-

frame.core.containers), 245
reframe.run_after() (in module re-

frame.core.containers), 245
reframe.run_before() (in module re-

frame.core.containers), 245
reframe.RunOnlyRegressionTest (class in re-

frame.core.containers), 245
reframe.simple_test() (in module re-

frame.core.containers), 245
reframe.utility

module, 256
reframe.utility.osext

module, 262
reframe.utility.sanity

module, 247
reframe.utility.sanity.deferrable()

built-in function, 247
reframe.utility.sanity.sanity_function()

built-in function, 247
reframe.utility.typecheck

module, 266
reframe.utility.udeps

module, 268
reframe_version() (in module reframe.utility.osext),

264
ReframeBaseError, 270
ReframeError, 271
ReframeFatalError, 271
ReframeSyntaxError, 271
RegressionMixin (class in reframe.core.pipeline), 194
RegressionMixin.bind() (in module re-

frame.core.pipeline), 221
RegressionMixin.deferrable() (in module re-

frame.core.pipeline), 221
RegressionMixin.fixture() (in module re-

frame.core.pipeline), 215
RegressionMixin.parameter() (in module re-

frame.core.pipeline), 212
RegressionMixin.performance_function() (in

module reframe.core.pipeline), 220
RegressionMixin.require_deps() (in module re-

frame.core.pipeline), 221
RegressionMixin.run_after() (in module re-

frame.core.pipeline), 223
RegressionMixin.run_before() (in module re-

frame.core.pipeline), 222
RegressionMixin.sanity_function() (in module

reframe.core.pipeline), 220
RegressionMixin.variable() (in module re-

frame.core.pipeline), 213
RegressionTest (class in reframe.core.pipeline), 195
RegressionTestLoadError, 271
remove() (reframe.utility.OrderedSet method), 257
repr() (in module reframe.utility), 262
required_version() (in module re-

frame.core.decorators), 211
resources (reframe.core.systems.SystemPartition prop-

erty), 229
resourcesdir (reframe.core.systems.System property),

227
restore() (reframe.core.environments._EnvironmentSnapshot

method), 225
reversed() (in module reframe.utility.sanity), 255
RFM_CHECK_SEARCH_PATH, 148, 149
RFM_CHECK_SEARCH_RECURSIVE, 149
RFM_CLEAN_STAGEDIR, 152

294 Index

ReFrame Documentation, Release 3.10.0

RFM_COLORIZE, 159
RFM_COMPACT_TEST_NAMES, 161, 162
RFM_CONFIG_FILE, 159
RFM_GRAYLOG_ADDRESS, 164
RFM_IGNORE_CHECK_CONFLICTS, 149
RFM_KEEP_STAGE_FILES, 152
RFM_MODULE_MAP_FILE, 158
RFM_MODULE_MAPPINGS, 158
RFM_NON_DEFAULT_CRAYPE, 159
RFM_OUTPUT_DIR, 152
RFM_PERFLOG_DIR, 153
RFM_PREFIX, 153
RFM_PURGE_ENVIRONMENT, 159
RFM_REMOTE_DETECT, 127
RFM_REMOTE_WORKDIR, 127
RFM_REPORT_FILE, 153
RFM_REPORT_JUNIT, 153
RFM_SAVE_LOG_FILES, 153
RFM_STAGE_DIR, 153
RFM_SYSTEM, 160
RFM_TIMESTAMP_DIRS, 153
RFM_UNLOAD_MODULES, 159
RFM_USER_MODULES, 158
RFM_VERBOSE, 160
rmtree() (in module reframe.utility.osext), 264
round() (in module reframe.utility.sanity), 255
run() (reframe.core.pipeline.CompileOnlyRegressionTest

method), 193
run() (reframe.core.pipeline.RegressionTest method),

206
run() (reframe.core.pipeline.RunOnlyRegressionTest

method), 210
run_command() (in module reframe.utility.osext), 264
run_command() (reframe.core.launchers.JobLauncher

method), 232
run_command_async() (in module re-

frame.utility.osext), 265
run_complete() (reframe.core.pipeline.RegressionTest

method), 206
run_wait() (reframe.core.pipeline.CompileOnlyRegressionTest

method), 194
run_wait() (reframe.core.pipeline.RegressionTest

method), 206
RunOnlyRegressionTest (class in re-

frame.core.pipeline), 210
runtime() (in module reframe.core.runtime), 234
RuntimeContext (class in reframe.core.runtime), 233

