ReFrame Documentation
Release 4.1.0

CSCS

Feb 28, 2023

TABLE OF CONTENTS

1 Publications 3
2 Webinars 5
2.1 Getting Started e e e e e e e e e e e 5
22 What'sNewinReFrame 4.0 L e 7
2.3 ReFrame Tutorials L e e e e 10
2.4 Configuring ReFrame for Your Site 116
25 Advanced TOpiCs Lo e e 129
2.6 ReFrame Manuals e e e 144
2.7 ReFrame Test Library (experimental) 298
Python Module Index 311
Index 313

ReFrame Documentation, Release 4.1.0

ReFrame is a powerful framework for writing system regression tests and benchmarks, specifically targeted to HPC
systems. The goal of the framework is to abstract away the complexity of the interactions with the system, separating
the logic of a test from the low-level details, which pertain to the system configuration and setup. This allows users to
write portable tests in a declarative way that describes only the test’s functionality.

Tests in ReFrame are simple Python classes that specify the basic variables and parameters of the test. ReFrame offers
an intuitive and very powerful syntax that allows users to create test libraries, test factories, as well as complete test
workflows using other tests as fixtures. ReFrame will load the tests and send them down a well-defined pipeline that will
execute them in parallel. The stages of this pipeline take care of all the system interaction details, such as programming
environment switching, compilation, job submission, job status query, sanity checking and performance assessment.

ReFrame also offers a high-level and flexible abstraction for writing sanity and performance checks for your regression
tests, without having to care about the details of parsing output files, searching for patterns and testing against reference
values for different systems.

Finally, ReFrame offers a powerful and efficient runtime for running and managing the execution of tests, as well as
integration with common logging facilities, where ReFrame can send live data from currently running performance
tests.

TABLE OF CONTENTS 1

ReFrame Documentation, Release 4.1.0

2 TABLE OF CONTENTS

CHAPTER
ONE

Slides [pdf] @ 7th EasyBuild User Meeting 2022.
Slides [pdf] @ 6th EasyBuild User Meeting 2021.
Slides [pdf] @ 5th EasyBuild User Meeting 2020.

Slides [pdf] @ HPC System Testing BoF, SC’19.
Slides [pdf] @ HUST 2019, SC’19.

Slides [pdf] @ HPC Knowledge Meeting “19.
Slides [pdf] & Talk @ FOSDEM’ 19.

Slides [pdf] @ 4th EasyBuild User Meeting.
Slides [pdf] @ HUST 2018, SC’18.

Slides [pdf] @ CSCS User Lab Day 2018.
Slides [pdf] @ HPC Advisory Council 2018.
Slides [pdf] @ SC17.

Slides [pdf] @ CUG 2017.

PUBLICATIONS

https://drive.google.com/file/d/1vmaWyRHgtq3DrYhSCVBzR8U5ErKbxGNf/view?usp=sharing
https://easybuild.io/eum22/
https://drive.google.com/file/d/1kNZu1QNBDDsbKarzwNWYjTGKgOukg-96/view?usp=sharing
https://easybuild.io/eum21/
https://drive.google.com/open?id=1W7R5lfRkXvBpVDSZ7dVBadk_d3K4dFrS
https://github.com/easybuilders/easybuild/wiki/5th-EasyBuild-User-Meeting
https://drive.google.com/open?id=1Z3faPh9OSSXvlLHL07co3MRRn443dYsY
https://sc19.supercomputing.org/session/?sess=sess324
https://drive.google.com/open?id=1JOFqY3ejbR1X5kTn_IZyp1GlCd2ZZS58
https://sc19.supercomputing.org/session/?sess=sess116
https://drive.google.com/open?id=1iwg1I48LVaWhhZCZIYPJSi3hdFLRcuhi
https://hpckp.org/
https://fosdem.org/2019/schedule/event/reframe/attachments/slides/3226/export/events/attachments/reframe/slides/3226/FOSDEM_2019.pdf
https://fosdem.org/2019/schedule/event/reframe/
https://fosdem.org/2019/
https://indico.cism.ucl.ac.be/event/4/contributions/24/attachments/30/62/ReFrame_EUM_2019.pdf
https://github.com/easybuilders/easybuild/wiki/4th-EasyBuild-User-Meeting
https://drive.google.com/open?id=1bSykDrl1e2gPflf4jFJ8kfe_SZAtrJ_Q
https://sc18.supercomputing.org/
https://github.com/eth-cscs/UserLabDay/blob/master/2018/slides/ci_and_regression/ReFrame_CI.pdf
https://github.com/eth-cscs/UserLabDay
https://drive.google.com/open?id=1sZhibvUlGlT670aOHPdMlWFffWptYzLX
http://www.hpcadvisorycouncil.com/events/2018/swiss-workshop/
https://drive.google.com/open?id=1EyJ-siupkgLeVT54A4WlFpQtrJaU0xOy
https://sc17.supercomputing.org/
https://drive.google.com/open?id=18VrCy0MTplGo67uxVbzYZicQChor9VSY
https://cug.org/cug-2017/

ReFrame Documentation, Release 4.1.0

4 Chapter 1. Publications

CHAPTER
TWO

WEBINARS

» “ReFrame — Efficient System and Application Performance Testing,” CSCS Webinar, Aug. 29, 2022 [slides]

[recording] [demo run].

2.1 Getting Started

2.1.1 Requirements

 Python 3.6 or higher. Python 2 is not supported.

* The required Python packages are the following:

archspec==0.2.0

argcomplete==2.0.0

coverage==6.2; python_version < '3.7'
coverage==7.1.0; python_version >= '3.7'
importlib_metadata==4.0.1; python_version < '3.8'
jsonschema==3.2.0

1xml==4.9.2

pytest==7.0.1

pytest-forked==1.4.0

pytest-parallel==0.1.1

pytest-rerunfailures==10.3; python_version == '3.6'
pytest-rerunfailures==11.0; python_version >= '3.7'
PyYAML==6.0

requests==2.27.1; python_version == '3.6'

requests==2.28.1; python_version >= '3.7'
semver==2.13.0

setuptools==59.6.0; python_version == '3.6'
setuptools==67.1.0; python_version >= '3.7'
wcwidth==0.2.6

Note: Changed in version 3.0: Support for Python 3.5 has been dropped.

https://drive.google.com/file/d/1nOS_daleR79ZB1IaToVdW5mDpJQYRcY2/view?usp=sharing
https://youtu.be/NDxlKATEcQk
https://asciinema.org/a/517693

ReFrame Documentation, Release 4.1.0

2.1.2 Getting the Framework

Stable ReFrame releases are available through different channels.

Spack

ReFrame is available as a Spack package:

spack install reframe

There are the following variants available:
* +docs: This will install the man pages of ReFrame.

e +gelf: This will install the bindings for handling Graylog log messages.

EasyBuild

ReFrame is available as an EasyBuild package:

eb ReFrame-VERSION.eb -r

This will install the man pages as well as the Graylog bindings.

PyPI

ReFrame is available as a PyPI package:

pip install reframe-hpc

This is a bare installation of the framework. It will not install the documentation, the tutorial examples or the bindings
for handling Graylog log messages.

Github

Any ReFrame version can be very easily installed directly from Github:

pushd /path/to/install/prefix

git clone -q --depth 1 --branch VERSION_TAG https://github.com/reframe-hpc/reframe.git
pushd reframe && ./bootstrap.sh && popd

export PATH=$(pwd) /bin: $PATH

popd

The VERSION_TAG is the version number prefixed by v, e.g., v3.5.0. The ./bootstrap.sh script will fetch Re-
Frame’s requirements under its installation prefix. It will not set the PYTHONPATH, so it will not affect the user’s Python
installation. The . /bootstrap.sh has two additional variant options:

¢ +docs: This will also build the documentation.

e +pygelf: This will install the bindings for handling Graylog log messages.

Note: New in version 3.1: The bootstrap script for ReFrame was added. For previous ReFrame versions you should
install its requirements using pip install -r requirements.txt in a Python virtual environment.

6 Chapter 2. Webinars

https://spack.io/
https://docs.graylog.org/
https://easybuild.readthedocs.io/en/latest/
https://docs.graylog.org/
https://pypi.org/project/ReFrame-HPC/
https://docs.graylog.org/
https://docs.graylog.org/

ReFrame Documentation, Release 4.1.0

2.1.3 Enabling auto-completion

New in version 3.4.1.

You can enable auto-completion for ReFrame by sourcing in your shell the corresponding script in
<install_prefix>/share/completions/reframe.<shell>. Auto-completion is supported for Bash, Tcsh
and Fish shells.

Note: Changed in version 3.4.2: The shell completion scripts have been moved under share/completions/.

2.1.4 Where to Go from Here

If you are new to ReFrame, the place to start is the first tutorial Tutorial 1: Getting Started with ReFrame, which will
guide you step-by-step in both writing your first tests and in configuring ReFrame. The rest of the tutorials explore
additional capabilities of the framework and cover several topics that you will likely come across when writing your
own tests.

The Configuring ReFrame for Your Site page provides more details on how a configuration file is structured and the
Advanced Topics explain some more advanced concepts as well as some implementation details. The ReFrame Manuals
provide complete reference guides for the command line interface, the configuration parameters and the programming
APIs for writing tests.

Finally, if you are not new to ReFrame and you have been using the 3.x versions, you should read the What’s New in
ReFrame 4.0 page, which explains what are the key new features of ReFrame 4.0 as well as all the breaking changes.

2.2 What’s New in ReFrame 4.0

ReFrame 4.0 introduces some important new features and removes all features, configuration options and interfaces
that were deprecated in the 3.x versions. It also introduces a couple of new deprecations.

ReFrame 4.0 maintains backward compatibility as much as possible. Existing 3.x configurations and 3.x tests are
expected to run out-of-the-box, despite any warnings issued. The framework’s behavior with respect to performance
logging has also changed, but configuration options are offered so that users can switch to the old behavior.

This page summarizes the key changes in ReFrame 4.0 and what users should pay attention to.

For a complete list of changes, please refer to the Release Notes.

2.2.1 New Features and Enchancements

Chaining Configuration Files

There is no need anymore to keep a huge configuration file with all your system and environment definitions and it is
no more required to carry on the generic system configuration as well as any part of the builtin configuration. ReFrame
4.0 allows you to split your configuration in multiple files. This allows you to create minimal configuration files that
contain only the necessary parts. For example, if you want to define a general configuration parameter, you don’t need
to copy the builtin configuration file and add it, but you simply add it in a single general section. This can also be very
useful if you maintain a ReFrame installation used by others, as you can update your settings (systems, environments
and other options) and any of your users’ custom configuration will automatically inherit your settings if it is properly
chained. To assist with system-wide installation the RFM_CONFIG_PATH environment variable is introduced that allows
you to specify a path where ReFrame will look for configuration files to load.

2.2. What’s New in ReFrame 4.0 7

https://github.com/reframe-hpc/reframe/releases/tag/v4.0.0

ReFrame Documentation, Release 4.1.0

Now that systems and environments definitions can be distributed over multiple configuration files, it can become easy
to accidentally redefine a system or environment without a notice. For this reason, ReFrame warns you if a system or
an environment is redefined in the same scope. Since in the past all configuration files where extended copies of the
builtin configuration, you will get warnings that the generic system and the builtin environment are redefined, as
ReFrame finds them in the builtin configuration, which is always loaded. You can safely ignore these warnings and
use the definitions in your configuration file. If you want to eliminate them, though, you should remove the conflicting
definitions from your configuration file.

Although ReFrame will not warn you for redefining other configuration sections, you are also advised to tidy up your
configuration file and remove any parts that were copied unchanged from the builtin configuration.

For more information on how ReFrame 4.0 builds and loads its configuration, please refer to the documentation of the
--config-file option, as well as the Building the Final Configuration section.

Performance Reporting and Logging

ReFrame 4.0 improves on how performance values are logged and reported. This is a breaking change, but you can
easily revert to the old behavior.

ReFrame now logs performance after the test has finished and not during the performance stage. You can now log
the result of the test by including %(check_result)s in your log handler format string. However, now, by default,
ReFrame will log all the performance variables in a single record; in the past, a new record was logged for each
performance variable. Also, the %(check_perf_*)s format placeholders are valid only in the format_perfvars
configuration parameter and will be used to format the performance values if the %(check_perfvalues) s placeholder
is present in the handler’s format parameter. This change in behavior will likely break your log processing, especially
if you are using the graylog or httpjson handlers or any handler that sends the full record to a log server. You can
revert to the old behavior by setting the perflog_compat configuration parameter. This will send a separate record for
each performance variable that will include all the individual %(check_perf_*)s attributes. For more information,
check the documentation of the format_perfvars configuration parameter.

The behavior of the filelog is also substantially improved. The log file is printed by default in CSV format and a
header is always printed at the beginning of each log file. If the log format changes or the performance variables logged
by the test change, a new log file will be created with an adapted header. This way, every log file is consistent with the
data in contains. For more information, please refer to the filelog handler documentation.

When you run a performance test, ReFrame will now print immediately after the test has finished a short summary of
its performance. You can suppress this output by setting the log level at which this information is printed to verbose
by setting the perf_info_Ilevel general configuration parameter.

Finally, the performance report printed at the end of the run using the --performance-report is revised providing
more information in more compact form.

New Test Naming Scheme

ReFrame 4.0 makes default the new test naming scheme introduced in 3.10.0 and drops support of the old naming
scheme. The new naming scheme does not affect normal tests, but it changes how parameterized tests and fixtures are
named. Each test is now also associated with a unique hash code. For parameterized tests and fixtures this hash code is
appended to the test’s or fixture’s base name when creating any test-specific directories and files, such as the test stage
and output directories. The -n option can match a test either by its display name (the default), or by its unique internal
name or by its unique hash code. Check the documentation of the -n for more information. For the details of the new
naming scheme, please refer to the Test Naming Scheme section.

Note that any tests that used the old naming scheme to depend on parameterized tests will break with this change. Check
the tutorial Depending on Parameterized Tests on how to create dependencies on parameterized tests in a portable way.

8 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

Custom parallel launchers

By relaxing the configuration schema, users can now define custom parallel launchers inside their Python configuration
file. Check the tutorial Adding a custom launcher to a partition to find out how this can be achieved.

Unique run reports
ReFrame now generates a unique report for each run inside the $HOME/.reframe/reports directory. If you want

to revert to the old behavior, where a single file was generated and was overwritten in every run, you should set the
report_file configuration option or the RFM_REPORT_FILE environment variable.

New Backends

ReFrame 4.0 adds support for the Apptainer container platform and the Flux framework.

2.2.2 Dropped Features and Deprecations

ReFrame 4.0 drops support for all the deprecated features and behaviors of ReFrame 3.x versions. More specifically,
the following deprecated features are dropped:

The @parameterized_test decorator is dropped in favor of the parameter builtin.

The name of the test is now read-only.

The decorators @final, @require_deps, @run_after and @run_before are no more accesible via the
reframe module. They are directly available in the RegressionTest namespace without the need of importing
anything.

The @reframe.utility.sanity.sanity_function decorator is dropped in favor of the @deferrable
builtin.

The commands attribute of the ContainerPlatform is dropped in favor of the command attribute.

The launcher attribute of the System is dropped in favor of the launcher_type attribute.

The @required_version decorator is dropped in favor of the require_version builtin. Also, automatically
converting version strings that do not comply with the semantic versioning scheme is no more supported.

The DEPEND_EXACT, DEPEND_BY_ENV and DEPEND_FULLY integer constants that were passed as the how argu-
ment of the depends_on () method are no more supported and a callable should be used instead. The subdeps
argument is also dropped.

The low-level poll() and wait() RegressionTest methods are dropped in favor of the run_complete()
and run_wait (), respectively.

The schedulers configuration section is dropped in favor of the partition-specific sched_options. Users
should move any options set in the old section to the corresponding partition options.

e The --ignore-check-conflicts command line option and the corresponding
RFM_IGNORE_CHECK_CONFLICTS environment variable are dropped.

The --force-local and --strict command line options are removed. Please use instead -S local=1 and
-S strict_check=1, respectively.

The RFM_GRAYLOG_SERVER environment variable is dropped in favor of the RFM_GRAYLOG_ADDRESS.

2.2. What’s New in ReFrame 4.0 9

https://apptainer.org/
http://flux-framework.org/

ReFrame Documentation, Release 4.1.0

New Deprecations

* All occurrences of the variables name are deprecated in favor of env_vars. This includes the variables
test attribute and the homonym systems, partitions and environments configuration parameters as well as the
variables of the Environment base class.

e Although perf_patterns attribute is not deprecated, users are recommended to migrate to using the new
@performance_function builtin. Please refer to Writing A Performance Test tutorial for a starting point.

2.3 ReFrame Tutorials

2.3.1 Tutorial 1: Getting Started with ReFrame

New in version 3.1.

This tutorial will give you a first overview of ReFrame and will acquaint you with its basic concepts. We will start with
a simple “Hello, World!” test running with the default configuration and we will expand the example along the way.
We will also explore performance tests and port our tests to an HPC cluster. The examples of this tutorial can be found
under tutorials/basics/.

Getting Ready

All you need to start off with this tutorial is to have installed ReFrame. If you haven’t done so yet, all you need is Python
3.6 and above and to follow the steps below:

git clone https://github.com/reframe-hpc/reframe.git
cd reframe

./bootstrap.sh

./bin/reframe -V

We’re now good to go!

The “Hello, World!” test

As simple as it may sound, a series of “naive” “Hello, World!” tests can reveal lots of regressions in the programming
environment of HPC clusters, but the bare minimum of those also serves perfectly the purpose of starting this tutorial.
Here is its C version:

cat tutorials/basics/hello/src/hello.c

#include <stdio.h>

int mainQ)

{
printf("Hello, World!\n");
return 0;

}

And here is the ReFrame version of it:

10 Chapter 2. Webinars

started.html#getting-the-framework

ReFrame Documentation, Release 4.1.0

cat tutorials/basics/hello/hellol.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class HelloTest(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello.c'

@sanity_function
def assert_hello(self):
return sn.assert_found(r'Hello, World\!', self.stdout)

Regression tests in ReFrame are specially decorated classes that ultimately derive from RegressionTest. The
@simple_test decorator registers a test class with ReFrame and makes it available to the framework. The test vari-
ables are essentially attributes of the test class and can be defined directly in the class body. Each test must always set
the valid_systems and valid_prog_environs attributes. These define the systems and/or system partitions that
this test is allowed to run on, as well as the programming environments that it is valid for. A programming environment
is essentially a compiler toolchain. We will see later on in the tutorial how a programming environment can be defined.
The generic configuration of ReFrame assumes a single programming environment named builtin which comprises
a C compiler that can be invoked with cc. In this particular test we set both these attributes to ['*'], essentially
allowing this test to run everywhere.

A ReFrame test must either define an executable to execute or a source file (or source code) to be compiled. In this
example, it is enough to define the source file of our hello program. ReFrame knows the executable that was produced
and will use that to run the test.

Finally, every regression test must always decorate a member function as the test’s @sanity_function. This decorated
function is converted into a lazily evaluated expression that asserts the sanity of the test. In this particular case, the
specified sanity function checks that the executable has produced the desired phrase into the test’s standard output
stdout. Note that ReFrame does not determine the success of a test by its exit code. Instead, the assessment of
success is responsibility of the test itself.

Before running the test let’s inspect the directory structure surrounding it:

tutorials/basics/hello
hellol.py
src
L— hello.c

Our test is hellol.py and its resources, i.e., the hello. c source file, are located inside the src/ subdirectory. If not
specified otherwise, the sourcepath attribute is always resolved relative to src/. There is full flexibility in organizing
the tests. Multiple tests may be defined in a single file or they may be split in multiple files. Similarly, several tests may
share the same resources directory or they can simply have their own.

Now it’s time to run our first test:

./bin/reframe -c tutorials/basics/hello/hellol.py -r

[ReFrame Setup]
version: 4.0.0-dev.2+5eabb7ab

(continues on next page)

2.3. ReFrame Tutorials 11

deferrables.html

ReFrame Documentation, Release 4.1.0

(continued from previous page)

command : './bin/reframe -c tutorials/basics/hello/hellol.py -r'
launched by: user@host
working directory: '/home/user/Repositories/reframe’
settings files: '<builtin>'
check search path: '/home/user/Repositories/reframe/tutorials/basics/hello/hellol.py’
stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-tggpdg_b.log'
[==========] Running 1 check(s)
[==========] Started on Sat Nov 12 19:00:44 2022
[---———----] start processing checks
[RUN] HelloTest /2b3e4546 @generic:default+builtin
[OK] (1/1) HelloTest /2b3e4546 @generic:default+builtin
[----------] all spawned checks have finished

[PASSED] Ran 1/1 test case(s) from 1 check(s) (0 failure(s), O skipped)

[==========] Finished on Sat Nov 12 19:00:45 2022

Run report saved in '/home/user/.reframe/reports/run-report-319.json'

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-tggpdq_b.log’

Perfect! We have verified that we have a functioning C compiler in our system.

When ReFrame runs a test, it copies all its resources to a stage directory and performs all test-related operations (compi-
lation, run, sanity checking etc.) from that directory. On successful outcome of the test, the stage directory is removed
by default, but interesting files are copied to an output directory for archiving and later inspection. The prefixes of these
directories are printed in the first section of the output. Let’s inspect what files ReFrame produced for this test:

1s output/generic/default/builtin/HelloTest/

rfm_HelloTest_build.err rfm_HelloTest_build.sh rfm_HelloTest_job.out
rfm_HelloTest_build.out rfm_HelloTest_job.err rfm_HelloTest_job.sh

ReFrame stores in the output directory of the test the build and run scripts it generated for building and running the
code along with their standard output and error. All these files are prefixed with rfm_.

ReFrame also generates a detailed JSON report for the whole regression testing session. By default, this is stored inside
the ${HOME}/.reframe/reports directory and a new report file is generated every time ReFrame is run, but you can
control this through the --report-file command-line option.

Here are the contents of the report file for our first ReFrame run:

cat ~/.reframe/reports/run-report.json

{
"session_info": {

"cmdline": "./bin/reframe -c tutorials/basics/hello/hellol.py -r",
"config_file": "<builtin>",
"data_version": "2.0",
"hostname": "host",
"prefix_output": "/path/to/reframe/output”,
"prefix_stage": "/path/to/reframe/stage",

(continues on next page)

12 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

"user": "user",
"version": "3.10.0-dev.3+c22440c1",
"workdir": "/path/to/reframe",
"time_start": "2022-01-22T13:21:50+0100",
"time_end": "2022-01-22T13:21:51+0100",
"time_elapsed": 0.8124568462371826,
"num_cases": 1,
"num_failures": 0
1,
"runs": [
{
"num_cases": 1,
"num_failures": O,
"num_aborted": 0,
"num_skipped": 0,

"runid": O,
"testcases": [
{

"build_stderr": "rfm_HelloTest_build.err",
"build_stdout": "rfm_HelloTest_build.out",
"dependencies_actual": [],
"dependencies_conceptual”: [],
"description": "HelloTest",
"display_name": "HelloTest",
"filename": "/path/to/reframe/tutorials/basics/hello/hellol.py",
"environment": "builtin",
"fail_phase": null,
"fail_reason": null,
"jobid": "43152",
"job_stderr": "rfm HelloTest_job.err",
"job_stdout": "rfm HelloTest_job.out",
"maintainers": [],
"name": "HelloTest",
"nodelist": [

"tresa.local"
] ’
"outputdir": "/path/to/reframe/output/generic/default/builtin/HelloTest",
"perfvars": null,
"prefix": "/path/to/reframe/tutorials/basics/hello",
"result": "success",
"stagedir": "/path/to/reframe/stage/generic/default/builtin/HelloTest",
"scheduler": "local",
"system": "generic:default",
"tags": [1,
"time_compile": 0.27164483070373535,
"time_performance": 0.00010180473327636719,
"time_run": 0.3764667510986328,
"time_sanity": 0.0006909370422363281,
"time_setup": 0.007919073104858398,
"time_total": 0.8006880283355713,
"unique_name": "HelloTest"

(continues on next page)

2.3. ReFrame Tutorials 13

ReFrame Documentation, Release 4.1.0

(continued from previous page)

]
}
1,

"restored_cases": []

More of “Hello, World!”

We want to extend our test and run a C++ “Hello, World!” as well. We could simply copy paste the hellol.py and
change the source file extension to refer to the C++ source code. But this duplication is something that we generally
want to avoid. ReFrame allows you to avoid this in several ways but the most compact is to define the new test as
follows:

cat tutorials/basics/hello/hello2.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloMultilangTest(rfm.RegressionTest):
lang = parameter(['c', 'cpp']l)

valid_systems = ['*']
valid_prog_environs = ['*']

@run_before('compile')
def set_sourcepath(self):
self.sourcepath = f'hello. {self.lang}'
@sanity_function
def assert_hello(self):
return sn.assert_found(r'Hello, World\!', self.stdout)

This test extends the hellol.py test by defining the 1ang parameter with the parameter () built-in. This parameter
will cause as many instantiations as parameter values available, each one setting the 1ang attribute to one single value.
Hence, this example will create two test instances, one with lang="c"' and another with lang="cpp"'. The parameter
is available as an attribute of the test instance and, in this example, we use it to set the extension of the source file.
However, at the class level, a test parameter holds all the possible values for itself, and this is only assigned a single
value after the class is instantiated. Therefore, the variable sourcepath, which depends on this parameter, also needs
to be set after the class instantiation. The simplest way to do this would be to move the sourcepath assignment into
the __init__() method as shown in the code snippet below, but this has some disadvantages when writing larger tests.

def __init__(self):
self.sourcepath = f'hello. {self.lang

For example, when writing a base class for a test with a large amount of code into the __init__() method, the
derived class may want to do a partial override of the code in this function. This would force us to understand the full
implementation of the base class’ __init__ () despite that we may just be interested in overriding a small part of it.
Doable, but not ideal. Instead, through pipeline hooks, ReFrame provides a mechanism to attach independent functions
to execute at a given time before the data they set is required by the test. This is exactly what we want to do here, and

14 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

we know that the test sources are needed to compile the code. Hence, we move the sourcepath assignment into a
pre-compile hook.

@run_before('compile')
def set_sourcepath(self):
self.sourcepath = f'hello.{self.lang}'

The use of hooks is covered in more detail later on, but for now, let’s just think of them as a way to defer the execution
of a function to a given stage of the test’s pipeline. By using hooks, any user could now derive from this class and attach
other hooks (for example, adding some compiler flags) without having to worry about overriding the base method that
sets the sourcepath variable.

Let’s run the test now:

./bin/reframe -c tutorials/basics/hello/hello2.py -r

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab
command : './bin/reframe -c tutorials/basics/hello/hello2.py -r'
launched by: user@host
working directory: '/home/user/Repositories/reframe'’
settings files: '<builtin>'
check search path: '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py’
stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-krmo7oc3.log’
[==========] Running 2 check(s)
[==========] Started on Sat Nov 12 19:00:45 2022
[---—=—---—-] start processing checks
[RUN] HelloMultilangTest %lang=cpp /71bf65a3 @generic:default+builtin
[RUN] HelloMultilangTest %lang=c /7cfa870e @generic:default+builtin
[FAIL] (1/2) HelloMultilLangTest %lang=cpp /71bf65a3 @generic:default+builtin

==> test failed during 'compile': test staged in '/home/user/Repositories/reframe/stage/
—~generic/default/builtin/HelloMultilangTest_71bf65a3"

rfm_job.out

[OK] (2/2) HelloMultilangTest %lang=c /7cfa870e @generic:default+builtin
[----=-—----] all spawned checks have finished

[FAILED] Ran 2/2 test case(s) from 2 check(s) (1 failure(s), O skipped)
[==========] Finished on Sat Nov 12 19:00:46 2022

FAILURE INFO for HelloMultilLangTest_1

* Expanded name: HelloMultilangTest %lang=cpp

* Description:

* System partition: generic:default

* Environment: builtin

* Stage directory: /home/user/Repositories/reframe/stage/generic/default/builtin/
—HelloMultiLangTest_71bf65a3

* Node list:

(continues on next page)

2.3. ReFrame Tutorials 15

ReFrame Documentation, Release 4.1.0

(continued from previous page)

Job type: local (id=None)

* Dependencies (conceptual): []

* Dependencies (actual): []

* Maintainers: []

Failing phase: compile

Rerun with '-n /71bf65a3 -p builtin --system generic:default -r'

Reason: build system error: I do not know how to compile a C++ program

Run report saved in '/home/user/.reframe/reports/run-report-320.json'

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rim-krmo7oc3.log’

Oops! The C++ test has failed. ReFrame complains that it does not know how to compile a C++ program. Remember
our discussion above that the default configuration of ReFrame defines a minimal programming environment named
builtin which only knows of a cc compiler. We will fix that in a moment, but before doing that it’s worth looking into
the failure information provided for the test. For each failed test, ReFrame will print a short summary with information
about the system partition and the programming environment that the test failed for, its job or process id (if any), the
nodes it was running on, its stage directory, the phase that failed etc.

When a test fails its stage directory is kept intact, so that users can inspect the failure and try to reproduce it manually.
In this case, the stage directory contains only the “Hello, World” source files, since ReFrame could not produce a build
script for the C++ test, as it doesn’t know to compile a C++ program for the moment.

1s stage/generic/default/builtin/HelloMultilangTest_cpp

hello.c hello.cpp

Let’s go on and fix this failure by defining a new system and programming environments for the machine we are running
on. For this we need to create our own configuration file.

vi tutorials/config/tresa.py

Here is what we need to type:

Copyright 2016-2022 Swiss National Supercomputing Centre (CSCS/ETH Zurich)
and other ReFrame Project Developers. See the top-level LICENSE file for
details.

#

SPDX-License-Identifier: BSD-3-Clause

site_configuration = {
'systems': [

{

'name': 'tresa',

'descr': 'My Mac',

'hostnames': ['tresa'],

'modules_system': 'nomod',

'partitions': [

{

'name': 'default',
'scheduler': 'local',
'launcher': 'local',
'environs': ['gnu', 'clang'],

(continues on next page)

16 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

}
1
}
1,
'environments': [
{
'name': 'gnu',
'cc': 'gce-12',
'exx': 'g++-12°7,
'ftn': 'gfortran-12',
'target_systems': ['tresa']
s
{
'name': 'clang',
'cc': 'clang',
'cxx': 'clang++',
"ftn': ',
'target_systems': ['tresa']
1
1

We define a system named tresa that has one partition named default. This partition makes no use of any workload
manager, but instead launches any jobs locally as OS processes. Two programming environments are relevant for that
partition, namely gnu and clang, which are defined in the section environments of the configuration file. The gnu
programming environment provides GCC 12, whereas the clang one provides the Clang compiler from the system.
Notice, how you can define the actual commands for invoking the C, C++ and Fortran compilers in each programming
environment. As soon as a programming environment defines the different compilers, ReFrame will automatically
pick the right compiler based on the source file extension. In addition to C, C++ and Fortran programs, ReFrame will
recognize the . cu extension as well and will try to invoke the nvcc compiler for CUDA programs. Note also that we set
the target_systems for each environment definition. This restricts the definition of the environment being defined
to the specified systems only. ReFrame will always pick the definition that is a closest match for the current system.
Restricting the environment definitions is generally a good practice if you plan to define multiple systems in multiple
configuration files, as ReFrame would otherwise complain that an environment is redefined. On the other hand, if you
want to provide generic definitions of environments that are valid for multiple systems, you may skip that. This is what
the builtin configuration of ReFrame does for its generic builtin environment.

Finally, the new system that we defined may be identified by the hostname tresa (see the hostnames systems con-
figuration parameter) and it will not use any environment modules system (see the modules_system configuration
parameter). The hostnames attribute will help ReFrame to automatically pick the right configuration when running
on it. Notice, how the generic system matches any hostname, so that it acts as a fallback system.

Note: Multiple systems may defined in a configuration file, in which case they are tried in order and the first match is
picked. This means that the systems whose hostnames patterns are more generic, they should go to the end of the list.

The Configuring ReFrame for Your Site page describes the configuration file in more detail and the Configuration
Reference provides a complete reference guide of all the configuration options of ReFrame.

Let’s now rerun our “Hello, World!” tests:

./bin/reframe -C tutorials/config/tresa.py -c tutorials/basics/hello/hello2.py -r

2.3. ReFrame Tutorials 17

config_reference.html#config.systems.partitions.scheduler
config_reference.html#config.systems.partitions.scheduler

ReFrame Documentation, Release 4.1.0

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab

command : './bin/reframe -C tutorials/config/tresa.py -c tutorials/basics/
—hello/hello2.py -r'

launched by: user@host

working directory: '/home/user/Repositories/reframe'’

settings files: '<builtin>', 'tutorials/config/tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py’

stage directory: ' /home/user/Repositories/reframe/stage’

output directory: '/home/user/Repositories/reframe/output’

log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-e3d1£19_.1log"

[==========] Running 2 check(s)
[==========] Started on Sat Nov 12 19:00:46 2022

e] start processing checks

[] HelloMultilangTest %lang=cpp /71bf65a3 @tresa:default+gnu

[RUN] HelloMultilangTest %lang=cpp /71bf65a3 @tresa:default+clang
[] HelloMultilangTest %lang=c /7cfa870e @tresa:default+gnu

[] HelloMultilLangTest %lang=c /7cfa870e @tresa:default+clang

[OK] (1/4) HelloMultilLangTest %lang=c /7cfa870e @tresa:default+gnu
[OK] (2/4) HelloMultiLangTest %lang=c /7cfa870e @tresa:default+clang
[OK] (3/4) HelloMultilLangTest %lang=cpp /71bf65a3 @tresa:default+gnu

[OK] (4/4) HelloMultiLangTest %lang=cpp /71bf65a3 @tresa:default+clang
[--—==———--] all spawned checks have finished

[PASSED 1] Ran 4/4 test case(s) from 2 check(s) (0 failure(s), O skipped)

[==========] Finished on Sat Nov 12 19:00:48 2022

Run report saved in '/home/user/.reframe/reports/run-report-321.json'

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-e3d1£19_.1log"'

Notice how the same tests are now tried with both the gnu and clang programming environments, without having to
touch them at all! That’s one of the powerful features of ReFrame and we shall see later on, how easily we can port our
tests to an HPC cluster with minimal changes. In order to instruct ReFrame to use our configuration file, we use the
-C command line option. Since we don’t want to type it throughout the tutorial, we could set the RFM_CONFIG_FILES
environment variable, which takes a colon-separated list of configuration files that ReFrame will load. We will take
advantage of multiple configuration files later in the tutorial.

export RFM_CONFIG_FILES=$(pwd)/tutorials/config/tresa.py

Tip: If our configuration file was named settings.py and we did not intend to use multiple configuration files in
the same directory, we could also set the RFM_CONFIG_PATH environment variable.

18 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

A Multithreaded “Hello, World!”

We extend our C++ “Hello, World!” example to print the greetings from multiple threads:

cat tutorials/basics/hellomp/src/hello_threads.cpp

#include <iomanip>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>

#ifdef SYNC_MESSAGES
std: :mutex hello_mutex;
#endif

void greetings(int tid)
{
#ifdef SYNC_MESSAGES
const std::lock_guard<std::mutex> lock(hello_mutex);
#endif
std::cout << "[" << std::setw(2) << tid << "] " << "Hello, World!\n";

int main(int argc, char *argv[])

{
int nr_threads = 1;
if (argc > 1) {
nr_threads = std::atoiCargv[1]);
}
if (nr_threads <= 0) {
std::cerr << "thread count must a be positive integer\n";
return 1;
}
std: :vector<std: :thread> threads;
for (auto i = 0; i < nr_threads; ++i) {
threads.push_back(std: :thread(greetings, i));
}
for (auto &t : threads) {
t.joinQ;
}
return 0;
}

This program takes as argument the number of threads it will create and it uses std: : thread, which is a C++11
addition, meaning that we will need to pass -std=c++11 to our compilers. Here is the corresponding ReFrame test,
where the new concepts introduced are highlighted:

2.3. ReFrame Tutorials 19

ReFrame Documentation, Release 4.1.0

cat tutorials/basics/hellomp/hellompl.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class HelloThreadedTest(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello_threads.cpp'’
build_system = 'SingleSource'
executable_opts = ['16']

@run_before('compile')
def set_compilation_flags(self):

self.build_system.cxxflags = ['-std=c++11"', '-Wall']
environ = self.current_environ.name
if environ in {'clang', 'gnu'}:

self.build_system.cxxflags += ['-pthread']

@sanity_function
def assert_hello(self):
return sn.assert_found(r'Hello, World\!', self.stdout)

ReFrame delegates the compilation of a test to a build_system, which is an abstraction of the steps needed to compile
the test. Build systems take also care of interactions with the programming environment if necessary. Compilation flags
are a property of the build system. If not explicitly specified, ReFrame will try to pick the correct build system (e.g.,
CMake, Autotools etc.) by inspecting the test resources, but in cases as the one presented here where we need to set
the compilation flags, we need to specify a build system explicitly. In this example, we instruct ReFrame to compile
a single source file using the -std=c++11 -pthread -Wall compilation flags. However, the flag -pthread is only
needed to compile applications using std: : thread with the GCC and Clang compilers. Hence, since this flag may
not be valid for other compilers, we need to include it only in the tests that use either GCC or Clang. Similarly to the
lang parameter in the previous example, the information regarding which compiler is being used is only available after
the class is instantiated (after completion of the setup pipeline stage), so we also defer the addition of this optional
compiler flag with a pipeline hook. In this case, we set the set_compile_flags() hook to run before the ReFrame
pipeline stage compile.

Note: The pipeline hooks, as well as the regression test pipeline itself, are covered in more detail later on in the
tutorial.

In this example, the generated executable takes a single argument which sets the number of threads to be used. The
options passed to the test’s executable can be set through the executable_opts variable, which in this case is set to
'16".

Let’s run the test now:

./bin/reframe -c tutorials/basics/hellomp/hellompl.py -r

[ReFrame Setup]
version: 4.0.0-dev.2+5eabb7a6
command : './bin/reframe -c tutorials/basics/hellomp/hellompl.py -r'

(continues on next page)

20 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

launched by: user@host

working directory: '/home/user/Repositories/reframe’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/basics/hellomp/hellompl.

=Py

stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996mddmsvjq7v80000gp/T/rfm-v56bz2uo.log’
[==========] Running 1 check(s)
[==========] Started on Sat Nov 12 19:00:48 2022
[---—=------] start processing checks
[RUN] HelloThreadedTest /a6fa300f @tresa:default+gnu
[RUN] HelloThreadedTest /a6fa300f @tresa:default+clang
[OK] (1/2) HelloThreadedTest /a6fa300f @tresa:default+gnu
[OK] (2/2) HelloThreadedTest /a6fa300f @tresa:default+clang

[----=-—----] all spawned checks have finished

[PASSED] Ran 2/2 test case(s) from 1 check(s) (0 failure(s), O skipped)

[==========] Finished on Sat Nov 12 19:00:50 2022

Run report saved in '/home/user/.reframe/reports/run-report-322.json'

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-v56bz2uo.log’

Everything looks fine, but let’s inspect the actual output of one of the tests:

cat output/catalina/default/clang/HelloThreadedTest/rfm_HelloThreadedTest_job.out

[LCC 8] Hello, World!
1] Hello, World!
5[[O0[7] Hello, World!
] 1 Hello, World!
[Hello, World!
6[] Hello, World!
9] Hello, World!
2] Hello, World!
471 [[10 3] Hello, World!
] Hello, World!
[Hello, World!
11] Hello, World!
[12] Hello, World!
[13] Hello, World!
[14] Hello, World!
[15] Hello, World!

Not exactly what we were looking for! In the following we write a more robust sanity check that can catch this havoc.

2.3. ReFrame Tutorials 21

ReFrame Documentation, Release 4.1.0

More advanced sanity checking

So far, we have seen only a grep-like search for a string in the test’s stdout, but ReFrame’s @sanity_function are
much more capable than this. In fact, one could practically do almost any operation in the output and process it as you
would like before assessing the test’s sanity. In the following, we extend the sanity checking of the above multithreaded
“Hello, World!” to assert that all the threads produce a greetings line. See the highlighted lines below in the modified
version of the @sanity_function.

cat tutorials/basics/hellomp/hellomp2.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloThreadedExtendedTest(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello_threads.cpp'’
build_system = 'SingleSource'
executable_opts = ['16']

@run_before('compile')
def set_compilation_flags(self):

self.build_system.cxxflags = ['-std=c++11', '-Wall']
environ = self.current_environ.name
if environ in {'clang', 'gnu'}:

self.build_system.cxxflags += ['-pthread']

@sanity_function
def assert_num_messages(self):
num_messages = sn.len(sn.findall(r'\[\s?\d+\] Hello, World\!',
self.stdout))
return sn.assert_eq(num_messages, 16)

This new @sanity_function counts all the pattern matches in the tests’s stdout and checks that this count matches
the expected value. The execution of the function assert_num_messages() is deferred to the sanity stage in the
test’s pipeline, after the executable has run and the stdout file has been populated. In this example, we have used the
findall () utility function from the sanity module to conveniently extract the pattern matches. This module provides
a broad range of utility functions that can be used to compose more complex sanity checks. However, note that the
utility functions in this module are lazily evaluated expressions or deferred expressions which must be evaluated either
implicitly or explicitly (see Deferrable Functions Reference).