S
samefile() (in module reframe.utility.osext), 265
sanity_patterns (re-

frame.core.pipeline.RegressionTest attribute),
206

SanityError, 271

Sarus (class in reframe.core.containers), 244
scheduler (reframe.core.systems.SystemPartition prop-

erty), 229
schedulers (attribute), 168
scope() (reframe.utility.ScopedDict method), 258
scope_separator (reframe.utility.ScopedDict prop-

erty), 258
ScopedDict (class in reframe.utility), 257
searchpath (reframe.core.modules.ModulesSystem

property), 236
searchpath_add() (re-

frame.core.modules.ModulesSystem method),
236

searchpath_remove() (re-
frame.core.modules.ModulesSystem method),
236

SequenceView (class in reframe.utility), 258
setattr() (in module reframe.utility.sanity), 255
setup() (reframe.core.pipeline.CompileOnlyRegressionTest

method), 194
setup() (reframe.core.pipeline.RegressionTest method),

207
setup() (reframe.core.pipeline.RunOnlyRegressionTest

method), 210
Shifter (class in reframe.core.containers), 244
shortest() (in module reframe.utility), 262
simple_test() (in module reframe.core.decorators),

211
SingleSource (class in reframe.core.buildsystems), 240
Singularity (class in reframe.core.containers), 244
skip() (reframe.core.pipeline.RegressionTest method),

207
skip_if() (reframe.core.pipeline.RegressionTest

method), 207
skip_if_no_procinfo() (re-

frame.core.pipeline.RegressionTest method),
207

SkipTestError, 271
snapshot() (in module reframe.core.environments), 225
sorted() (in module reframe.utility.sanity), 255
sourcepath (reframe.core.pipeline.RegressionTest at-

tribute), 207
sourcesdir (reframe.core.pipeline.RegressionTest at-

tribute), 208
Spack (class in reframe.core.buildsystems), 242
spark_local_dirs (hpctestlib.data_analytics.spark.spark_checks.compute_pi_check

attribute), 275
spark_prefix (hpctestlib.data_analytics.spark.spark_checks.compute_pi_check

attribute), 276
SpawnedProcessError, 271
SpawnedProcessTimeout, 271
specs (reframe.core.buildsystems.Spack attribute), 243
srcdir (reframe.core.buildsystems.ConfigureBasedBuildSystem

attribute), 239

Index 295

ReFrame Documentation, Release 3.10.0

srcdir (reframe.core.buildsystems.Make attribute), 240
srcfile (reframe.core.buildsystems.SingleSource

attribute), 241
stage_prefix (reframe.core.runtime.RuntimeContext

property), 233
stagedir (reframe.core.pipeline.RegressionTest prop-

erty), 208
stagedir (reframe.core.systems.System property), 228
state (reframe.core.schedulers.Job property), 231
StatisticsError, 272
stderr (reframe.core.exceptions.SpawnedProcessError

property), 271
stderr (reframe.core.pipeline.CompileOnlyRegressionTest

property), 194
stderr (reframe.core.pipeline.RegressionTest property),

208
stdout (reframe.core.exceptions.SpawnedProcessError

property), 271
stdout (reframe.core.pipeline.CompileOnlyRegressionTest

property), 194
stdout (reframe.core.pipeline.RegressionTest property),

208
strict_check (reframe.core.pipeline.RegressionTest at-

tribute), 208
subdirs() (in module reframe.utility.osext), 265
submit_time (reframe.core.schedulers.Job property),

231
sum() (in module reframe.utility.sanity), 255
symmetric_difference() (reframe.utility.OrderedSet

method), 257
System (class in reframe.core.systems), 227
system (reframe.core.runtime.RuntimeContext prop-

erty), 233
SystemPartition (class in reframe.core.systems), 228
systems (attribute), 168

T
tags (reframe.core.pipeline.RegressionTest attribute),

208
TaskDependencyError, 272
TaskExit, 272
temp_environment (class in reframe.core.runtime), 234
tensorflow_cnn_check (class in

hpctestlib.ml.tensorflow.horovod), 277
throughput_iteration()