Let’s run this version of the test now and see if it fails:

./bin/reframe -c tutorials/basics/hellomp/hellomp2.py -r

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab6

command : './bin/reframe -c tutorials/basics/hellomp/hellomp2.py -r'
launched by: user@host

working directory: '/home/user/Repositories/reframe’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/

(continues on next page)

22 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

—tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/basics/hellomp/hellomp2.
~py'

stage directory: ' /home/user/Repositories/reframe/stage’

output directory: '/home/user/Repositories/reframe/output’

log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-a2ttdeqgp.log’

[==========] Running 1 check(s)
[==========] Started on Sat Nov 12 19:00:50 2022

[---—=—---—-] start processing checks

[RUN] HelloThreadedExtendedTest /4733a67d @tresa:default+gnu

[RUN] HelloThreadedExtendedTest /4733a67d @tresa:default+clang

[FAIL] (1/2) HelloThreadedExtendedTest /4733a67d @tresa:default+gnu

==> test failed during 'sanity': test staged in '/home/user/Repositories/reframe/stage/
—tresa/default/gnu/HelloThreadedExtendedTest'

[FAIL] (2/2) HelloThreadedExtendedTest /4733a67d @tresa:default+clang

==> test failed during 'sanity': test staged in '/home/user/Repositories/reframe/stage/
—tresa/default/clang/HelloThreadedExtendedTest'

e] all spawned checks have finished

[FAILED 1] Ran 2/2 test case(s) from 1 check(s) (2 failure(s), O skipped)
[==========] Finished on Sat Nov 12 19:00:52 2022

FAILURE INFO for HelloThreadedExtendedTest
* Expanded name: HelloThreadedExtendedTest
* Description:
* System partition: tresa:default
* Environment: gnu
* Stage directory: /home/user/Repositories/reframe/stage/tresa/default/gnu/
—HelloThreadedExtendedTest
* Node list: hostNone
* Job type: local (id=59525)
* Dependencies (conceptual): []
Dependencies (actual): []
Maintainers: []
* Failing phase: sanity
* Rerun with '-n /4733a67d -p gnu --system tresa:default -r'
* Reason: sanity error: 13 != 16

*

*

FAILURE INFO for HelloThreadedExtendedTest

* Expanded name: HelloThreadedExtendedTest

* Description:

* System partition: tresa:default

* Environment: clang

* Stage directory: /home/user/Repositories/reframe/stage/tresa/default/clang/
—HelloThreadedExtendedTest

* Node list: hostNone

* Job type: local (id=59528)

(continues on next page)

2.3. ReFrame Tutorials 23

ReFrame Documentation, Release 4.1.0

(continued from previous page)

Dependencies (conceptual): []

* Dependencies (actual): []

* Maintainers: []

* Failing phase: sanity

Rerun with '-n /4733a67d -p clang --system tresa:default -r'

Reason: sanity error: 11 != 16

Run report saved in '/home/user/.reframe/reports/run-report-323.json'

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rim-a2ttdeqp.log’

As expected, only some of lines are printed correctly which makes the test fail. To fix this test, we need to compile
with -DSYNC_MESSAGES, which will synchronize the printing of messages.

cat tutorials/basics/hellomp/hellomp3.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloThreadedExtended2Test (rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello_threads.cpp'’
build_system = 'SingleSource'
executable_opts = ['16']

@run_before('compile')
def set_compilation_flags(self):
self.build_system.cppflags = ['-DSYNC_MESSAGES']

self.build_system.cxxflags = ['-std=c++11', '-Wall']
environ = self.current_environ.name
if environ in {'clang', 'gnu'}:

self.build_system.cxxflags += ['-pthread']

@sanity_function
def assert_num_messages(self):
num_messages = sn.len(sn.findall(r'\[\s?\d+\] Hello, World\!',
self.stdout))
return sn.assert_eq(num_messages, 16)

Writing A Performance Test

An important aspect of regression testing is checking for performance regressions. In this example, we write a test that
downloads the STREAM benchmark, compiles it, runs it and records its performance. In the test below, we highlight
the lines that introduce new concepts.

cat tutorials/basics/stream/streaml.py

import reframe as rfm
import reframe.utility.sanity as sn

(continues on next page)

24 Chapter 2. Webinars

https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c

ReFrame Documentation, Release 4.1.0

(continued from previous page)

@rfm.simple_test
class StreamTest(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['gnu']
prebuild_cmds = [
'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #.,

—noga: E501
]
build_system = 'SingleSource’
sourcepath = 'stream.c'

env_vars = {
'OMP_NUM_THREADS': '4',
'"OMP_PLACES': 'cores'

3

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))"]
self.build_system.cflags = ['-fopenmp', '-03', '-Wall']

@sanity_function
def validate_solution(self):
return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s', perf_key='Copy')
def extract_copy_perf(self):
return sn.extractsingle(r'Copy:\s+(\S+)\s+.*', self.stdout, 1, float)

@performance_function('MB/s', perf_key='Scale')
def extract_scale_perf(self):
return sn.extractsingle(r'Scale:\s+(\S+)\s+.*", self.stdout, 1, float)

@performance_function('MB/s', perf_key='Add')
def extract_add_perf(self):
return sn.extractsingle(r'Add:\s+(\S+)\s+.*"', self.stdout, 1, float)

@performance_function('MB/s', perf_key='Triad')
def extract_triad_perf(self):
return sn.extractsingle(r'Triad:\s+(\S+)\s+.*', self.stdout, 1, float)

First of all, notice that we restrict the programming environments to gnu only, since this test requires OpenMP, which
our installation of Clang does not have. The next thing to notice is the prebuild_cmds attribute, which provides a list
of commands to be executed before the build step. These commands will be executed from the test’s stage directory.
In this case, we just fetch the source code of the benchmark. For running the benchmark, we need to set the OpenMP
number of threads and pin them to the right CPUs through the OMP_NUM_THREADS and OMP_PLACES environment
variables. You can set environment variables in a ReFrame test through the env_vars dictionary.

What makes a ReFrame test a performance test is the definition of at least one performance function. Similarly to a test’s
@sanity_function, a performance function is a member function decorated with the @performance_function
decorator that merely extracts or computes a performance metric from the test’s output and associates it with a unit.
By default, every performance function defined in the test is assigned to a performance variable with the func-

2.3. ReFrame Tutorials 25

ReFrame Documentation, Release 4.1.0

tion’s name. A performance variable is a named quantity representing a performance metric that ReFrame will re-
port on, log and can also check against a reference value. The performance variables of a test are stored in the
perf_variables dictionary. The keys are the names of the metrics, whereas the values are performance functions.
The @performance_function decorator apart from turning an ordinary method into a “performance function”, it
also creates an entry in the perf_variables dictionary. The optional perf_key argument can be used to assign a
different name to the newly created performance variable.

In this example, we extract four performance variables, namely the memory bandwidth values for each of the
“Copy”, “Scale”, “Add” and “Triad” sub-benchmarks of STREAM, where each of the performance functions use the
extractsingle() utility function. For each of the sub-benchmarks we extract the “Best Rate MB/s” column of the
output (see below) and we convert that to a float.

Function Best Rate MB/s Avg time Min time Max time
Copy: 24939.4 0.021905 0.021527 0.022382
Scale: 16956.3 0.031957 0.031662 0.032379
Add: 18648.2 0.044277 0.043184 0.046349
Triad: 19133.4 0.042935 0.042089 0.044283

Let’s run the test now:

./bin/reframe -c tutorials/basics/stream/streaml.py -r --performance-report

The --performance-report will generate a short report at the end of the run for each performance test that has run.
Additionally, as soon as a performance test finishes, the obtained performance for each of the metrics is immediately
reported. This is especially useful if you run long suites of performance exploration tests and you do not want to wait
until the end of the run to have an overview of the obtained performance.

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7a6

command : './bin/reframe -c tutorials/basics/stream/streaml.py -r --
—.performance-report'

launched by: user@host

working directory: '/home/user/Repositories/reframe’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/basics/stream/streaml.py’

stage directory: ' /home /user/Repositories/reframe/stage’

output directory: '/home/user/Repositories/reframe/output’

log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-v0ig7jt4.log’
[==========] Running 1 check(s)
[==========] Started on Sat Nov 12 19:00:53 2022

[-----—----] start processing checks

[RUN] StreamTest /cdf4820d @tresa:default+gnu

[OK] (1/1) StreamTest /cdf4820d @tresa:default+gnu
P: Copy: 24031.8 MB/s (r:0, 1l:None, u:None)

P: Scale: 16297.9 MB/s (r:0, 1l:None, u:None)

P: Add: 17843.8 MB/s (r:0, l:None, u:None)

P: Triad: 18278.3 MB/s (r:0, l:None, u:None)

——————————] all spawned checks have finished

—

[PASSED] Ran 1/1 test case(s) from 1 check(s) (0 failure(s), O skipped)
[==========] Finished on Sat Nov 12 19:00:56 2022

(continues on next page)

26 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

PERFORMANCE REPORT
[StreamTest /cdf4820d @tresa:default:gnu]
num_tasks: 1
num_gpus_per_node: 0
performance:
- Copy: 24031.8 MB/s (r: ® MB/s 1: -inf% u: +inf%)
- Scale: 16297.9 MB/s (r: O MB/s 1l: -inf% u: +inf%)
Add: 17843.8 MB/s (r: ® MB/s 1: -inf% u: +inf%)
Triad: 18278.3 MB/s (r: ® MB/s 1: -inf% u: +inf%)

Run report saved in '/home/user/.reframe/reports/run-report-324.json'
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rim-v0ig7jt4.log’

Setting explicitly the test’s performance variables

Users are allowed to manipulate the test’s perf_variables dictionary directly. This is useful to avoid code repetition
or in cases that relying on decorated methods to populate the perf_variables is impractical, e.g., creating multiple
performance variables in a loop.

You might have noticed that in our STREAM example above, all four performance functions are almost identical except
for a small part of the regex pattern. In the following example, we define a single performance function, extract_bw(),
that can extract any of the requested bandwidth metrics, and we populate the perf_variables ourselves in a pre-
performance hook:

cat tutorials/basics/stream/stream2.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class StreamAltTest(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['gnu']
prebuild_cmds = [
'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #.

—noga: E501
]
build_system = 'SingleSource'
sourcepath = 'stream.c'

env_vars = {
'OMP_NUM_THREADS': '4"',
'OMP_PLACES': 'cores'

}

@run_before('compile')
def set_compiler_flags(self):
self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))"]

(continues on next page)

2.3. ReFrame Tutorials 27

ReFrame Documentation, Release 4.1.0

(continued from previous page)

self.build_system.cflags = ['-fopenmp', '-03', '-Wall']

@sanity_function
def validate_solution(self):
return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s")
def extract_bw(self, kind='Copy'):
"Generic performance extraction function."

if kind not in ('Copy', 'Scale', 'Add', 'Triad'):
raise ValueError(f'illegal value in argument kind ({kind/r})')

return sn.extractsingle(rf'{kind/:\s+(\S+)\s+.*",
self.stdout, 1, float)

@run_before('performance')
def set_perf_variables(self):
"Build the dictionary with all the performance variables.'

self.perf_variables = {
'Copy': self.extract_bw(),
'Scale': self.extract_bw('Scale'),
"Add': self.extract_bw('Add'"),
'Triad': self.extract_bw('Triad'),

As mentioned in the previous section the @performance_function decorator performs two tasks:

1. It converts a test method to performance function, i.e., a function that is suitable for extracting a performance
metric.

2. It updates the perf_variables dictionary with the newly created performance function.

In this example, we are only interested in the first functionality and that’s why we redefine completely the test’s
perf_variables using the extract_bw() performance function. If you are inheriting from a base test and you
don’t want to override completely its performance variables, you could call instead update () on perf_variables.

Finally, you can convert any arbitrary function or deferred expression into a performance function by calling the
make_performance_function() utility as shown below:

@run_before('performance')
def set_perf_vars(self):
self.perf_variables = {
"Copy': sn.make_performance_function(
sn.extractsingle(r'Copy:\s+(\S+)\s+.*",
self.stdout, 1, float),
'MB/s'

Note that in this case, the newly created performance function is not assigned to a test’s performance variable and you
will have to do this independently.

28 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

Adding reference values

On its current state, the above STREAM performance test will simply extract and report the performance variables
regardless of the actual performance values. However, in some situations, it might be useful to check that the extracted
performance values are within an expected range, and report a failure whenever a test performs below expectations. To
this end, ReFrame tests include the reference variable, which enables setting references for each of the performance
variables defined in a test and also set different references for different systems. In the following example, we set the
reference values for all the STREAM sub-benchmarks for the system we are currently running on.

Note: Optimizing STREAM benchmark performance is outside the scope of this tutorial.

cat tutorials/basics/stream/stream3.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class StreamWithRefTest(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['gnu']
prebuild_cmds = [
'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #.,

—noqga: E501
]
build_system = 'SingleSource’
sourcepath = 'stream.c'

env_vars = {
'OMP_NUM_THREADS': '4',
'"OMP_PLACES': 'cores'
}
reference = {
'catalina': {
'Copy': (25200, -0.05, 0.05, 'MB/s'),
'Scale': (16800, -0.05, 0.05, 'MB/s'),
'Add': (18500, -0.05, 0.05, 'MB/s'),
'Triad': (18800, -0.05, 0.05, 'MB/s')

}

@run_before('compile')
def set_compiler_flags(self):

self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))"]
self.build_system.cflags = ['-fopenmp', '-03', '-Wall']

@sanity_function
def validate_solution(self):
return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s")
def extract_bw(self, kind='Copy'):

(continues on next page)

2.3. ReFrame Tutorials 29

ReFrame Documentation, Release 4.1.0

(continued from previous page)

",

Generic performance extraction function."

if kind not in ('Copy', 'Scale', 'Add', 'Triad'):
raise ValueError(f'illegal value in argument kind ({kind!/r})')

return sn.extractsingle(rf'{kind}:\s+(\S+)\s+.*",
self.stdout, 1, float)

@run_before('performance')
def set_perf_variables(self):
"Build the dictionary with all the performance variables.'

self.perf_variables = {
'"Copy': self.extract_bw(),
'Scale': self.extract_bw('Scale'),
'Add': self.extract_bw('Add'),
'Triad': self.extract_bw('Triad'),

The performance reference tuple consists of the reference value, the lower and upper thresholds expressed as fractional
numbers relative to the reference value, and the unit of measurement. If any of the thresholds is not relevant, None
may be used instead. Also, the units in this reference variable are entirely optional, since they were already provided
through the @performance_function decorator.

If any obtained performance value is beyond its respective thresholds, the test will fail with a summary as shown below:

./bin/reframe -c tutorials/basics/stream/stream3.py -r --performance-report

FAILURE INFO for StreamWithRefTest

* Expanded name: StreamWithRefTest

* Description:

* System partition: catalina:default

* Environment: gnu

* Stage directory: /Users/user/Repositories/reframe/stage/catalina/default/gnu/
—StreamWithRefTest

* Node list: tresa.localNone

* Job type: local (id=4576)

* Dependencies (conceptual): []

* Dependencies (actual): []

* Maintainers: []

* Failing phase: performance
Rerun with '-n /£925207b -p gnu --system catalina:default -r'
Reason: performance error: failed to meet reference: Add=19585.3, expected 18500,
—(1=17575.0, u=19425.0)

*

%

30 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

Examining the performance logs

ReFrame has a powerful mechanism for logging its activities as well as performance data. It supports different types
of log channels and it can send data simultaneously in any number of them. For example, performance data might be
logged in files and at the same time being sent to Syslog or to a centralized log management server. By default (i.e.,
starting off from the builtin configuration file), ReFrame sends performance data to files per test under the perflogs/
directory:

perflogs
L catalina
L— default
StreamTest.log
StreamWithRefTest.log

ReFrame creates a log file per test per system and per partition and appends to it every time the test is run on that
system/partition combination. Let’s inspect the log file from our last test:

tail perflogs/catalina/default/StreamWithRefTest.log

job_completion_time,version,display_name,system,partition,environ, jobid,result,Copy_
—value,Copy_unit,Copy_ref,Copy_lower,Copy_upper,Scale_value,Scale_unit,Scale_ref,Scale_
—lower,Scale_upper,Add_value,Add_unit,Add_ref,Add_lower,Add_upper,Triad_value,Triad_
—unit,Triad_ref,Triad_lower,Triad_upper
2022-10-18T21:41:25,4.0.0-dev.2+90fbd3ef,StreamWithRefTest,catalina,default,gnu,81351,
—pass,24235.6,MB/s,25200,-0.05,0.05,16044.2,MB/s,16800,-0.05,0.05,17733.7,MB/s, 18500, -0.
-.05,0.05,18232.0,MB/s,18800,-0.05,0.05
2022-10-18T21:41:31,4.0.0-dev.2+90fbd3ef,StreamWithRefTest,catalina,default,gnu,81377,
-.fail,23615.4,MB/s,25200,-0.05,0.05,16394.5,MB/s,16800,-0.05,0.05,17841.3,MB/s, 18500, -0.
-05,0.05,18284.1,MB/s, 18800,-0.05,0.05
2022-10-18T21:46:06,4.0.0-dev.2+90fbd3ef,StreamWithRefTest,catalina,default,gnu, 81480,
—.fail,23736.4,MB/s,25200,-0.05,0.05,16242.8,MB/s,16800,-0.05,0.05,17699.1,MB/s, 18500, -0.
-.05,0.05,18077.3,MB/s, 18800,-0.05,0.05

The format of this file is controlled by handlers_perflog logging configuration parameter and, by default, contains
several information about the test. For each test, all of its performance variables are logged along with their unit, the
obtained value, the reference and the lower and upper threshold. The default format is in CSV, so that it can be easily
post-processed. For this reason, a header is also printed to help identify the different fields.

Since version 4.0, ReFrame is very cautious when generating this file: if a change is detected in the information that
is being logged, ReFrame will not append to the file, but it will instead create a new one, saving the old file using
the .h<N> suffix, where N is an integer that is increased every time a new file is being created due to such changes.
Examples of changes in the logged information are when the log record format changes or a new performance metric
is added, deleted or has its name changed. This behavior guarantees that each log file is consistent and it will not break
existing parsers.

For more information on configuring performance logging in ReFrame as well as logging in general, you may refer to
the Logging Configuration reference.

2.3. ReFrame Tutorials 31

ReFrame Documentation, Release 4.1.0

Porting The Tests to an HPC cluster

It’s now time to port our tests to an HPC cluster. Obviously, HPC clusters are much more complex than our laptop or
PC. Usually there are many more compilers, the user environment is handled in a different way, and the way to launch
the tests varies significantly, since you have to go through a workload manager in order to access the actual compute
nodes. Besides that, there might be multiple types of compute nodes that we would like to run our tests on, but each
type might be accessed in a different way. It is already apparent that porting even an as simple as a “Hello, World” test
to such a system is not that straightforward. As we shall see in this section, ReFrame makes that pretty easy.

Adapting the configuration

Our target system is the Piz Daint supercomputer at CSCS, but you can adapt the process to your target HPC system.
In ReFrame, all the details of the various interactions of a test with the system environment are handled transparently
and are set up in its configuration file. Let’s create a new configuration file for Piz Daint:

site_configuration = {
'systems': [

{
'name': 'daint',
'descr': 'Piz Daint Supercomputer',
'hostnames': ['daint'],
'modules_system': 'tmod32',
'partitions': [
{
'name': 'login',
'descr': 'Login nodes',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin', 'gnu', 'intel', 'nvidia', 'cray'l],
1,
{
'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'nvidia', 'cray'],
'max_jobs': 100,
1,
{
'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],
'environs': ['gnu', 'intel', 'nvidia', 'cray'],

'max_jobs': 100,
'resources': [
{
'name': 'memory',
'options': ['--mem={size}']

(continues on next page)

32 Chapter 2. Webinars

https://www.cscs.ch/computers/piz-daint/

ReFrame Documentation, Release 4.1.0

(continued from previous page)

]
}
]
}
1,
'environments': [
{
'name': 'gnu',
'modules': ['PrgEnv-gnu'],
'cc': 'cc!
'exx': 'CC',
'ftn': '"ftn',
'target_systems': ['daint']
1,
{
'name': 'cray',
'modules': ['PrgEnv-cray'],
'cc': 'cc',
'exx': 'CC',
"ftn': "ftn',
'target_systems': ['daint']
1,
{
'name': 'intel',
'modules': ['PrgEnv-intel'],
'cc': 'cc',
'exx': 'CC',
'ftn': '"ftn',
'target_systems': ['daint']
1,
{
'name’': 'nvidia’,
'modules': ['PrgEnv-nvidia'],
'cc': 'cc',
'exx': 'CC',
"ftn': '"ftn',
'target_systems': ['daint']
1,
{
'name': 'builtin',
'cc': 'cc',
'exx': 'CC',
"ftn': '"ftn',
'target_systems': ['daint']
}
] # end of environments

First of all, we need to define a new system and set the list of hostnames that will help ReFrame identify it. We also
set the modules_system configuration parameter to instruct ReFrame that this system makes use of the environment
modules for managing the user environment. Then we define the system partitions that we want to test. In this case,
we define three partitions:

2.3. ReFrame Tutorials 33

http://modules.sourceforge.net/
http://modules.sourceforge.net/

ReFrame Documentation, Release 4.1.0

1. the login nodes,
2. the multicore partition (2x Broadwell CPUs per node) and
3. the hybrid partition (1x Haswell CPU + 1x Pascal GPU).

The login nodes are pretty much similar to the tresa:default partition which corresponded to our laptop: tests will
be launched and run locally. The other two partitions are handled by Slurm and parallel jobs are launched using the
srun command. Additionally, in order to access the different types of nodes represented by those partitions, users
have to specify either -C mc or -C gpu options along with their account. This is what we do exactly with the access
partition configuration option.

Note: System partitions in ReFrame do not necessarily correspond to real job scheduler partitions.

Piz Daint’s programming environment offers four compilers: Cray, GNU, Intel and NVIDIA. We want to test all of
them, so we include them in the environs lists. Notice that we do not include Clang in the list, since there is no such
compiler on this particular system. On the other hand, we include a different version of the builtin environment,
which corresponds to the default login environment without loading any modules. It is generally useful to define such
an environment so as to use it for tests that are running simple utilities and don’t need to compile anything.

Before looking into the definition of the new environments for the four compilers, it is worth mentioning the max_jobs
parameter. This parameter specifies the maximum number of ReFrame test jobs that can be simultaneously in flight.
ReFrame will try to keep concurrency close to this limit (but not exceeding it). By default, this is set to 8, so you are
advised to set it to a higher number if you want to increase the throughput of completed tests.

The new environments are defined similarly to the ones we had for our local system, except that now we add also the
modules parameter. The modules parameter is a list of environment modules that needs to be loaded, in order to make
available this compiler.

Running the tests

‘We are now ready to run our tests on Piz Daint. We will only do so with the final versions of the tests from the previous
section, which we will select using -n option.

export RFM_CONFIG_FILES=$(pwd)/tutorials/config/daint.py

./bin/reframe -c tutorials/basics/ -R -n

- 'HelloMultilangTest |HelloThreadedExtended2Test |StreamWithRefTest' --performance-report.
—=I

[ReFrame Setup]
version: 4.0.0-dev.2
command : './bin/reframe -c tutorials/basics/ -R -n..
—~HelloMultilLangTest |HelloThreadedExtended2Test |StreamWithRefTest --performance-report -r

]
—

launched by: user@host
working directory: '/home/user/Devel/reframe’
settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’
check search path: (R) '/home/user/Devel/reframe/tutorials/basics’
stage directory: ' /home/user/Devel /reframe/stage’
output directory: '/home/user/Devel/reframe/output'’
log files: '/tmp/rfm-nyqs7jb9.1log’
[==========] Running 4 check(s)
[==========] Started on Tue Nov 15 18:20:32 2022

(continues on next page)

34 Chapter 2. Webinars

https://slurm.schedmd.com/
https://slurm.schedmd.com/srun.html

ReFrame Documentation, Release 4.1.0

(continued from previous page)

OK
OK
OK
OK
OK
OK
OK
OK

L I s B s Y e N s Y e Y s N s T e Y e I s T e Y e I s Y e Y e I s T e Y I e T e N T e Y e N T e Y e s T s Y e N st Y e Y e s T e Y e I s Y e Y e I s O e N e I s Y e N T e Y s B e I s B |

[S W N N N T N S T N T N Y T S N N N AN A N S N AN Y [N AN S T N T AN A T A VR | N VS N SR |

start processing checks
HelloMultilLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultilLangTest
HelloMultiLangTest
HelloMultilLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultilLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultilLangTest
HelloMultiLangTest
HelloMultilLangTest
HelloMultiLangTest
HelloMultilLangTest
HelloMultilLangTest %lang=c
HelloMultilLangTest %lang=c
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test
HelloThreadedExtended2Test

%lang=c
%lang=c
%lang=c
%lang=c
%lang=c
%lang=c
%lang=c
%lang=c
%lang=c
%lang=c
%lang=c

%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp
%lang=cpp

/7cfa870e
/7cfa870e
/7c£fa870e
/7cfa870e
/7c£fa870e
/7cfa870e
/7cfa870e
/7cfa870e
/7cfa870e
/7c£fa870e
/7cfa870e
/7cfa870e
/7cfa870e
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829
/57223829

/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3
/71bf65a3

@daint

@daint
@daint
@daint
@daint
@daint
@daint
@daint
@daint

@daint

@daint
@daint
@daint
@daint
@daint
@daint
@daint
@daint

@daint:
@daint:
@daint:
@daint:
@daint:
@daint:
@daint:
@daint:
@daint:
@daint
@daint
@daint:
@daint
@daint:

login+builtin
login+gnu
login+intel
login+nvidia
login+cray
gpu+gnu
gpu+intel
gpu+nvidia
gpu+cray
:mc+gnu
:mc+intel
mc+nvidia
‘mc+cray
login+builtin

:login+gnu
@daint:
@daint:
@daint:
I gpu+gnu
:gpu+intel
:gpu+nvidia
:gpu+cray
:mc+gnu
:mc+intel
:mc+nvidia
:mc+cray
@daint:
@daint:
@daint:

login+intel
login+nvidia
login+cray

login+builtin
login+gnu
login+intel

:login+nvidia
@daint:

login+cray

: gpu+gnu
:gpu+intel
:gpu+nvidia
:gpu+cray
:mc+gnu
:mc+intel
:mc+nvidia
:mc+cray

StreamWWithRefTest /£925207b @daint:login+gnu
StreamWithRefTest /£925207b @daint:gpu+gnu
StreamWithRefTest /£925207b @daint:mc+gnu

1/42)
2/42)
3/42)
4/42)
5/42)
6/42)
7/42)
8/42)

AN

HelloMultilLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultiLangTest
HelloMultilLangTest
HelloMultiLangTest
HelloMultiLangTest

%lang=cpp /71bf65a3 @daint
%lang=cpp /71bf65a3 @daint
%lang=cpp /71bf65a3 @daint
%lang=cpp /71bf65a3 @daint
%lang=cpp /71bf65a3 @daint

:login+builtin
:login+gnu
:login+intel
:login+nvidia
:login+cray

%lang=c /7cfa870e @daint:login+builtin
%lang=c /7cfa870e @daint:login+gnu
%lang=c /7cfa870e @daint:login+intel

(continues on next page)

2.3. ReFrame Tutorials

35

ReFrame Documentation, Release 4.1.0

(continued from previous page)

vv9vy9Y99Id9I9m—M——Y9 Y999 MM, Y9999

OK] (9/42) HelloMultilangTest %lang=c /7cfa870e @daint:login+nvidia
OK] (10/42) HelloMultilangTest %lang=c /7cfa870e @daint:login+cray
OK] (11/42) HelloMultilangTest %lang=cpp /71bf65a3 @daint:gpu+cray
OK] (12/42) HelloMultiLangTest %lang=cpp /71bf65a3 @daint:mc+nvidia
OK] (13/42) HelloMultilangTest %lang=cpp /71bf65a3 @daint:mc+cray

OK] (14/42) HelloMultilangTest %lang=c /7cfa870e @daint:mc+cray

OK] (15/42) HelloMultilangTest %lang=cpp /71bf65a3 @daint:gpu+nvidia
OK] (16/42) HelloMultilangTest %lang=c /7cfa870e @daint:gpu+intel

OK] (17/42) HelloMultiLangTest %lang=c /7cfa870e @daint:gpu+nvidia
OK] (18/42) HelloMultilLangTest %lang=c /7cfa870e @daint:mc+intel

OK] (19/42) HelloThreadedExtended2Test /57223829 @daint:login+builtin
OK] (20/42) HelloThreadedExtended2Test /57223829 @daint:login+gnu

OK] (21/42) HelloThreadedExtended2Test /57223829 @daint:login+intel
OK] (22/42) HelloMultilLangTest %lang=c /7cfa870e @daint:gpu+cray

OK] (23/42) HelloMultiLangTest %lang=c /7cfa870e @daint:mc+gnu

OK] (24/42) HelloThreadedExtended2Test /57223829 @daint:login+nvidia
OK] (25/42) HelloThreadedExtended2Test /57223829 @daint:login+cray
OK] (26/42) HelloMultilangTest %lang=c /7cfa870e @daint:mc+nvidia

OK] (27/42) HelloMultilangTest %lang=cpp /71bf65a3 @daint:gpu+gnu

OK] (28/42) HelloMultilangTest %lang=cpp /71bf65a3 @daint:gpu+intel
OK] (29/42) HelloMultilangTest %lang=cpp /71bf65a3 @daint:mc+gnu

OK] (30/42) HelloMultilangTest %lang=cpp /71bf65a3 @daint:mc+intel
OK] (31/42) HelloMultilangTest %lang=c /7cfa870e @daint:gpu+gnu

OK] (32/42) StreamWithRefTest /£925207b @daint:login+gnu

Copy: 71061.6 MB/s (r:0, 1l:None, u:None)

Scale: 44201.5 MB/s (r:0, 1l:None, u:None)

Add: 48178.5 MB/s (r:0, 1l:None, u:None)

Triad: 48063.3 MB/s (r:0, 1:None, u:None)
OK] (33/42) HelloThreadedExtended2Test /57223829 @daint:mc+cray
OK] (34/42) HelloThreadedExtended2Test /57223829 @daint:mc+intel
OK] (35/42) HelloThreadedExtended2Test /57223829 @daint:mc+gnu
OK] (36/42) HelloThreadedExtended2Test /57223829 @daint:mc+nvidia
OK] (37/42) StreamWithRefTest /£925207b @daint:mc+gnu

Copy: 52660.1 MB/s (r:0, 1l:None, u:None)

Scale: 33117.6 MB/s (r:®, 1l:None, u:None)

Add: 34876.7 MB/s (r:0, 1:None, u:None)

Triad: 35150.7 MB/s (r:0, 1l:None, u:None)
OK] (38/42) HelloThreadedExtended2Test /57223829 @daint:gpu+intel
OK] (39/42) HelloThreadedExtended2Test /57223829 @daint:gpu+cray
OK] (40/42) HelloThreadedExtended2Test /57223829 @daint:gpu+nvidia
OK] (41/42) HelloThreadedExtended2Test /57223829 @daint:gpu+gnu
OK] (42/42) StreamWithRefTest /£925207b @daint:gpu+gnu

Copy: 49682.3 MB/s (r:0, 1l:None, u:None)

Scale: 34452.3 MB/s (r:0, l:None, u:None)

Add: 38030.7 MB/s (r:0, 1l:None, u:None)

Triad: 38379.0 MB/s (r:0, 1:None, u:None)

—————————] all spawned checks have finished

PASSED] Ran 42/42 test case(s) from 4 check(s) (0 failure(s), 0 skipped)

=========] Finished on Tue Nov 15 18:22:48 2022

(continues on next page)

36

Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

PERFORMANCE REPORT

[StreamWithRefTest /£925207b @daint:login:gnu]
num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 71061.6 MB/s (r: ® MB/s 1: -inf% u: +inf%)

- Scale: 44201.5 MB/s (r: ® MB/s 1: -inf% u: +inf%)

- Add: 48178.5 MB/s (r: O MB/s 1l: -inf% u: +inf%)

- Triad: 48063.3 MB/s (r: 0 MB/s 1: -inf% u: +inf%)
[StreamWithRefTest /£925207b @daint:gpu:gnu]

num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 49682.3 MB/s (r: ® MB/s 1: -inf% u: +inf%)

- Scale: 34452.3 MB/s (r: O MB/s 1: -inf% u: +inf%)

- Add: 38030.7 MB/s (r: O MB/s 1l: -inf% u: +inf%)

- Triad: 38379.0 MB/s (r: ® MB/s 1: -inf% u: +inf%)
[StreamWithRefTest /£925207b @daint:mc:gnu]

num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 52660.1 MB/s (r: ® MB/s 1: -inf% u: +inf%)
Scale: 33117.6 MB/s (r: O MB/s 1l: -inf% u: +inf%)
Add: 34876.7 MB/s (r: ® MB/s 1: -inf% u: +inf%)
Triad: 35150.7 MB/s (r: ® MB/s 1: -inf% u: +inf%)

Run report saved in '/home/user/.reframe/reports/run-report-1.json'
Log file(s) saved in '/tmp/rfm-nygs7jb9.log’

There it is! Without any change in our tests, we could simply run them in a HPC cluster with all of its intricacies. Notice
how our original four tests expanded to more than 40 test cases on that particular HPC cluster! One reason we could
run immediately our tests on a new system was that we have not been restricting neither the valid system they can run
nor the valid programming environments they can run with (except for the STREAM test). Otherwise we would have
to add daint and its corresponding programming environments in valid_systems and valid_prog_environs lists
respectively.

Tip: A quick way to try a test on a new system, if it’s not generic, is to pass the --skip-system-check and the
--skip-prgenv-check command line options which will cause ReFrame to skip any test validity checks for systems
or programming environments.

Although the tests remain the same, ReFrame has generated completely different job scripts for each test depending on
where it was going to run. Let’s check the job script generated for the StreamiithRefTest:

cat output/daint/gpu/gnu/StreamiithRefTest/rfm_StreamWithRefTest_job.sh

#!/bin/bash

#SBATCH --job-name="rfm_StreamliithRefTest_job"
#SBATCH --ntasks=1

#SBATCH --output=rfm_StreamWithRefTest_job.out
#SBATCH --error=rfm_StreamWithRefTest_job.err

(continues on next page)

2.3. ReFrame Tutorials 37

ReFrame Documentation, Release 4.1.0

(continued from previous page)

#SBATCH --time=0:10:0
#SBATCH -A csstaff
#SBATCH --constraint=gpu
module unload PrgEnv-cray
module load PrgEnv-gnu
export OMP_NUM_THREADS=4
export OMP_PLACES=cores
srun ./StreamWithRefTest

Whereas the exact same test running on our laptop was as simple as the following:

#!/bin/bash

export OMP_NUM_THREADS=4

export OMP_PLACES=cores
./StreamWithRefTest

In ReFrame, you don’t have to care about all the system interaction details, but rather about the logic of your tests as
we shall see in the next section.

Adapting a test to new systems and programming environments

Unless a test is rather generic, you will need to make some adaptations for the system that you port it to. In this case, we
will adapt the STREAM benchmark so as to run it with multiple compiler and adjust its execution based on the target
architecture of each partition. Let’s see and comment the changes:

cat tutorials/basics/stream/stream4.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class StreamMultiSysTest(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['cray', 'gnu', 'intel', 'nvidia']
prebuild_cmds = [
'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #.,

—noga: E501
]
build_system = 'SingleSource'
sourcepath = 'stream.c'

env_vars = {
'OMP_NUM_THREADS': 4,
'OMP_PLACES': 'cores'
}
reference = {
'catalina': {
'"Copy': (25200, -0.05, 0.05, 'MB/s'),
'Scale': (16800, -0.05, 0.05, 'MB/s'),
'Add': (18500, -0.05, 0.05, 'MB/s'),
'"Triad': (18800, -0.05, 0.05, 'MB/s')

(continues on next page)

38 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

}

Flags per programming environment
flags = variable(dict, value={

'cray': ['-fopenmp', '-03', '-Wall'],
'gnu': ['-fopenmp', '-03', '-Wall'],
'intel': ['-qopenmp', '-03', '-Wall'],
'nvidia': ["-mp', "-03']

i)

Number of cores for each system
cores = variable(dict, value={
'catalina:default': 4,
'daint:gpu': 12,
'daint:mc': 36,
'daint:login': 10
b

@run_before('compile')

def set_compiler_flags(self):
self.build_system.cppflags = ['-DSTREAM_ARRAY_SIZE=$((1 << 25))"]
environ = self.current_environ.name
self.build_system.cflags = self.flags.get(environ, [])

@run_before('run')
def set_num_threads(self):
num_threads = self.cores.get(self.current_partition.fullname, 1)
self.num_cpus_per_task = num_threads
self.env_vars = {
'OMP_NUM_THREADS': num_threads,
'"OMP_PLACES': 'cores'
}

@sanity_function
def validate_solution(self):
return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s")
def extract_bw(self, kind='Copy'):
if kind not in {'Copy', 'Scale', 'Add', 'Triad'}:
raise ValueError(f'illegal value in argument kind ({kind!/r})"')

return sn.extractsingle(rf'{kind}:\s+(\S+)\s+.*",
self.stdout, 1, float)

@run_before('performance')
def set_perf_variables(self):
self.perf_variables = {
"Copy': self.extract_bw(),
'Scale': self.extract_bw('Scale'),
'Add"': self.extract_bw('Add'),

(continues on next page)

2.3. ReFrame Tutorials

39

ReFrame Documentation, Release 4.1.0

(continued from previous page)

'Triad': self.extract_bw('Triad'),

First of all, we need to add the new programming environments in the list of the supported ones. Now there is the
problem that each compiler has its own flags for enabling OpenMP, so we need to differentiate the behavior of the test
based on the programming environment. For this reason, we define the flags for each compiler in a separate dictionary
(flags variable) and we set them in the set_compiler_flags () pipeline hook. We have first seen the pipeline hooks
in the multithreaded “Hello, World!” example and now we explain them in more detail. When ReFrame loads a test
file, it instantiates all the tests it finds in it. Based on the system ReFrame runs on and the supported environments of
the tests, it will generate different test cases for each system partition and environment combination and it will finally
send the test cases for execution. During its execution, a test case goes through the regression test pipeline, which
is a series of well defined phases. Users can attach arbitrary functions to run before or after any pipeline stage and
this is exactly what the set_compiler_flags() function is. We instruct ReFrame to run this function before the
test enters the compile stage and set accordingly the compilation flags. The system partition and the programming
environment of the currently running test case are available to a ReFrame test through the current_partition and
current_environ attributes respectively. These attributes, however, are only set after the first stage (setup) of the
pipeline is executed, so we can’t use them inside the test’s constructor.

We do exactly the same for setting the OMP_NUM_THREADS environment variables depending on the system partition we
are running on, by attaching the set_num_threads() pipeline hook to the run phase of the test. In that same hook
we also set the num_cpus_per_task attribute of the test, so as to instruct the backend job scheduler to properly assign
CPU cores to the test. In ReFrame tests you can set a series of task allocation attributes that will be used by the backend
schedulers to emit the right job submission script. The section Mapping of Test Attributes to Job Scheduler Backends
of the Test API Reference summarizes these attributes and the actual backend scheduler options that they correspond
to.

For more information about the regression test pipeline and how ReFrame executes the tests in general, have a look at
How ReFrame Executes Tests.

Note: ReFrame tests are ordinary Python classes so you can define your own attributes as we do with flags and
cores in this example.