(hpctestlib.ml.pytorch.horovod.pytorch_cnn_check
method), 279

throughput_iteration()
(hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check
method), 278

throughput_total() (hpctestlib.ml.pytorch.horovod.pytorch_cnn_check
method), 279

throughput_total() (hpctestlib.ml.tensorflow.horovod.tensorflow_cnn_check
method), 278

time_cholesky() (hpctestlib.python.numpy.numpy_ops.numpy_ops_check
method), 276

time_dot() (hpctestlib.python.numpy.numpy_ops.numpy_ops_check
method), 276

time_eigendec() (hpctestlib.python.numpy.numpy_ops.numpy_ops_check
method), 276

time_inv() (hpctestlib.python.numpy.numpy_ops.numpy_ops_check
method), 276

time_limit (reframe.core.pipeline.RegressionTest at-
tribute), 209

time_svd() (hpctestlib.python.numpy.numpy_ops.numpy_ops_check
method), 276

timeout (reframe.core.exceptions.SpawnedProcessTimeout
property), 272

tolerance (hpctestlib.data_analytics.spark.spark_checks.compute_pi_check
attribute), 276

topology (attribute), 192
type (attribute), 193

U
union() (reframe.utility.OrderedSet method), 257
unique_abs_paths() (in module reframe.utility.osext),

266
unique_name (reframe.core.pipeline.RegressionTest

property), 209
unload_all() (reframe.core.modules.ModulesSystem

method), 236
unload_module() (re-

frame.core.modules.ModulesSystem method),
236

update() (reframe.utility.ScopedDict method), 258
use_multithreading (re-

frame.core.pipeline.RegressionTest attribute),
209

user_frame() (in module reframe.core.exceptions), 272

V
valid_prog_environs (re-

frame.core.pipeline.RegressionTest attribute),
209

valid_systems (reframe.core.pipeline.RegressionTest
attribute), 209

values() (reframe.utility.MappingView method), 256
variables (reframe.core.environments.Environment

property), 224
variables (reframe.core.pipeline.RegressionTest at-

tribute), 210
variant (hpctestlib.data_analytics.spark.spark_checks.compute_pi_check

attribute), 276
variant_name() (reframe.core.pipeline.RegressionMixin

class method), 224
variant_num (reframe.core.pipeline.RegressionTest

property), 210

296 Index

ReFrame Documentation, Release 3.10.0

version (reframe.core.modules.ModulesSystem prop-
erty), 236

W
wait() (reframe.core.pipeline.RegressionTest method),

210
what() (in module reframe.core.exceptions), 272
with_cuda (reframe.core.containers.Singularity at-

tribute), 244
with_mpi (reframe.core.containers.Sarus attribute), 244
workdir (reframe.core.containers.ContainerPlatform at-

tribute), 244

Z
zip() (in module reframe.utility.sanity), 255

Index 297

	Use Cases
	Publications
	Getting Started
	Requirements
	Getting the Framework
	Spack
	EasyBuild
	PyPI
	Github

	Enabling auto-completion
	Where to Go from Here

	ReFrame Tutorials
	Tutorial 1: Getting Started with ReFrame
	Getting Ready
	The “Hello, World!” test
	More of “Hello, World!”
	A Multithreaded “Hello, World!”
	More advanced sanity checking

	Writing A Performance Test
	Setting explicitly the test’s performance variables
	Adding reference values
	Examining the performance logs

	Porting The Tests to an HPC cluster
	Adapting the configuration
	Running the tests
	Adapting a test to new systems and programming environments

	Tutorial 2: Customizing Further a Regression Test
	Parameterizing a Regression Test
	More On Building Tests
	Retrieving the source code from a Git repository
	Adding a configuration step before compiling the code

	Writing a Run-Only Regression Test
	Writing a Compile-Only Regression Test
	Grouping parameter packs
	Applying a Sanity Function Iteratively
	Customizing the Test Job Script
	Adding job scheduler options per test
	Modifying the parallel launcher command
	Replacing the parallel launcher
	Adding more parallel launch commands

	Flexible Regression Tests
	Testing containerized applications
	Writing reusable tests