Let’s run our adapted test now:

./bin/reframe -c tutorials/basics/stream/stream4.py -r --performance-report

[ReFrame Setup]

version: 4.0.0-dev.2
command : './bin/reframe -c tutorials/basics/stream/stream4.py -r --
—.performance-report'
launched by: user@host
working directory: '/home/user/Devel/reframe’
settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’
check search path: '/home/user/Devel/reframe/tutorials/basics/stream/stream4.py'
stage directory: ' /home/user/Devel /reframe/stage’
output directory: '/home/user/Devel/reframe/output'’
log files: '/tmp/rfm-yf6xjn_4.log"’
[==========] Running 1 check(s)
[==========] Started on Tue Nov 15 18:22:48 2022
[---——————-] start processing checks

(continues on next page)

40 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

RUN] StreamMultiSysTest /eeclc676 @daint:login+gnu
RUN] StreamMultiSysTest /eeclc676 @daint:login+intel
RUN] StreamMultiSysTest /eeclc676 @daint:login+nvidia
RUN] StreamMultiSysTest /eeclc676 @daint:login+cray
RUN] StreamMultiSysTest /eeclc676 @daint:gpu+gnu
RUN] StreamMultiSysTest /eeclc676 @daint:gpu+intel
RUN] StreamMultiSysTest /eeclc676 @daint:gpu+nvidia
RUN] StreamMultiSysTest /eeclc676 @daint:gpu+cray
RUN] StreamMultiSysTest /eeclc676 @daint:mc+gnu

RUN] StreamMultiSysTest /eeclc676 @daint:mc+intel
RUN] StreamMultiSysTest /eeclc676 @daint:mc+nvidia
RUN] StreamMultiSysTest /eeclc676 @daint:mc+cray

OK] (1/12) StreamMultiSysTest /eeclc676 @daint:login+gnu
Copy: 97772.6 MB/s (r:0, 1l:None, u:None)
Scale: 69418.6 MB/s (r:0, 1l:None, u:None)
Add: 71941.0 MB/s (r:0, 1l:None, u:None)
Triad: 73679.7 MB/s (r:0, 1:None, u:None)
OK] (2/12) StreamMultiSysTest /eeclc676 @daint:login+intel
Copy: 85123.0 MB/s (r:0, 1l:None, u:None)
Scale: 79701.7 MB/s (r:0, 1l:None, u:None)
Add: 81632.7 MB/s (r:0, 1l:None, u:None)
Triad: 44391.5 MB/s (r:0, 1:None, u:None)
OK] (3/12) StreamMultiSysTest /eeclc676 @daint:login+nvidia
Copy: 76641.4 MB/s (r:0, 1l:None, u:None)
Scale: 59041.9 MB/s (r:0, 1l:None, u:None)
Add: 64792.5 MB/s (r:0, 1l:None, u:None)
Triad: 69441.4 MB/s (r:0, 1:None, u:None)
OK] (4/12) StreamMultiSysTest /eeclc676 @daint:login+cray
Copy: 35658.5 MB/s (r:0, 1l:None, u:None)
Scale: 27732.2 MB/s (r:0, 1l:None, u:None)
Add: 39037.7 MB/s (r:0, 1l:None, u:None)
Triad: 45310.3 MB/s (r:0, 1l:None, u:None)
OK] (5/12) StreamMultiSysTest /eeclc676 @daint:gpu+gnu
Copy: 42666.3 MB/s (r:0, 1l:None, u:None)
Scale: 38491.0 MB/s (r:0, 1l:None, u:None)
Add: 43686.4 MB/s (r:0, 1:None, u:None)
Triad: 43466.6 MB/s (r:0, 1l:None, u:None)
OK] (6/12) StreamMultiSysTest /eeclc676 @daint:gpu+intel
Copy: 51726.7 MB/s (r:0, 1l:None, u:None)
Scale: 54185.6 MB/s (r:®, 1l:None, u:None)
Add: 57608.3 MB/s (r:0, 1:None, u:None)
Triad: 57390.7 MB/s (r:0, 1:None, u:None)
OK] (7/12) StreamMultiSysTest /eeclc676 @daint:gpu+nvidia
Copy: 51810.8 MB/s (r:®, 1l:None, u:None)
Scale: 39653.4 MB/s (r:0, 1l:None, u:None)
Add: 44008.0 MB/s (r:0, 1:None, u:None)
Triad: 44384.4 MB/s (r:0, 1l:None, u:None)
OK] (8/12) StreamMultiSysTest /eeclc676 @daint:gpu+cray
Copy: 51101.8 MB/s (r:0, 1l:None, u:None)
Scale: 38568.1 MB/s (r:0, l:None, u:None)
Add: 43193.6 MB/s (r:0, 1:None, u:None)
Triad: 43142.9 MB/s (r:0, 1:None, u:None)

Jv9vy949r—™~vY9g99v93 999 vov—moy vy vy9vyr—"vv9vw vy vyr—m v vy I —m9v9v v I L v 999 m MM MMM

(continues on next page)

2.3. ReFrame Tutorials 41

ReFrame Documentation, Release 4.1.0

(continued from previous page)

OK] (9/12) StreamMultiSysTest /eeclc676 @daint:mc+gnu
Copy: 48292.9 MB/s (r:0, 1l:None, u:None)
Scale: 38499.5 MB/s (r:0, 1l:None, u:None)
Add: 43555.7 MB/s (r:0, 1:None, u:None)
Triad: 43871.4 MB/s (r:0, 1:None, u:None)
OK] (10/12) StreamMultiSysTest /eeclc676 @daint:mc+cray
Copy: 46538.3 MB/s (r:0, 1l:None, u:None)
Scale: 40133.3 MB/s (r:0, 1l:None, u:None)
Add: 43363.9 MB/s (r:0, 1:None, u:None)
Triad: 43450.3 MB/s (r:0, 1l:None, u:None)
OK] (11/12) StreamMultiSysTest /eeclc676 @daint:mc+nvidia
Copy: 46648.2 MB/s (r:0, 1l:None, u:None)
Scale: 40384.5 MB/s (r:0, 1l:None, u:None)
Add: 44001.1 MB/s (r:0, 1:None, u:None)
Triad: 44489.7 MB/s (r:0, 1l:None, u:None)
OK] (12/12) StreamMultiSysTest /eeclc676 @daint:mc+intel
Copy: 51335.9 MB/s (r:0, 1:None, u:None)
Scale: 49490.3 MB/s (r:0, 1l:None, u:None)
Add: 56859.9 MB/s (r:0, 1l:None, u:None)
Triad: 56544.5 MB/s (r:0, 1:None, u:None)
——————————] all spawned checks have finished

vvY9d9Y99Y9—~"9YvYY9Y9—YYYTY— U Y'Y T

—

[PASSED] Ran 12/12 test case(s) from 1 check(s) (0 failure(s), O skipped)
[==========] Finished on Tue Nov 15 18:24:00 2022

[StreamMultiSysTest /eeclc676 @daint:login:gnu]
num_cpus_per_task: 10
num_gpus_per_node: 0
num_tasks: 1
performance:
- Copy: 97772.6 MB/s (r: ® MB/s 1: -inf% u: +inf%)
- Scale: 69418.6 MB/s (r: O MB/s 1: -inf% u: +inf%)
- Add: 71941.0 MB/s (r: O MB/s 1l: -inf% u: +inf%)
- Triad: 73679.7 MB/s (r: O MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:login:intel]
num_cpus_per_task: 10
num_gpus_per_node: 0
num_tasks: 1
performance:
- Copy: 85123.0 MB/s (r: O MB/s 1l: -inf% u: +inf%)
- Scale: 79701.7 MB/s (r: ® MB/s 1: -inf% u: +inf%)
- Add: 81632.7 MB/s (r: O MB/s 1: -inf% u: +inf%)
- Triad: 44391.5 MB/s (r: O MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:login:nvidia]
num_cpus_per_task: 10
num_gpus_per_node: 0
num_tasks: 1
performance:
- Copy: 76641.4 MB/s (r: ® MB/s 1: -inf% u: +inf%)

(continues on next page)

42 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

- Scale: 59041.9 MB/s (r: O MB/s 1: -inf% u: +inf%)

- Add: 64792.5 MB/s (r: O MB/s 1: -inf% u: +inf%)

- Triad: 69441.4 MB/s (r: O MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:login:cray]

num_cpus_per_task: 10
num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 35658.5 MB/s (r: ® MB/s 1: -inf% u: +inf%)
Scale: 27732.2 MB/s (r: ® MB/s 1l: -inf% u: +inf%)
Add: 39037.7 MB/s (r: ® MB/s 1: -inf% u: +inf%)
Triad: 45310.3 MB/s (r: ® MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:gpu:gnu]

num_cpus_per_task: 12
num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 42666.3 MB/s (r: ® MB/s 1: -inf% u: +inf%)

- Scale: 38491.0 MB/s (r: O MB/s 1: -inf% u: +inf%)

- Add: 43686.4 MB/s (r: O MB/s 1l: -inf% u: +inf%)

- Triad: 43466.6 MB/s (r: O MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:gpu:intel]

num_cpus_per_task: 12
num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 51726.7 MB/s (r: O MB/s 1l: -inf% u: +inf¥%)

- Scale: 54185.6 MB/s (r: O MB/s 1l: -inf% u: +inf%)

- Add: 57608.3 MB/s (r: O MB/s 1: -inf% u: +inf%)

- Triad: 57390.7 MB/s (r: O MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:gpu:nvidia]

num_cpus_per_task: 12
num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 51810.8 MB/s (r: ® MB/s 1: -inf% u: +inf%)

- Scale: 39653.4 MB/s (r: O MB/s 1: -inf% u: +inf%)

- Add: 44008.0 MB/s (r: O MB/s 1l: -inf% u: +inf%)

- Triad: 44384.4 MB/s (r: O MB/s 1l: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:gpu:cray]

num_cpus_per_task: 12
num_gpus_per_node: 0
num_tasks: 1
performance:

- Copy: 51101.8 MB/s (r: ® MB/s 1: -inf% u: +inf%)

- Scale: 38568.1 MB/s (r: O MB/s 1: -inf% u: +inf%)

- Add: 43193.6 MB/s (r: O MB/s 1l: -inf% u: +inf%)

- Triad: 43142.9 MB/s (r: O MB/s 1l: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:mc:gnu]

num_cpus_per_task: 36
num_gpus_per_node: 0
num_tasks: 1

(continues on next page)

2.3. ReFrame Tutorials

43

ReFrame Documentation, Release 4.1.0

(continued from previous page)

performance:
- Copy: 48292.9 MB/s (r: ® MB/s 1: -inf% u: +inf%)
- Scale: 38499.5 MB/s (r: O MB/s 1: -inf% u: +inf%)
- Add: 43555.7 MB/s (r: O MB/s 1l: -inf% u: +inf%)
- Triad: 43871.4 MB/s (r: O MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:mc:intel]
num_cpus_per_task: 36
num_gpus_per_node: 0
num_tasks: 1
performance:
Copy: 51335.9 MB/s (r: ® MB/s 1l: -inf% u: +inf¥%)
Scale: 49490.3 MB/s (r: O MB/s 1l: -inf% u: +inf%)
Add: 56859.9 MB/s (r: ® MB/s 1: -inf% u: +inf%)
Triad: 56544.5 MB/s (r: 0 MB/s 1l: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:mc:nvidia]
num_cpus_per_task: 36
num_gpus_per_node: 0
num_tasks: 1
performance:
- Copy: 46648.2 MB/s (r: ® MB/s 1: -inf% u: +inf%)
- Scale: 40384.5 MB/s (r: O MB/s 1: -inf% u: +inf%)
- Add: 44001.1 MB/s (r: O MB/s 1l: -inf% u: +inf%)
- Triad: 44489.7 MB/s (r: ® MB/s 1: -inf% u: +inf%)
[StreamMultiSysTest /eeclc676 @daint:mc:cray]
num_cpus_per_task: 36
num_gpus_per_node: 0
num_tasks: 1
performance:
- Copy: 46538.3 MB/s (r: ® MB/s 1: -inf% u: +inf%)
- Scale: 40133.3 MB/s (r: ® MB/s 1: -inf% u: +inf%)
- Add: 43363.9 MB/s (r: O MB/s 1l: -inf% u: +inf%)
- Triad: 43450.3 MB/s (r: O MB/s 1: -inf% u: +inf%)

Run report saved in '/home/user/.reframe/reports/run-report-2.json'
Log file(s) saved in '/tmp/rfm-yf6xjn_4.log'

Notice the improved performance of the benchmark in all partitions and the differences in performance between the
different compilers.

This concludes our introductory tutorial to ReFrame!

2.3.2 Tutorial 2: Customizing Further a Regression Test

In this tutorial we will present common patterns that can come up when writing regression tests with ReFrame. All
examples use either the configuration files presented in Tutorial 1: Getting Started with ReFrame, which you can find
in tutorials/config/tresa.py and tutorials/config/daint.py or build on top of them. We also assume that
the reader is already familiar with the concepts presented in the basic tutorial. Finally, to avoid specifying the tutorial
configuration every time, make sure to export it here:

export RFM_CONFIG_FILES=$(pwd)/tutorials/config/tresa.py:$(pwd)/tutorials/config/daint.py

44 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

Parameterizing a Regression Test

We have briefly looked into parameterized tests in Tutorial 1: Getting Started with ReFrame where we parameterized
the “Hello, World!” test based on the programming language. Test parameterization in ReFrame is quite powerful since
it allows you to create a multitude of similar tests automatically. In this example, we will parameterize the last version
of the STREAM test from the Tutorial 1: Getting Started with ReFrame by changing the array size, so as to check the
bandwidth of the different cache levels. Here is the adapted code with the relevant parts highlighted (for simplicity, we
are interested only in the “Triad” benchmark):

cat tutorials/advanced/parameterized/stream.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class StreamMultiSysTest(rfm.RegressionTest):
num_bytes = parameter(l << pow for pow in range(19, 30))
array_size = variable(int)
ntimes = variable(int)

valid_systems = ['*']
valid_prog_environs = ['cray', 'gnu', 'intel', 'nvidia']
prebuild_cmds = [
'wget https://raw.githubusercontent.com/jeffhammond/STREAM/master/stream.c' #.
—noga: E501

]
build_system = 'SingleSource'
sourcepath = 'stream.c'

env_vars = {
'OMP_NUM_THREADS': '4"',
'OMP_PLACES': 'cores'

}
reference = {
v-kl: {
'Triad': (0, None, None, 'MB/s'),
}
}

Flags per programming environment
flags = variable(dict, value={

'cray': ['-fopenmp', '-03', '-Wall'],
'gnu': ['-fopenmp', '-03', '-Wall'],
'intel': ['-qopenmp', '-03', '-Wall'],
'nvidia': ["-mp', '"-03']

i)

Number of cores for each system
cores = variable(dict, value={
'catalina:default': 4,
'daint:gpu': 12,
'daint:mc': 36,
'daint:login': 10

(continues on next page)

2.3. ReFrame Tutorials 45

ReFrame Documentation, Release 4.1.0

(continued from previous page)

i)

@run_after('init")
def setup_build(self):
self.array_size = (self.num_bytes >> 3) // 3
self.ntimes = 100%1024*1024 // self.array_size
self.descr = (
f'STREAM test (array size: {self.array_size},
f'ntimes: {self.ntimes})'

)

@run_before('compile')
def set_compiler_flags(self):
self.build_system.cppflags = [f'-DSTREAM_ARRAY_ SIZE={self.array_size/',
f'-DNTIMES={self.ntimes}"']
environ = self.current_environ.name
self.build_system.cflags = self.flags.get(environ, [])

@run_before('run')
def set_num_threads(self):
num_threads = self.cores.get(self.current_partition.fullname, 1)
self.num_cpus_per_task = num_threads
self.env_vars = {
'"OMP_NUM_THREADS': num_threads,
'OMP_PLACES': 'cores'
}

@sanity_function
def validate_solution(self):
return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s', perf_key='Triad')
def extract_triad_bw(self):
return sn.extractsingle(r'Triad:\s+(\S+)\s+.*"', self.stdout, 1, float)

Any ordinary ReFrame test becomes a parameterized one if the user defines parameters inside the class body of the
test. This is done using the parameter () ReFrame built-in function, which accepts the list of parameter values. For
each parameter value ReFrame will instantiate a different regression test by assigning the corresponding value to an
attribute named after the parameter. So in this example, ReFrame will generate automatically 11 tests with different
values for their num_bytes attribute. From this point on, you can adapt the test based on the parameter values, as we
do in this case, where we compute the STREAM array sizes, as well as the number of iterations to be performed on
each benchmark, and we also compile the code accordingly.

Let’s try listing the generated tests:

./bin/reframe -c tutorials/advanced/parameterized/stream.py -1

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab
command : './bin/reframe -c tutorials/advanced/parameterized/stream.py -1'
launched by: user@host

working directory: '/home/user/Repositories/reframe'’

(continues on next page)

46 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/advanced/parameterized/
. stream.py'

stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-lou71c2g.log’

[List of matched checks]

- StreamMultiSysTest %num_bytes=536870912 /cf10843f
- StreamMultiSysTest %num_bytes=268435456 /97fb363f
- StreamMultiSysTest %num_bytes=134217728 /7b4d01d3
- StreamMultiSysTest %num_bytes=67108864 /530b0154
- StreamMultiSysTest %num_bytes=33554432 /7199fc93
- StreamMultiSysTest %num_bytes=16777216 /9d1b9eal
- StreamMultiSysTest %num_bytes=8388608 /3£29039f

- StreamMultiSysTest %num_bytes=4194304 /e30054cd

- StreamMultiSysTest %num_bytes=2097152 /45efaec5

- StreamMultiSysTest %num_bytes=1048576 /92327981

- StreamMultiSysTest %num_bytes=524288 /eb104cd0®
Found 11 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996mddmsvjq7v80000gp/T/rfm-lou7lc2g.log’

ReFrame generates 11 tests from the single parameterized test. When listing parameterized tests, ReFrame adds the list
of parameters after the base test name using the notation %<param>=<value>. Each generated test gets also a unique
name. For more details on how the test names are generated for various types of tests, please refer to Test Naming
Scheme.

Test parameterization in ReFrame is very powerful since you can parameterize your tests on anything and you can
create complex parameterization spaces. A common pattern is to parameterize a test on the environment module that
loads a software in order to test different versions of it. For this reason, ReFrame offers the find_modules () function,
which allows you to parameterize a test on the available modules for a given programming environment and partition
combination. The following example will create a test for each GROMACS module found on the software stack associated
with a system partition and programming environment (toolchain):

import reframe as rfm
import reframe.utility as util

@rfm.simple_test
class MyTest(rfm.RegressionTest):
module_info = parameter(util.find_modules('GROMACS"))

@run_after('init")

def process_module_info(self):
s, e, m = self.module_info
self.valid_systems = [s]
self.valid_prog_environs = [e]
self.modules = [m]

2.3. ReFrame Tutorials 47

ReFrame Documentation, Release 4.1.0

More On Building Tests

We have already seen how ReFrame can compile a test with a single source file. However, ReFrame can also build tests
that use Make or a configure-Make approach. We are going to demonstrate this through a simple C++ program that
computes a dot-product of two vectors and is being compiled through a Makefile. Additionally, we can select the type
of elements for the vectors at compilation time. Here is the C++ program:

cat tutorials/advanced/makefiles/src/dotprod.cpp

#include <cassert>
#include <iostream>
#include <random>
#include <vector>

#1ifndef ELEM_TYPE
#define ELEM_TYPE double
#endif

using elem_t = ELEM_TYPE;

template<typename T>
T dotprod(const std::vector<T> &x, const std::vector<T> &y)

{
assert(x.size() == y.size());
T sum = 0;
for (std::size_t i = 0; 1 < x.size(); ++i) {
sum += x[i] * y[i];
}
return sum;
}

template<typename T>
struct type_name {
static constexpr const char *value = nullptr;

};

template<>
struct type_name<float> {

static constexpr const char *value = "float";
3
template<>
struct type_name<double> {

static constexpr const char *value = "double";

1

int main(int argc, char *argv[])
{
if (argc < 2) {
std: :cerr << argv[0] <<
std::cerr << "Usage: "
return 1;

: too few arguments\n";
<< argv[0] << " DIM\n";

(continues on next page)

48 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

}

std::size_t N = std::atoiCargv[1]);
if (N <0 {
std: :cerr << argv[0]
<< ": array dimension must a positive integer:
<< "\n";
return 1;

<< argv[1]

}

std: :vector<elem_t> x(N), y(N);
std: :random_device seed;
std: :mt19937 rand(seed());
std: :uniform_real_distribution<> dist(-1, 1);
for (std::size_t i = 0; i < N; ++i) {
x[1i] dist(rand);
y[i] dist(rand);

}

std::cout << "Result (" << type_name<elem_t>::value << "):
<< dotprod(x, y) << "\n";
return 0;

The directory structure for this test is the following:

tutorials/makefiles/

|: maketest.py
src

Makefile
dotprod. cpp

Let’s have a look at the test itself:

cat tutorials/advanced/makefiles/maketest.py

@rfm.simple_test
class MakefileTest(rfm.RegressionTest):
elem_type = parameter(['float', 'double'])

descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']

valid_prog_environs = ['clang', 'gnu'l]
executable = './dotprod'

executable_opts = ['100000']
build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):
self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

@sanity_function

(continues on next page)

2.3. ReFrame Tutorials 49

ReFrame Documentation, Release 4.1.0

(continued from previous page)

def validate_test(self):
return sn.assert_found(rf'Result \({self.elem_type/\):', self.stdout)

First, if you’re using any build system other than SingleSource, you must set the executable attribute of the test,
because ReFrame cannot know what is the actual executable to be run. We then set the build system to Make and set
the preprocessor flags as we would do with the SingleSource build system.

Let’s inspect the build script generated by ReFrame:

./bin/reframe -c tutorials/advanced/makefiles/maketest.py -r
cat output/catalina/default/clang/MakefileTest_float/rfm_MakefileTest_build.sh

#!/bin/bash

_onerror ()
{
exitcode=$?
echo "-reframe: command \ $BASH_COMMAND' failed (exit code: $exitcode)"”
exit $exitcode

trap _onerror ERR

make -j 1 CC="cc" CXX="CC" FC="ftn" NVCC="nvcc" CPPFLAGS="-DELEM_TYPE=float"

The compiler variables (CC, CXX etc.) are set based on the corresponding values specified in the configuration of the
current environment. We can instruct the build system to ignore the default values from the environment by setting its
flags_from_environ attribute to false:

self.build_system. flags_from_environ = False

In this case, make will be invoked as follows:

make -j 1 CPPFLAGS="-DELEM_TYPE=float"

Notice that the -j 1 option is always generated. @ We can increase the build concurrency by setting the
max_concurrency attribute. Finally, we may even use a custom Makefile by setting the makefile attribute:

self.build_system.max_concurrency = 4
self.build_system.makefile = 'Makefile_custom'

As a final note, as with the SingleSource build system, it wouldn’t have been necessary to specify one in this test, if we
wouldn’t have to set the CPPFLAGS. ReFrame could automatically figure out the correct build system if sourcepath
refers to a directory. ReFrame will inspect the directory and it will first try to determine whether this is a CMake or
Autotools-based project.

More details on ReFrame’s build systems can be found here.

50 Chapter 2. Webinars

config_reference.html#environment-configuration
regression_test_api.html#build-systems

ReFrame Documentation, Release 4.1.0

Retrieving the source code from a Git repository

It might be the case that a regression test needs to clone its source code from a remote repository. This can be achieved
in two ways with ReFrame. One way is to set the sourcesdir attribute to None and explicitly clone a repository using
the prebuild_cmds:

self.sourcesdir = None
self.prebuild_cmds = ['git clone https://github.com/me/myrepo .']

Alternatively, we can retrieve specifically a Git repository by assigning its URL directly to the sourcesdir attribute:

self.sourcesdir = 'https://github.com/me/myrepo’

ReFrame will attempt to clone this repository inside the stage directory by executing git clone <repo> . and will
then proceed with the build procedure as usual.

Note: ReFrame recognizes only URLSs in the sourcesdir attribute and requires passwordless access to the repository.
This means that the SCP-style repository specification will not be accepted. You will have to specify it as URL using
the ssh:// protocol (see Git documentation page).

Adding a configuration step before compiling the code

It is often the case that a configuration step is needed before compiling a code with make. To address this kind of
projects, ReFrame aims to offer specific abstractions for “configure-make” style of build systems. It supports CMake-
based projects through the CMake build system, as well as Autotools-based projects through the Autotools build
system.

For other build systems, you can achieve the same effect using the Make build system and the prebuild_cmds for
performing the configuration step. The following code snippet will configure a code with ./custom_configure
before invoking make:

self.prebuild_cmds = ['./custom_configure -with-mylib']
self.build_system = 'Make'

self.build_system.cppflags = ['-DHAVE_F00']
self.build_system. flags_from_environ = False

The generated build script will then have the following lines:

./custom_configure -with-mylib
make -j 1 CPPFLAGS='-DHAVE_F0O'

Writing a Run-Only Regression Test

There are cases when it is desirable to perform regression testing for an already built executable. In the following test
we use simply the echo Bash shell command to print a random integer between specific lower and upper bounds. Here
is the full regression test:

cat tutorials/advanced/runonly/echorand.py

2.3. ReFrame Tutorials 51

https://git-scm.com/docs/git-clone#_git_urls
https://cmake.org/
https://cmake.org/
https://www.gnu.org/software/automake/

ReFrame Documentation, Release 4.1.0

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class EchoRandTest(rfm.RunOnlyRegressionTest):
descr = 'A simple test that echoes a random number'
valid_systems = ['*']
valid_prog_environs = ['*']
lower = variable(int, value=90)
upper = variable(int, value=100)

executable = 'echo'
executable_opts = [
'Random: ',

£'$ ((RANDOM% ({upper }+1-{lower})+{lower}))"
]

@sanity_function
def assert_solution(self):
return sn.assert_bounded(
sn.extractsingle(
r'Random: (?P<number>\S+)', self.stdout, 'number', float

),

self.lower, self.upper

There is nothing special for this test compared to those presented so far except that it derives from the
RunOnlyRegressionTest class. Note that setting the executable in this type of test is always required. Run-
only regression tests may also have resources, as for instance a pre-compiled executable or some input data. These
resources may reside under the src/ directory or under any directory specified in the sourcesdir attribute. These
resources will be copied to the stage directory at the beginning of the run phase.

Writing a Compile-Only Regression Test

ReFrame provides the option to write compile-only tests which consist only of a compilation phase without a specified
executable. This kind of tests must derive from the CompileOnlyRegressionTest class provided by the framework.
The following test is a compile-only version of the MakefileTest presented previously which checks that no warnings
are issued by the compiler:

cat tutorials/advanced/makefiles/maketest.py

@rfm.simple_test
class MakeOnlyTest(rfm.CompileOnlyRegressionTest):
elem_type = parameter(['float', 'double'])

descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']
valid_prog_environs = ['clang', 'gnu'l]

build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):
self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

(continues on next page)

52 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

@sanity_function
def validate_compilation(self):
return sn.assert_not_found(r'warning', self.stdout)

What is worth noting here is that the standard output and standard error of the test, which are accessible through
the stdout and stderr attributes, correspond now to the standard output and error of the compilation command.
Therefore sanity checking can be done in exactly the same way as with a normal test.

Grouping parameter packs

New in version 3.4.2.

In the dot product example shown above, we had two independent tests that defined the same elem_type parameter.
And the two tests cannot have a parent-child relationship, since one of them is a run-only test and the other is a compile-
only one. ReFrame offers the RegressionMixin class that allows you to group parameters and other builtins that are
meant to be reused over otherwise unrelated tests. In the example below, we create an ElemTypeParam mixin that
holds the definition of the elem_type parameter which is inherited by both the concrete test classes:

import reframe as rfm
import reframe.utility.sanity as sn

class ElemTypeParam(rfm.RegressionMixin):
elem_type = parameter(['float', 'double'])

@rfm.simple_test
class MakefileTestAlt(rfm.RegressionTest, ElemTypeParam):

descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']

valid_prog_environs = ['clang', 'gnu']
executable = './dotprod’

executable_opts = ['100000']
build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):
self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

@sanity_function
def validate_test(self):
return sn.assert_found(
rf'Result \({self.elem_type}\):', self.stdout
)

@rfm.simple_test
class MakeOnlyTestAlt(rfm.CompileOnlyRegressionTest, ElemTypeParam) :

descr = 'Test demonstrating use of Makefiles'
valid_systems = ['*']
valid_prog_environs = ['clang', 'gnu']

(continues on next page)

2.3. ReFrame Tutorials 53

regression_test_api.html#builtins

ReFrame Documentation, Release 4.1.0

(continued from previous page)

build_system = 'Make'

@run_before('compile')
def set_compiler_flags(self):
self.build_system.cppflags = [f'-DELEM_TYPE={self.elem_type}']

@sanity_function
def validate_build(self):
return sn.assert_not_found(r'warning', self.stdout)

Notice how the parameters are expanded in each of the individual tests:

./bin/reframe -c tutorials/advanced/makefiles/maketest_mixin.py -1

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab6

command : './bin/reframe -c tutorials/advanced/makefiles/maketest_mixin.py -1'

launched by: user@host

working directory: '/home/user/Repositories/reframe’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/advanced/makefiles/
—maketest_mixin.py'

stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-z_z51hkz.log’

[List of matched checks]

- MakeOnlyTestAlt %elem_type=double /8b62380e
- MakeOnlyTestAlt %elem_type=float /da39ec20
- MakefileTestAlt %elem_type=double /89aac4a?2
- MakefileTestAlt %elem_type=float /a998ce67
Found 4 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-z_z51hkz.log’

Applying a Sanity Function lteratively

It is often the case that a common sanity function has to be applied many times. The following script prints 100 random
integers between the limits given by the environment variables LOWER and UPPER.

cat tutorials/advanced/random/src/random_numbers.sh

if [-z $LOWER]; then
export LOWER=90
fi

if [-z $UPPER]; then
export UPPER=100
fi

(continues on next page)

54 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

for i in {1..100}; do
echo Random: $((RANDOM%($UPPER+1-$LOWER)+$LOWER))
done

In the corresponding regression test we want to check that all the random numbers generated lie between the two limits,
which means that a common sanity check has to be applied to all the printed random numbers. Here is the corresponding
regression test:

cat tutorials/advanced/random/randint.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class DeferredIterationTest(rfm.RunOnlyRegressionTest):
descr = '"Apply a sanity function iteratively'
valid_systems = ['*']
valid_prog_environs = ['*']
executable = './random_numbers.sh'

@sanity_function
def validate_test(self):
numbers = sn.extractall(
r'Random: (?P<number>\S+)', self.stdout, 'number', float
)
return sn.all([
sn.assert_eq(sn.count (numbers), 100),
sn.all(sn.map(lambda x: sn.assert_bounded(x, 90, 100), numbers))

D

First, we extract all the generated random numbers from the output. What we want to do is to apply iteratively the
assert_bounded() sanity function for each number. The problem here is that we cannot simply iterate over the
numbers list, because that would trigger prematurely the evaluation of the extractall(). We want to defer also
the iteration. This can be achieved by using the map () ReFrame sanity function, which is a replacement of Python’s
built-in map () function and does exactly what we want: it applies a function on all the elements of an iterable and
returns another iterable with the transformed elements. Passing the result of the map () function to the all () sanity
function ensures that all the elements lie between the desired bounds.

There is still a small complication that needs to be addressed. As a direct replacement of the built-in al1 () function,
ReFrame’s all () sanity function returns True for empty iterables, which is not what we want. So we must make sure
that all 100 numbers are generated. This is achieved by the sn.assert_eq(sn.count (numbers), 100) statement,
which uses the count () sanity function for counting the generated numbers. Finally, we need to combine these two
conditions to a single deferred expression that will be returned by the test’s @sanity_function. We accomplish this
by using the all() sanity function.

For more information about how exactly sanity functions work and how their execution is deferred, please refer to
Understanding the Mechanism of Deferrable Functions.

Note: New in version 2.13: ReFrame offers also the allx() sanity function which, conversely to the builtin al1 ()
function, will return False if its iterable argument is empty.

2.3. ReFrame Tutorials 55

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/functions.html#all

ReFrame Documentation, Release 4.1.0

Customizing the Test Job Script

It is often the case that we need to run some commands before or after the parallel launch of our executable. This can
be easily achieved by using the prerun_cmds and postrun_cmds attributes of a ReFrame test.

The following example is a slightly modified version of the random numbers test presented above. The lower and upper
limits for the random numbers are now set inside a helper shell script in 1imits. sh located in the test’s resources,
which we need to source before running our tests. Additionally, we want also to print FINISHED after our executable
has finished. Here is the modified test file:

cat tutorials/advanced/random/prepostrun.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class PrepostRunTest(rfm.RunOnlyRegressionTest):
descr = 'Pre- and post-run demo test'
valid_systems = ['*']
valid_prog_environs = ['*']
prerun_cmds = ['source limits.sh']
postrun_cmds = ['echo FINISHED']
executable = './random_numbers.sh'

@sanity_function
def validate_test(self):
numbers = sn.extractall(
r'Random: (?P<number>\S+)', self.stdout, 'number', float
)
return sn.all([
sn.assert_eq(sn.count (numbers), 100),
sn.all(sn.map(lambda x: sn.assert_bounded(x, 90, 100), numbers)),
sn.assert_found(r'FINISHED', self.stdout)
D

The prerun_cmds and postrun_cmds are lists of commands to be emitted in the generated job script before and after
the parallel launch of the executable. Obviously, the working directory for these commands is that of the job script
itself, which is the stage directory of the test. The generated job script for this test looks like the following:

./bin/reframe -c tutorials/advanced/random/prepostrun.py -r
cat output/catalina/default/gnu/PrepostRunTest/rfm_PrepostRunTest_job.sh

#!/bin/bash

source limits.sh
./random_numbers. sh

echo FINISHED

Generally, ReFrame generates the job shell scripts using the following pattern:

#!/bin/bash -1
{job_scheduler_preamble}
{prepare_cmds}
{env_load_cmds?}

(continues on next page)

56 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

{prerun_cmds}
{parallel_launcher} {executable} {executable_opts}
{postrun_cmds}

The job_scheduler_preamble contains the backend job scheduler directives that control the job allocation. The
prepare_cmds are commands that can be emitted before the test environment commands. These can be specified with
the prepare_cmds partition configuration option. The env_load_cmds are the necessary commands for setting up
the environment of the test. These include any modules or environment variables set at the system partition level or any
modules or environment variables set at the test level. Then the commands specified in prerun_cmds follow, while
those specified in the postrun_cmds come after the launch of the parallel job. The parallel launch itself consists of
three parts:

1. The parallel launcher program (e.g., srun, mpirun etc.) with its options,
2. the regression test executable as specified in the executable attribute and

3. the options to be passed to the executable as specified in the executable_opts attribute.

Adding job scheduler options per test

Sometimes a test needs to pass additional job scheduler options to the automatically generated job script. This is fairly
easy to achieve with ReFrame. In the following test we want to test whether the --mem option of Slurm works as
expected. We compiled and ran a program that consumes all the available memory of the node, but we want to restrict
the available memory with the --mem option. Here is the test:

cat tutorials/advanced/jobopts/eatmemory.py

@rfm.simple_test

class MemoryLimitTest(rfm.RegressionTest):
valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['gnu']
sourcepath = 'eatmemory.c'
executable_opts = ['2000M']

@run_before('run')
def set_memory_limit(self):
self.job.options = ['--mem=1000"]

@sanity_function
def validate_test(self):
return sn.assert_found(
r' (exceeded memory limit)|(Out Of Memory)', self.stderr

)

Each ReFrame test has an associated run job descriptor which represents the scheduler job that will be used to run
this test. This object has an options attribute, which can be used to pass arbitrary options to the scheduler. The job
descriptor is initialized by the framework during the setup pipeline phase. For this reason, we cannot directly set the
job options inside the test constructor and we have to use a pipeline hook that runs before running (i.e., submitting the
test).

Let’s run the test and inspect the generated job script:

2.3. ReFrame Tutorials 57

config_reference.html#system-partition-configuration
regression_test_api.html#reframe.core.pipeline.RegressionTest.modules
regression_test_api.html#reframe.core.pipeline.RegressionTest.variables
regression_test_api.html#reframe.core.pipeline.RegressionTest.job
pipeline.html#the-regression-test-pipeline

ReFrame Documentation, Release 4.1.0

./bin/reframe -c tutorials/advanced/jobopts/eatmemory.py -n MemoryLimitTest -r
cat output/daint/gpu/gnu/MemoryLimitTest/rfm_MemoryLimitTest_job.sh

#!/bin/bash

#SBATCH --job-name="rfm_MemoryLimitTest_job"
#SBATCH --ntasks=1

#SBATCH --output=rfm_MemoryLimitTest_job.out
#SBATCH --error=rfm_MemoryLimitTest_job.err
#SBATCH --time=0:10:0

#SBATCH -A csstaff

#SBATCH --constraint=gpu

#SBATCH --mem=1000

module unload PrgEnv-cray

module load PrgEnv-gnu

srun ./MemoryLimitTest 2000M

The job options specified inside a ReFrame test are always the last to be emitted in the job script preamble and do not
affect the options that are passed implicitly through other test attributes or configuration options.

There is a small problem with this test though. What if we change the job scheduler in that partition or what if we want
to port the test to a different system that does not use Slurm and another option is needed to achieve the same result.
The obvious answer is to adapt the test, but is there a more portable way? The answer is yes and this can be achieved
through so-called extra resources. ReFrame gives you the possibility to associate scheduler options to a “resource”
managed by the partition scheduler. You can then use those resources transparently from within your test.

To achieve this in our case, we first need to define a memory resource in the configuration of both of our daint partitions:

{

'name': 'gpu',

'descr': 'Hybrid nodes',

'scheduler': 'slurm',

'launcher': 'srun',

'access': ['-C gpu', '-A csstaff'],

'environs': ['gnu', 'intel', 'nvidia', 'cray'],

'max_jobs': 100,

'resources': [

{

'name': 'memory',
'options': ['--mem=]

3,

Notice that we do not define the resource for all the partitions, but only for those that it makes sense. Each resource
has a name and a set of scheduler options that will be passed to the scheduler when this resource will be requested
by the test. The options specification can contain placeholders, whose value will also be set from the test. Let’s see
how we can rewrite the MemoryLimitTest using the memory resource instead of passing the --mem scheduler option
explicitly.

cat tutorials/advanced/jobopts/eatmemory.py

@rfm.simple_test
class MemoryLimitWithResourcesTest(rfm.RegressionTest):

(continues on next page)

58 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['gnu']
sourcepath = 'eatmemory.c'
executable_opts ['2000M']
extra_resources = {

'memory': {'size': '1000'}

}

@sanity_function
def validate_test(self):
return sn.assert_found(
r' (exceeded memory limit)|(Out Of Memory)', self.stderr

)

The extra resources that the test needs to obtain through its scheduler are specified in the extra_resources attribute,
which is a dictionary with the resource names as its keys and another dictionary assigning values to the resource
placeholders as its values. As you can see, this syntax is completely scheduler-agnostic. If the requested resource is
not defined for the current partition, it will be simply ignored.

You can now run and verify that the generated job script contains the --mem option:

./bin/reframe -c tutorials/advanced/jobopts/eatmemory.py -n MemoryLimitWithResourcesTest..
—-r

cat output/daint/gpu/gnu/MemoryLimitWithResourcesTest/rfm_MemoryLimitWithResourcesTest_
—job.sh

Modifying the parallel launcher command

Another relatively common need is to modify the parallel launcher command. ReFrame gives the ability to do that and
we will see some examples in this section.

The most common case is to pass arguments to the launcher command that you cannot normally pass as job options.
The --cpu-bind of srun is such an example. Inside a ReFrame test, you can access the parallel launcher through the
launcher of the job descriptor. This object handles all the details of how the parallel launch command will be emitted.
In the following test we run a CPU affinity test using this utility and we will pin the threads using the --cpu-bind
option:

cat tutorials/advanced/affinity/affinity.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class AffinityTest(rfm.RegressionTest):

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['*']

sourcesdir = 'https://github.com/vkarak/affinity.git'
build_system = 'Make'

executable = './affinity'

@run_before('compile')

(continues on next page)

2.3. ReFrame Tutorials 59

https://github.com/vkarak/affinity

ReFrame Documentation, Release 4.1.0

(continued from previous page)

def set_build_system_options(self):
self.build_system.options = ['OPENMP=1"']

@run_before('run')
def set_cpu_binding(self):
self.job.launcher.options = ['--cpu-bind=cores']

@sanity_function
def validate_test(self):
return sn.assert_found(r'CPU affinity', self.stdout)

The approach is identical to the approach we took in the MemoryLimitTest test above, except that we now set the
launcher options.

Note: The sanity checking in a real affinity checking test would be much more complex than this.

Another scenario that might often arise when testing parallel debuggers is the need to wrap the launcher command
with the debugger command. For example, in order to debug a parallel program with ARM DDT, you would need to
invoke the program like this: ddt [OPTIONS] srun [OPTIONS].ReFrame allows you to wrap the launcher command
without the test needing to know which is the actual parallel launcher command for the current partition. This can be
achieved with the following pipeline hook:

import reframe as rfm
from reframe.core.launchers import LauncherWrapper

class DebuggerTest(rfm.RunOnlyRegressionTest):

@run_before('run')
def set_launcher(self):
self.job.launcher = LauncherWrapper(self.job.launcher, 'ddt',
['--offline'])

The Launcheriirapper is a pseudo-launcher that wraps another one and allows you to prepend anything to it. In this
case the resulting parallel launch command, if the current partition uses native Slurm, will be ddt --offline srun
[OPTIONS].

Replacing the parallel launcher

Sometimes you might need to replace completely the partition’s launcher command, because the software you are
testing might use its own parallel launcher. Examples are ipyparallel, the GREASY high-throughput scheduler, as well
as some visualization software. The trick here is to replace the parallel launcher with the local one, which practically
does not emit any launch command, and by now you should almost be able to do it all by yourself:

import reframe as rfm
from reframe.core.backends import getlauncher

class CustomLauncherTest(rfm.RunOnlyRegressionTest):

(continues on next page)

60 Chapter 2. Webinars

https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
https://ipyparallel.readthedocs.io/en/latest/
https://github.com/BSC-Support-Team/GREASY

ReFrame Documentation, Release 4.1.0

(continued from previous page)

executable = 'custom_scheduler'
executable_opts = [...]

@run_before('run')
def replace_launcher(self):
self.job.launcher = getlauncher('local')()

The getlauncher () function takes the registered name of a launcher and returns the class that implements it. You
then instantiate the launcher and assign to the Iauncher attribute of the job descriptor.