	Tutorial 3: Using Dependencies in ReFrame Tests
	Listing Dependencies
	Depending on Parameterized Tests

	Tutorial 4: Using Test Fixtures
	Tutorial 5: Using Build Automation Tools As a Build System
	Using EasyBuild to Build the Test Code
	Packaging the installation

	Using Spack to Build the Test Code

	Tutorial 6: Tips and Tricks
	Debugging
	Debugging deferred expressions
	Debugging sanity and performance patterns
	Debugging test loading

	Execution modes
	Manipulating ReFrame’s environment
	Environment Modules Mappings
	Retrying and Rerunning Tests
	Integrating into a CI pipeline

	Online Tutorials

	Configuring ReFrame for Your Site
	Locating the Configuration File
	Anatomy of the Configuration File
	Systems Configuration
	Environments Configuration
	Logging configuration
	General configuration options
	Other configuration options

	Picking a System Configuration
	Querying Configuration Options
	Auto-detecting processor information

	Advanced Topics
	How ReFrame Executes Tests
	The Regression Test Pipeline
	The Setup Phase
	The Build Phase
	The Run Phase
	The Sanity Phase
	The Performance Phase
	The Cleanup Phase

	Execution Policies
	Where each pipeline stage is executed?

	Timing the Test Pipeline

	How Test Dependencies Work In ReFrame
	Split by partition
	Split by environment
	Split by exclusive partition
	Split by exclusive environment
	Split by exclusive case
	Custom splits
	Cyclic dependencies
	Resolving dependencies
	Cleaning up stage files

	Understanding the Mechanism of Deferrable Functions
	What Is a Deferrable Function?
	Deferred expressions
	How a Deferred Expression Is Evaluated?
	Implicit evaluation of a deferred expression
	How to Write a Deferrable Function?
	Ready to Go Deferrable Functions
	Deferrable functions vs Generators
	Similarities
	Differences

	Use Cases
	ReFrame at CSCS
	ReFrame at NERSC
	ReFrame at OSC

	Migrating to ReFrame 3
	Updating Your Site Configuration
	Configuration conversion limitations

	Updating Your Tests
	Pipeline methods and hooks
	Force override a pipeline method

	Getting schedulers and launchers by name
	Other deprecations
	Suppressing deprecation warnings

	Other Changes

	ReFrame Manuals
	Command Line Reference
	Synopsis
	Description
	Test discovery and test loading
	Test filtering
	Test actions
	Options controlling ReFrame output
	Options controlling ReFrame execution
	Options controlling job submission
	Flexible node allocation
	Options controlling ReFrame environment
	Miscellaneous options

	Test Naming Scheme
	Differences from the old naming scheme

	Environment
	Configuration File
	Reporting Bugs
	See Also

	Configuration Reference
	Top-level Configuration
	System Configuration
	System Partition Configuration
	Container Platform Configuration
	Custom Job Scheduler Resources

	Environment Configuration
	Logging Configuration
	Common logging handler properties
	The file log handler
	The filelog log handler
	The graylog log handler
	The stream log handler
	The syslog log handler
	The httpjson log handler

	Scheduler Configuration
	Common scheduler options

	Execution Mode Configuration
	General Configuration
	Module Objects
	Processor Info
	Device Info

	Programming APIs
	Regression Test API
	Test Base Classes
	Test Decorators
	Built-in types
	Built-in functions
	Pipeline Hooks
	Test variants
	Environments and Systems
	Job Schedulers and Parallel Launchers
	Runtime Services
	Modules Systems
	Build Systems
	Container Platforms
	The reframe module
	Mapping of Test Attributes to Job Scheduler Backends

	Deferrable Functions Reference
	Explicit evaluation of deferrable functions
	Implicit evaluation of deferrable functions
	Categories of deferrable functions
	Deferrable performance functions

	List of deferrable functions and utilities

	Utility Functions
	General Utilities
	System Utilities
	Type Checking Utilities
	Implementation details

	Test Case Dependencies Management

	ReFrame Errors

	ReFrame Test Library (experimental)
	Scientific Applications
	Data Analytics
	Python
	Interactive Computing
	Machine Learning

	Python Module Index
	Index