Adding more parallel launch commands

ReFrame uses a parallel launcher by default for anything defined explicitly or implicitly in the executable test at-
tribute. But what if we want to generate multiple parallel launch commands? One straightforward solution is to hard-
code the parallel launch command inside the prerun_cmds or postrun_cmds, but this is not so portable. The best
way is to ask ReFrame to emit the parallel launch command for you. The following is a simple test for demonstration
purposes that runs the hostname command several times using a parallel launcher. It resembles a scaling test, except
that all happens inside a single ReFrame test, instead of launching multiple instances of a parameterized test.

cat tutorials/advanced/multilaunch/multilaunch.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class MultiLaunchTest(rfm.RunOnlyRegressionTest):

valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['builtin']
executable = 'hostname'

num_tasks = 4
num_tasks_per_node = 1

@run_before('run')
def pre_launch(self):
cmd = self.job.launcher.run_command(self. job)
self.prerun_cmds = [
f'{cmd} -n {n self.executable
for n in range(l, self.num_tasks)

]

@sanity_function
def validate_test(self):
return sn.assert_eq(
sn.count(sn.extractall(r'Anid\d+', self.stdout)), 10

)

The additional parallel launch commands are inserted in either the prerun_cmds or postrun_cmds lists. To retrieve
the actual parallel launch command for the current partition that the test is running on, you can use the run_command ()
method of the launcher object. Let’s see how the generated job script looks like:

2.3. ReFrame Tutorials 61

config_reference.html#systems-.partitions-.launcher

ReFrame Documentation, Release 4.1.0

./bin/reframe -c tutorials/advanced/multilaunch/multilaunch.py -r
cat output/daint/gpu/builtin/MultilaunchTest/rfm_MultilaunchTest_job.sh

#!/bin/bash

#SBATCH --job-name="rfm_MultilaunchTest_job"
#SBATCH --ntasks=4

#SBATCH --ntasks-per-node=1

#SBATCH --output=rfm_MultiLaunchTest_job.out
#SBATCH --error=rifm_MultilLaunchTest_job.err
#SBATCH --time=0:10:0

#SBATCH -A csstaff

#SBATCH --constraint=gpu

srun -n 1 hostname

srun -n 2 hostname

srun -n 3 hostname

srun hostname

The first three srun commands are emitted through the prerun_cmds whereas the last one comes from the test’s
executable attribute.

Adding a custom launcher to a partition

New in version 4.0.0.

An alternative to the approaches above would be to define your own custom parallel launcher and register it with the
framework. You could then use it as the launcher of a system partition in the configuration and use it in multiple tests.

Each launcher needs to implement the command () method and can optionally change the default run_command()
method.

As an example of how easy it is to define a new parallel launcher backend, here is the actual implementation of the
mpirun launcher:

from reframe.core.backends import register_launcher
from reframe.core.launchers import JobLauncher

@register_launcher('mpirun')
class MpirunLauncher (JobLauncher):
def command(self, job):
return ['mpirun', '-np', str(job.num_tasks)]

The command() returns a list of command tokens that will be combined with any user-supplied options by the
run_command () method to generate the actual launcher command line. Notice you can use the job argument to
get job-specific information that will allow you to construct the correct launcher invocation.

If you use a Python-based configuration file, you can define your custom launcher directly inside your config as follows:

from reframe.core.backends import register_launcher
from reframe.core.launchers import JobLaucher

@register_launcher('slrun')
class MySmartLauncher (JobLauncher):

(continues on next page)

62 Chapter 2. Webinars

regression_test_api.html#reframe.core.launchers.JobLauncher
regression_test_api.html#reframe.core.launchers.JobLauncher.options

ReFrame Documentation, Release 4.1.0

(continued from previous page)

def command(self, job):
return ['slrun', ...]

site_configuration = {
'systems': [

{
'name': 'my_system',
'partitions': [
{
'name': 'my_partition',
'launcher': 'slrun'
}
1,
1

Flexible Regression Tests

New in version 2.15.

ReFrame can automatically set the number of tasks of a particular test, if its num_tasks attribute is set to a negative
value or zero. In ReFrame’s terminology, such tests are called flexible. Negative values indicate the minimum number
of tasks that are acceptable for this test (a value of -4 indicates that at least 4 tasks are required). A zero value indicates
the default minimum number of tasks which is equal to num_tasks_per_node.

By default, ReFrame will spawn such a test on all the idle nodes of the current system partition, but this behavior can
be adjusted with the --flex-alloc-nodes command-line option. Flexible tests are very useful for diagnostics tests,
e.g., tests for checking the health of a whole set nodes. In this example, we demonstrate this feature through a simple
test that runs hostname. The test will verify that all the nodes print the expected host name:

cat tutorials/advanced/flexnodes/flextest.py

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class HostnameCheck(rfm.RunOnlyRegressionTest):
valid_systems = ['daint:gpu', 'daint:mc']
valid_prog_environs = ['cray']
executable = 'hostname'
num_tasks = 0
num_tasks_per_node = 1

@sanity_function
def validate_test(self):
return sn.assert_eq(

(continues on next page)

2.3. ReFrame Tutorials 63

manpage.html#cmdoption-flex-alloc-nodes

ReFrame Documentation, Release 4.1.0

(continued from previous page)

self.num_tasks,
sn.count(sn. findall(r'Anid\d+$', self.stdout))

The first thing to notice in this test is that num_tasks is set to zero as default, which is a requirement for flexible tests.
However, with flexible tests, this value is updated right after the job completes to the actual number of tasks that were
used. Consequently, this allows the sanity function of the test to assert that the number host names printed matches
num_tasks.

Tip: If you want to run multiple flexible tests at once, it’s better to run them using the serial execution policy, because
the first test might take all the available nodes and will cause the rest to fail immediately, since there will be no available
nodes for them.

Testing containerized applications

New in version 2.20.

ReFrame can be used also to test applications that run inside a container. First, we need to enable the container platform
support in ReFrame’s configuration and, specifically, at the partition configuration level:

{
'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'nvidia', 'cray'],
'max_jobs': 100,
'container_platforms': [
{
'type': 'Sarus',
'modules': ['sarus']

1,

"type': 'Singularity',
'modules': ['singularity']

3

For each partition, users can define a list of all supported container platforms using the container_platforms con-
figuration parameter. In this case, we define the Sarus platform for which we set the modules parameter in order to
instruct ReFrame to load the sarus module, whenever it needs to run with this container platform. Similarly, we add
an entry for the Singularity platform. Optionally, users are allowed to set the default attribute to True in order to
mark a specific container platform as the default of that partition (see below on how this information is being used). If
no default container platform is specified explicitly, then always the first in the list will be considered as successful.

The following parameterized test, will create two tests, one for each of the supported container platforms:

cat tutorials/advanced/containers/container_test.py

64 Chapter 2. Webinars

https://github.com/eth-cscs/sarus
https://sylabs.io
https://docs.python.org/3/library/constants.html#True

ReFrame Documentation, Release 4.1.0

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class ContainerTest(rfm.RunOnlyRegressionTest):
platform = parameter(['Sarus', 'Singularity'])
valid_systems = ['daint:gpu']
valid_prog_environs = ['builtin']

@run_before('run')

def setup_container_platf(self):
self.descr = f'Run commands inside a container using {self.platform
image_prefix = 'docker://' if self.platform == 'Singularity' else "'
self.container_platform = self.platform
self.container_platform.image = f'{image_prefix/ubuntu:18.04"'
self.container_platform.command = (

"bash -c 'cat /etc/os-release |

tee /rfm_workdir/release.txt

)

@sanity_function

def assert_release(self):
os_release_pattern = r'18.04.\d+ LTS \(Bionic Beaver\)'
return sn.assert_found(os_release_pattern, 'release.txt')

A container-based test can be written as RunOnlyRegressionTest that sets the container_platform attribute. This
attribute accepts a string that corresponds to the name of the container platform that will be used to run the container
for this test. It is not necessary to specify this attribute, in which case, the default container platform of the current
partition will be used. You can still differentiate your test based on the actual container platform that is being used by
checking the self.container_platform.name variable.

As soon as the container platform to be used is determined, you need to specify the container image to use by set-
ting the image. If the image is not specified, then the container logic is skipped and the test executes as if the
container_platform was never set.

In the Singularity test variant, we add the docker: // prefix to the image name, in order to instruct Singularity
to pull the image from DockerHub. The default command that the container runs can be overwritten by setting the
command attribute of the container platform.

The image is the only mandatory attribute for container-based checks. It is important to note that the executable and
executable_opts attributes of the actual test are ignored if the containerized code path is taken, i.e., when image is
not None.

ReFrame will run the container according to the given platform as follows:

Sarus
sarus run --mount=type=bind,source="/path/to/test/stagedir",destination="/rfm_workdir",_
—ubuntu:18.04 bash -c 'cat /etc/os-release | tee /rfm_workdir/release.txt'

Singularity
singularity exec -B"/path/to/test/stagedir:/rfm_workdir" docker://ubuntu:18.04 bash -c
—'cat /etc/os-release | tee /rfm_workdir/release.txt'

In the Sarus case, ReFrame will prepend the following command in order to pull the container image before running
the container:

2.3. ReFrame Tutorials 65

https://hub.docker.com/
https://docs.python.org/3/library/constants.html#None

ReFrame Documentation, Release 4.1.0

sarus pull ubuntu:18.04

This is the default behavior of ReFrame, which can be changed if pulling the image is not desired by setting the
pull_image attribute to False. By default ReFrame will mount the stage directory of the test under /rfm_workdir
inside the container. Once the commands are executed, the container is stopped and ReFrame goes on with the sanity and
performance checks. Besides the stage directory, additional mount points can be specified through the mount_points
attribute:

self.container_platform.mount_points = [('/path/to/host/dirl', '/path/to/container/mount_
—pointl'),

('/path/to/host/dir2', '/path/to/container/mount_
—point2')]

The container filesystem is ephemeral, therefore, ReFrame mounts the stage directory under /rfm_workdir inside the
container where the user can copy artifacts as needed. These artifacts will therefore be available inside the stage direc-
tory after the container execution finishes. This is very useful if the artifacts are needed for the sanity or performance
checks. If the copy is not performed by the default container command, the user can override this command by settings
the command attribute such as to include the appropriate copy commands. In the current test, the output of the cat
/etc/os-release is available both in the standard output as well as in the release. txt file, since we have used the
command:

bash -c 'cat /etc/os-release | tee /rfm_workdir/release.txt'

and /rfm_workdir corresponds to the stage directory on the host system. Therefore, the release. txt file can now
be used in the subsequent sanity checks:

@sanity_function

def assert_release(self):
os_release_pattern = r'18.04.\d+ LTS \(Bionic Beaver\)'
return sn.assert_found(os_release_pattern, 'release.txt')

For a complete list of the available attributes of a specific container platform, please have a look at the Container
Platforms section of the Test API Reference guide. On how to configure ReFrame for running containerized tests,
please have a look at the Container Platform Configuration section of the Configuration Reference.

Changed in version 3.12.0: There is no need any more to explicitly set the container_platform in the test. This is
automatically initialized from the default platform of the current partition.

Combining containerized and native application tests

New in version 3.12.0.

It is very easy in ReFrame to have a single run-only test to either test the native or the containerized version of an
application. This is possible, since the framework will only take the “containerized” code path only if the image
attribute of the container_platform is not None. Otherwise, the bare metal version of the tested application will be
run. The following test uses exactly this trick to test a series of GROMACS images as well as the native one provided
on the Piz Daint supercomputer. It also extends the GROMACS benchmark tests that are provided with ReFrame’s
test library (see ReFrame Test Library (experimental)). For simplicity, we are assuming a single system here (the
hybrid partition of Piz Daint) and we set fixed values for the num_cpus_per_task as well as the -ntomp option
of GROMACS (NB: in a real-world test we would use the auto-detected processor topology information to set these
values; see Auto-detecting processor information for more information). We also redefine and restrict the benchmark’s
parameters benchmark_info and nb_imp1 to the values that are of interest for the demonstration of this test. Finally,
we also reset the executable to use gmx instead of the gmx_mpi that is used from the library test.

66 Chapter 2. Webinars

https://docs.python.org/3/library/constants.html#None

ReFrame Documentation, Release 4.1.0

import reframe as rfm
from hpctestlib.sciapps.gromacs.benchmarks import gromacs_check

def _hecbiosim_bench(params) :
for p in params:
if p[0®] == 'HECBioSim/hEGFRDimerSmallerPL':
return [p]

@rfm.simple_test
class gromacs_containerized_test(gromacs_check):
Restrict library test parameters to only those relevant for this example
benchmark_info = parameter(inherit_params=True,
filter_params=_hecbiosim_bench,
fmt=lambda x: x[0])
nb_impl = parameter(['gpu'])

New parameter for testing the various images
gromacs_image = parameter([
None,
'nvcr.io/hpc/gromacs:2020"',
'nvcr.io/hpc/gromacs:2020.2",
'nvcr.io/hpc/gromacs:2021"',
'nvcr.io/hpc/gromacs:2021.3",
'nvcr.io/hpc/gromacs:2022.1"
D
valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu']
use_multithreading = False
executable = 'gmx mdrun'
executable_opts += ['-dlb yes', '-ntomp 12', '-npme -1', '-v']
num_tasks = 1
num_tasks_per_node = 1
num_cpus_per_task = 12

@run_after('init")
def setup_container_run(self):
exec_cmd = ' '.join([self.executable, *self.executable_opts])
self.container_platform.image = self.gromacs_image
self.container_platform.command = exec_cmd
if self.gromacs_image is None:
self.modules = ['daint-gpu', 'GROMACS']

All this test does in addition to the library test it inherits from is to set the image and the command attributes of the
container_platform. The former is set from the gromacs_image test parameter whereas the latter from the test’s
executable and executable_opts attributes. Remember that these attributes are ignored if the framework takes
the path of launching a container. Finally, if the image is None we handle the case of the native run, in which case we
load the modules required to run GROMACS natively on the target system.

In the following, we run the GPU version of a single benchmark with a series of images from NVIDIA and natively:

$./bin/reframe -C tutorials/config/daint.py -c tutorials/advanced/containers/gromacs_
~test.py -r

2.3. ReFrame Tutorials 67

https://docs.python.org/3/library/constants.html#None

ReFrame Documentation, Release 4.1.0

] Running 6 check(s)
] Started on Fri Jun 17 16:20:16 2022

[---—=------] start processing checks

[RUN] gromacs_containerized_test %benchmark_ info=HECBioSim/hEGFRDimerSmallerPL
—%nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2022.1 @daint:gpu+gnu

[RUN] gromacs_containerized_test %benchmark_info=HECBioSim/hEGFRDimerSmallerPL
—%nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2021.3 @daint:gpu+gnu

[RUN] gromacs_containerized_test %benchmark_info=HECBioSim/hEGFRDimerSmallerPL
—%nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2021 @daint:gpu+gnu

[RUN] gromacs_containerized_test %benchmark_info=HECBioSim/hEGFRDimerSmallerPL
—%nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2020.2 @daint:gpu+gnu

[RUN] gromacs_containerized_test %benchmark_info=HECBioSim/hEGFRDimerSmallerPL
—%nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2020 @daint:gpu+gnu

[RUN] gromacs_containerized_test %benchmark_info=HECBioSim/hEGFRDimerSmallerPL
—%nb_impl=gpu %gromacs_image=None @daint:gpu+gnu

[OK] (1/6) gromacs_containerized_test %benchmark_info=HECBioSim/

—hEGFRDimerSmallerPL %nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2020.2.
—@daint:gpu+gnu

[OK] (2/6) gromacs_containerized_test %benchmark_info=HECBioSim/
—hEGFRDimerSmallerPL %nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2020 @daint:gpu+gnu
[OK] (3/6) gromacs_containerized_test %benchmark_info=HECBioSim/
—hEGFRDimerSmallerPL %nb_impl=gpu %gromacs_image=None @daint:gpu+gnu

[OK] (4/6) gromacs_containerized_test %benchmark_info=HECBioSim/
—hEGFRDimerSmallerPL %nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2022.1.
—@daint:gpu+gnu

[OK] (5/6) gromacs_containerized_test %benchmark_info=HECBioSim/
—hEGFRDimerSmallerPL %nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2021 @daint:gpu+gnu
[OK] (6/6) gromacs_containerized_test %benchmark_info=HECBioSim/

—hEGFRDimerSmallerPL %nb_impl=gpu %gromacs_image=nvcr.io/hpc/gromacs:2021.3.
—»@daint:gpu+gnu
e] all spawned checks have finished

[PASSED] Ran 6/6 test case(s) from 6 check(s) (0 failure(s), O skipped)
[==========] Finished on Fri Jun 17 16:23:47 2022

We can also inspect the generated job scripts for the native and a containerized run:

cat output/daint/gpu/gnu/gromacs_containerized_test_0/rfm_gromacs_containerized_test_0_
—»job.sh

#!/bin/bash

#SBATCH --job-name="rfm_gromacs_containerized_test_0_job"
#SBATCH --ntasks=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=12

#SBATCH --output=rfm_gromacs_containerized_test_0_job.out
#SBATCH --error=rfm_gromacs_containerized_test_0_job.err
#SBATCH -A csstaff

#SBATCH --constraint=gpu

#SBATCH --hint=nomultithread

module unload PrgEnv-cray

module load PrgEnv-gnu

(continues on next page)

68 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

module load daint-gpu

module load GROMACS

curl -LJO https://github.com/victorusu/GROMACS_Benchmark_Suite/raw/1.0.0/HECBioSim/
—hEGFRDimerSmallerPL/benchmark. tpr

srun gmx mdrun -dlb yes -ntomp 12 -npme -1 -v -nb gpu -s benchmark.tpr

And the containerized run:

cat output/daint/gpu/gnu/gromacs_containerized_test_1/rfm _gromacs_containerized_test_1_
—job.sh

#!/bin/bash

#SBATCH --job-name="rfm_gromacs_containerized_test_1_job"

#SBATCH --ntasks=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=12

#SBATCH --output=rfm_gromacs_containerized_test_1_job.out

#SBATCH --error=rfm_gromacs_containerized_test_1_job.err

#SBATCH -A csstaff

#SBATCH --constraint=gpu

#SBATCH --hint=nomultithread

module unload PrgEnv-cray

module load PrgEnv-gnu

module load sarus

curl -LJO https://github.com/victorusu/GROMACS_Benchmark_Suite/raw/1.0.0/HECBioSim/
—hEGFRDimerSmallerPL/benchmark. tpr

sarus pull nvcr.io/hpc/gromacs:2020

srun sarus run --mount=type=bind, source="/users/user/Devel/reframe/stage/daint/gpu/gnu/
—,gromacs_containerized_test_43",destination="/rfm workdir" -w /rfm_workdir nvcr.io/hpc/
—.gromacs:2020 gmx mdrun -dlb yes -ntomp 12 -npme -1 -v -nb gpu -s benchmark.tpr

Writing reusable tests

New in version 3.5.0.

So far, all the examples shown above were tight to a particular system or configuration, which makes reusing these
tests in other systems not straightforward. However, the introduction of the parameter () and variable() ReFrame
built-ins solves this problem, eliminating the need to specify any of the test variables in the __init__() method and
simplifying code reuse. Hence, readers who are not familiar with these built-in functions are encouraged to read their
basic use examples (see parameter () and variable()) before delving any deeper into this tutorial.

In essence, parameters and variables can be treated as simple class attributes, which allows us to leverage Python’s class
inheritance and write more modular tests. For simplicity, we illustrate this concept with the above ContainerTest
example, where the goal here is to re-write this test as a library that users can simply import from and derive their tests
without having to rewrite the bulk of the test. Also, for illustrative purposes, we parameterize this library test on a few
different image tags (the above example just used ubuntu: 18.04) and throw the container commands into a separate
bash script just to create some source files. Thus, removing all the system and configuration specific variables, and
moving as many assignments as possible into the class body, the system agnostic library test looks as follows:

cat tutorials/advanced/library/lib/__init__.py

2.3. ReFrame Tutorials 69

ReFrame Documentation, Release 4.1.0

import reframe as rfm
import reframe.utility.sanity as sn

class ContainerBase(rfm.RunOnlyRegressionTest, pin_prefix=True):
"Test that asserts the ubuntu version of the image."

Derived tests must override this parameter
platform = parameter()
image_prefix = variable(str, value='")

Parametrize the test on two different versions of ubuntu.
dist = parameter(['18.04"', '20.04'])
dist_name = variable(dict, value={
'18.04': 'Bionic Beaver',
'20.04': 'Focal Fossa',
b

@run_after('setup')
def set_description(self):
self.descr = (
f'Run commands inside a container using ubuntu {self.dist

)

@run_before('run')
def set_container_platform(self):
self.container_platform = self.platform
self.container_platform.image = (
f'{self.image_prefixjubuntu:{self.dist

)
self.container_platform.command = (
"bash -c /rfm_workdir/get_os_release.sh"

)

@property
def os_release_pattern(self):
name = self.dist_name[self.dist]
return rf'{self.dist}.\d+ LTS \({name}\)'

@sanity_function
def assert_release(self):
return sn.all([
sn.assert_found(self.os_release_pattern, 'release.txt'),
sn.assert_found(self.os_release_pattern, self.stdout)

D

Note that the class ContainerBase is not decorated since it does not specify the required variables valid_systems
and valid_prog_environs, and it declares the platform parameter without any defined values assigned. Hence,
the user can simply derive from this test and specialize it to use the desired container platforms. Since the parameters
are defined directly in the class body, the user is also free to override or extend any of the other parameters in a derived
test. In this example, we have parameterized the base test to run with the ubuntu: 18.04 and ubuntu:20.04 images,
but these values from dist (and also the dist_name variable) could be modified by the derived class if needed.

On the other hand, the rest of the test depends on the values from the test parameters, and a parameter is only assigned

70 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

a specific value after the class has been instantiated. Thus, the rest of the test is expressed as hooks, without the need
to write anything in the __init__() method. In fact, writing the test in this way permits having hooks that depend
on undefined variables or parameters. This is the case with the set_container_platform() hook, which depends
on the undefined parameter platform. Hence, the derived test must define all the required parameters and variables;
otherwise ReFrame will notice that the test is not well defined and will raise an error accordingly.

Before moving ahead with the derived test, note that the ContainerBase class takes the additional argument
pin_prefix=True, which locks the prefix of all derived tests to this base test. This will allow the retrieval of the
sources located in the library by any derived test, regardless of what their containing directory is.

cat tutorials/advanced/library/lib/src/get_os_release.sh

#!/bin/bash
cat /etc/os-release | tee /rfm_workdir/release.txt

Now from the user’s perspective, the only thing to do is to import the above base test and specify the required variables
and parameters. For consistency with the above example, we set the platform parameter to use Sarus and Singu-
larity, and we configure the test to run on Piz Daint with the built-in programming environment. Hence, the above
ContainerTest is now reduced to the following:

cat tutorials/advanced/library/usr/container_test.py

import tutorials.advanced.library.lib as lib

@rfm.simple_test

class ContainerTest(lib.ContainerBase):
platform = parameter(['Sarus', 'Singularity'])
valid_systems = ['daint:gpu']
valid_prog_environs = ['builtin']

@run_after('setup')
def set_image_prefix(self):
if self.platform == 'Singularity':
self.image_prefix = 'docker://'

In a similar fashion, any other user could reuse the above ContainerBase class and write the test for their own system
with a few lines of code.

Happy test sharing!

2.3.3 Tutorial 3: Using Dependencies in ReFrame Tests

New in version 2.21.

A ReFrame test may define dependencies to other tests. An example scenario is to test different runtime configurations
of a benchmark that you need to compile, or run a scaling analysis of a code. In such cases, you don’t want to download
and rebuild your test for each runtime configuration. You could have a test where only the sources are fetched, and
which all build tests would depend on. And, similarly, all the runtime tests would depend on their corresponding build
test. This is the approach we take with the following example, that fetches, builds and runs several OSU benchmarks.
We first create a basic run-only test, that fetches the benchmarks:

cat tutorials/deps/osu_benchmarks.py

2.3. ReFrame Tutorials 71

http://mvapich.cse.ohio-state.edu/benchmarks/

ReFrame Documentation, Release 4.1.0

@rfm.simple_test
class OSUDownloadTest (rfm.RunOnlyRegressionTest):
descr = 'OSU benchmarks download sources'
valid_systems = ['daint:login']
valid_prog_environs = ['builtin']
executable = 'wget'
executable_opts = [
'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.6.2.
—tar.gz' # noga: E501
]
postrun_cmds = [
"tar xzf osu-micro-benchmarks-5.6.2.tar.gz’

]

@sanity_function
def validate_download(self):
return sn.assert_true(os.path.exists('osu-micro-benchmarks-5.6.2"))

This test doesn’t need any specific programming environment, so we simply pick the builtin environment in the
login partition. The build tests would then copy the benchmark code and build it for the different programming
environments:

@rfm.simple_test

class OSUBuildTest(rfm.CompileOnlyRegressionTest):
descr = 'OSU benchmarks build test'
valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'nvidia', 'intel']
build_system = 'Autotools'

@run_after('init")
def inject_dependencies(self):
self.depends_on('0SUDownloadTest', udeps.fully)

@require_deps
def set_sourcedir(self, OSUDownloadTest):
self.sourcesdir = os.path. join(
OSUDownloadTest(part="login', environ='builtin').stagedir,
'osu-micro-benchmarks-5.6.2"

)

@run_before('compile')
def set_build_system_attrs(self):
self.build_system.max_concurrency = 8

@sanity_function
def validate_build(self):
return sn.assert_not_found('error', self.stderr)

The only new thing that comes in with the OSUBuildTest test is the following:

@run_after('init")
def inject_dependencies(self):
self.depends_on('0SUDownloadTest', udeps.fully)

72 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

Here we tell ReFrame that this test depends on a test named OSUDownloadTest. This test may or may not be de-
fined in the same test file; all ReFrame needs is the test name. The depends_on () function will create dependencies
between the individual test cases of the OSUBuildTest and the OSUDownloadTest, such that all the test cases of
OSUBuildTest will depend on the outcome of the 0SUDownloadTest. This behaviour can be changed, but it is cov-
ered in detail in How Test Dependencies Work In ReFrame. You can create arbitrary test dependency graphs, but they
need to be acyclic. If ReFrame detects cyclic dependencies, it will refuse to execute the set of tests and will issue an
error pointing out the cycle.

A ReFrame test with dependencies will execute, i.e., enter its “setup” stage, only after all of its dependencies have
succeeded. If any of its dependencies fails, the current test will be marked as failure as well.

The next step for the 0SUBuildTest is to set its sourcesdir to point to the source code that was fetched by the
OSUDownloadTest. This is achieved with the following specially decorated function:

@require_deps
def set_sourcedir(self, OSUDownloadTest):
self.sourcesdir = os.path.join(
OSUDownloadTest(part="login', environ='builtin').stagedir,
'osu-micro-benchmarks-5.6.2"

The @require_deps decorator binds each argument of the decorated function to the corresponding target depen-
dency. In order for the binding to work correctly the function arguments must be named after the target dependencies.
Referring to a dependency only by the test’s name is not enough, since a test might be associated with multiple pro-
gramming environments. For this reason, each dependency argument is actually bound to a function that accepts as
argument the name of the target partition and target programming environment. If no arguments are passed, the current
programming environment is implied, such that 0SUDownloadTest () is equivalent to OSUDownloadTest (self.
current_environ.name, self.current_partition.name). In this case, since both the partition and environ-
ment of the target dependency do not much those of the current test, we need to specify both.

This call returns the actual test case of the dependency that has been executed. This allows you to access any attribute
from the target test, as we do in this example by accessing the target test’s stage directory, which we use to construct
the sourcesdir of the test.

For the next test we need to use the OSU benchmark binaries that we just built, so as to run the MPI ping-pong
benchmark. Here is the relevant part:

class OSUBenchmarkTestBase(rfm.RunOnlyRegressionTest):
"Base class of OSU benchmarks runtime tests"

valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'nvidia', 'intel']
sourcesdir = None

num_tasks = 2

num_tasks_per_node = 1

@run_after('init")
def set_dependencies(self):
self.depends_on('0OSUBuildTest', udeps.by_env)

@sanity_function

def validate_test(self):
return sn.assert_found(r'28', self.stdout)

@rfm.simple_test

(continues on next page)

2.3. ReFrame Tutorials 73

ReFrame Documentation, Release 4.1.0

(continued from previous page)

class OSULatencyTest(0SUBenchmarkTestBase):
descr = '0OSU latency test'

@require_deps
def set_executable(self, OSUBuildTest):
self.executable = os.path.join(
OSUBuildTest() .stagedir,
'mpi', 'pt2pt', 'osu_latency'
)
self.executable_opts = ['-x", "100', '-i', "1000']

@performance_function('us')
def latency(self):
return sn.extractsingle(r'28\s+(\S+)', self.stdout, 1, float)

First, since we will have multiple similar benchmarks, we move all the common functionality to the
OSUBenchmarkTestBase base class. Again nothing new here; we are going to use two nodes for the benchmark and
we set sourcesdir to None, since none of the benchmark tests will use any additional resources. As done previously,
we define the dependencies with the following:

@run_after('init")
def set_dependencies(self):
self.depends_on('0OSUBuildTest', udeps.by_env)

Here we tell ReFrame that this test depends on a test named OSUBuildTest “by environment.” This means that the
test cases of this test will only depend on the test cases of the 0SUBuildTest that use the same environment; partitions
may be different.

The next step for the OSULatencyTest is to set its executable to point to the binary produced by the OSUBuildTest.
This is achieved with the following specially decorated function:

@require_deps
def set_executable(self, OSUBuildTest):
self.executable = os.path.join(
OSUBuildTest() .stagedir,
'mpi', 'pt2pt', 'osu_latency'
)
self.executable_opts = ['-x", "100', '-i', "1000']

This concludes the presentation of the OSULatencyTest test. The O0SUBandwidthTest is completely analogous.

The OSUAllreduceTest shown below is similar to the other two, except that it is parameterized. It is essentially a
scalability test that is running the osu_allreduce executable created by the OSUBuildTest for 2, 4, 8 and 16 nodes.

@rfm.simple_test

class OSUAllreduceTest (0OSUBenchmarkTestBase):
mpi_tasks = parameter(l << i for i in range(l, 5))
descr = 'OSU Allreduce test'

@run_after('init")
def set_num_tasks(self):

self.num_tasks = self.mpi_tasks

@require_deps

(continues on next page)

74 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

def set_executable(self, OSUBuildTest):
self.executable = os.path.join(
OSUBuildTest() .stagedir,
'mpi', 'collective', 'osu_allreduce'
)
self.executable_opts = ['-m', '8", '-x', '1000', '-i', '20000']

@performance_function('us')
def latency(self):
return sn.extractsingle(r'+8\s+(\S+)', self.stdout, 1, float)

The full set of OSU example tests is shown below:

Copyright 2016-2022 Swiss National Supercomputing Centre (CSCS/ETH Zurich)
ReFrame Project Developers. See the top-level LICENSE file for details.

#
SPDX-License-Identifier: BSD-3-Clause

import os
import reframe as rfm

import reframe.utility.sanity as sn
import reframe.utility.udeps as udeps

rfmdocstart: osupingpong

class OSUBenchmarkTestBase (rfm.RunOnlyRegressionTest):

"

"Base class of OSU benchmarks runtime tests

valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'nvidia', 'intel']
sourcesdir = None

num_tasks = 2

num_tasks_per_node = 1

@run_after('init")
def set_dependencies(self):
self.depends_on('0SUBuildTest', udeps.by_env)

@sanity_function
def validate_test(self):
return sn.assert_found(r'28', self.stdout)

@rfm.simple_test
class 0OSULatencyTest(0SUBenchmarkTestBase):
descr = 'OSU latency test'

@require_deps
def set_executable(self, OSUBuildTest):
self.executable = os.path.join(
OSUBuildTest() .stagedir,

(continues on next page)

2.3. ReFrame Tutorials

75

ReFrame Documentation, Release 4.1.0

(continued from previous page)

mpi', 'pt2pt', 'osu_latency'
)
self.executable_opts = ['-x", "100', '-i', "1000']

@performance_function('us')
def latency(self):
return sn.extractsingle(r'+8\s+(\S+)', self.stdout, 1, float)
rfmdocend: osupingpong

@rfm.simple_test
class 0OSUBandwidthTest (0SUBenchmarkTestBase):
descr = 'OSU bandwidth test'

@require_deps
def set_executable(self, OSUBuildTest):
self.executable = os.path.join(
OSUBuildTest() .stagedir,
'mpi', 'pt2pt', 'osu_bw'
)
self.executable_opts = ['-x', '100', '-i', '1000']

@performance_function('MB/s")
def bandwidth(self):
return sn.extractsingle(r'24194304\s+(\S+) "',
self.stdout, 1, float)

@rfm.simple_test

class 0OSUAllreduceTest (0SUBenchmarkTestBase):
mpi_tasks = parameter(l << i for i in range(l, 5))
descr = 'OSU Allreduce test'

@run_after('init")
def set_num_tasks(self):
self.num_tasks = self.mpi_tasks

@require_deps
def set_executable(self, OSUBuildTest):
self.executable = os.path.join(
OSUBuildTest() .stagedir,
'mpi', 'collective', 'osu_allreduce'
)
self.executable_opts = ['-m', '8', '-x', "1000', '-i', '20000']

@performance_function('us')
def latency(self):
return sn.extractsingle(r'+8\s+(\S+)', self.stdout, 1, float)

@rfm.simple_test
class 0SUBuildTest(rfm.CompileOnlyRegressionTest):

(continues on next page)

76 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

descr = 'OSU benchmarks build test'
valid_systems = ['daint:gpu']
valid_prog_environs = ['gnu', 'nvidia', 'intel']
build_system = 'Autotools'

@run_after('init")
def inject_dependencies(self):
self.depends_on('0SUDownloadTest', udeps.fully)

@require_deps
def set_sourcedir(self, OSUDownloadTest):
self.sourcesdir = os.path.join(
OSUDownloadTest(part="login', environ='builtin').stagedir,
'osu-micro-benchmarks-5.6.2"

)

@run_before('compile')
def set_build_system_attrs(self):
self.build_system.max_concurrency = 8

@sanity_function
def validate_build(self):
return sn.assert_not_found('error', self.stderr)

@rfm.simple_test
class 0OSUDownloadTest(rfm.RunOnlyRegressionTest):
descr = 'OSU benchmarks download sources'
valid_systems = ['daint:login']
valid_prog_environs = ['builtin']
executable = 'wget'
executable_opts = [
'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.6.2.
—tar.gz' # noga: E501
]
postrun_cmds = [
'tar xzf osu-micro-benchmarks-5.6.2.tar.gz'

]

@sanity_function
def validate_download(self):
return sn.assert_true(os.path.exists('osu-micro-benchmarks-5.6.2"))

Notice that the order in which dependencies are defined in a test file is irrelevant. In this case, we define 0SUBuildTest
at the end. ReFrame will make sure to properly sort the tests and execute them.

Here is the output when running the OSU tests with the asynchronous execution policy:

./bin/reframe -c tutorials/deps/osu_benchmarks.py -r

[ReFrame Setup]
version: 4.0.0-dev.2

(continues on next page)

2.3. ReFrame Tutorials 77

ReFrame Documentation, Release 4.1.0

(continued from previous page)

command : './bin/reframe -c tutorials/deps/osu_benchmarks.py -r'
launched by: user@host
working directory: '/home/user/Devel/reframe’
settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’
check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'
stage directory: ' /home/user/Devel /reframe/stage’
output directory: '/home/user/Devel/reframe/output'’
log files: '/tmp/rfm-rla7vOw3.log’
[==========] Running 8 check(s)
[==========] Started on Tue Nov 15 18:24:00 2022
[---——————-] start processing checks
[RUN] OSUDownloadTest /7de668df @daint:login+builtin
[OK] (1/22) OSUDownloadTest /7de668df @daint:login+builtin
[RUN] OSUBuildTest /19b4fb56 @daint:gpu+gnu
[RUN] OSUBuildTest /19b4fb56 @daint:gpu+intel
[RUN] OSUBuildTest /19b4fb56 @daint:gpu+nvidia
[OK] (2/22) OSUBuildTest /19b4fb56 @daint:gpu+gnu
[RUN] OSUAllreduceTest %mpi_tasks=16 /7£033d39 @daint:gpu+gnu
[RUN] OSUAllreduceTest %mpi_tasks=8 /005fcal9d @daint:gpu+gnu
[RUN] OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+gnu
[RUN] OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+gnu
[RUN] OSUBandwidthTest /764cdbOb @daint:gpu+gnu
[RUN] OSULatencyTest /14f35a43 @daint:gpu+gnu
[OK] (3/22) OSUBuildTest /19b4fb56 @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=16 /7f033d39 @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=8 /005fcal9d @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+intel
[OK] (4/22) OSUBuildTest /19b4£fb56 @daint:gpu+nvidia
[RUN] OSUAllreduceTest %mpi_tasks=16 /7£033d39 @daint:gpu+nvidia
[RUN] OSUAllreduceTest %mpi_tasks=8 /005fcal9d @daint:gpu+nvidia
[RUN] OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+nvidia
[RUN] OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+intel
[RUN] OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+nvidia
[RUN] OSUBandwidthTest /764cdb®b @daint:gpu+intel
[RUN] OSUBandwidthTest /764cdb®b @daint:gpu+nvidia
[RUN] OSULatencyTest /14f35a43 @daint:gpu+intel
[RUN] OSULatencyTest /14f35a43 @daint:gpu+nvidia
[OK] (5/22) OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+gnu
P: latency: 5.31 us (r:0, 1l:None, u:None)
[OK] (6/22) OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+intel
P: latency: 10.07 us (r:0, 1l:None, u:None)
[OK] (7/22) OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+gnu
P: latency: 1.67 us (r:0, 1l:None, u:None)
[OK] (8/22) OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+intel
P: latency: 24.97 us (r:0, 1l:None, u:None)
[OK] (9/22) OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+nvidia
P: latency: 8.92 us (r:0, 1:None, u:None)
[OK] (10/22) OSUAllreduceTest %mpi_tasks=16 /7f033d39 @daint:gpu+intel
P: latency: 14.78 us (r:0, 1l:None, u:None)
[OK] (11/22) OSULatencyTest /14f35a43 @daint:gpu+nvidia
(continues on next page)
78 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

latency: 2.19 us (r:0, 1:None, u:None)

OK] (12/22) OSULatencyTest /14f35a43 @daint:gpu+gnu
latency: 1.76 us (r:0, 1l:None, u:None)

OK] (13/22) OSUAllreduceTest %mpi_tasks=16 /7£033d39 @daint:gpu+gnu
latency: 19.54 us (r:0, 1:None, u:None)

OK] (14/22) OSULatencyTest /14f35a43 @daint:gpu+intel
latency: 4.4 us (r:0, 1:None, u:None)

OK] (15/22) OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+nvidia
latency: 6.88 us (r:0, 1l:None, u:None)

OK] (16/22) OSUAllreduceTest %mpi_tasks=8 /005fcal9 @daint:gpu+intel
latency: 21.37 us (r:0, 1l:None, u:None)

OK] (17/22) OSUAllreduceTest %mpi_tasks=8 /005fcal9d @daint:gpu+gnu
latency: 10.15 us (r:0, 1:None, u:None)

OK] (18/22) OSUAllreduceTest %mpi_tasks=8 /005fcal9 @daint:gpu+nvidia
latency: 52.87 us (r:0, 1:None, u:None)

OK] (19/22) OSUAllreduceTest %mpi_tasks=16 /7f033d39 @daint:gpu+nvidia
latency: 64.77 us (r:0, 1l:None, u:None)

OK] (20/22) OSUBandwidthTest /764cdbOb @daint:gpu+intel
bandwidth: 9118.51 MB/s (r:0®, 1l:None, u:None)

OK] (21/22) OSUBandwidthTest /764cdb®b @daint:gpu+nvidia
bandwidth: 8476.18 MB/s (r:0, 1l:None, u:None)

OK] (22/22) OSUBandwidthTest /764cdb0®b @daint:gpu+gnu
bandwidth: 8326.06 MB/s (r:0®, 1l:None, u:None)
——————————] all spawned checks have finished

99— 99— 999" 99— v I9—m 9"/ d9— Y — Y

—

[PASSED 1] Ran 22/22 test case(s) from 8 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Tue Nov 15 18:27:13 2022

Run report saved in '/home/user/.reframe/reports/run-report-3.json'

Log file(s) saved in '/tmp/rfm-rla7vOw3.log'

Before starting running the tests, ReFrame topologically sorts them based on their dependencies and schedules them
for running using the selected execution policy. With the serial execution policy, ReFrame simply executes the tests
to completion as they “arrive,” since the tests are already topologically sorted. In the asynchronous execution policy,
tests are spawned and not waited for. If a test’s dependencies have not yet completed, it will not start its execution
immediately.

ReFrame’s runtime takes care of properly cleaning up the resources of the tests respecting dependencies. Normally
when an individual test finishes successfully, its stage directory is cleaned up. However, if other tests are depending
on this one, this would be catastrophic, since most probably the dependent tests would need the outcome of this test.
ReFrame fixes that by not cleaning up the stage directory of a test until all its dependent tests have finished successfully.

When selecting tests using the test filtering options, such as the -t, -n etc., ReFrame will automatically select any
dependencies of these tests as well. For example, if we select only the OSULatencyTest for running, ReFrame will
also select the 0SUBuildTest and the 0SUDownloadTest:

./bin/reframe -c tutorials/deps/osu_benchmarks.py -n OSULatencyTest -1

[ReFrame Setup]

version: 4.0.0-dev.2

command : './bin/reframe -c tutorials/deps/osu_benchmarks.py -n.
--0SULatencyTest -1'

launched by: user@host

working directory: '/home/user/Devel/reframe’

(continues on next page)

2.3. ReFrame Tutorials 79

ReFrame Documentation, Release 4.1.0

(continued from previous page)

settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’
check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'

stage directory: ' /home/user/Devel /reframe/stage’

output directory: '/home/user/Devel/reframe/output’

log files: '/tmp/rfm-7id7z75s.1og’

[List of matched checks]
- OSULatencyTest /14f35a43
AQOSUBuildTest /19b4fb56
AQSUDownloadTest /7de668df
Found 3 check(s)

Log file(s) saved in '/tmp/rfm-7id7z75s.log’

Finally, when ReFrame cannot resolve a dependency of a test, it will issue a warning and skip completely all the test
cases that recursively depend on this one. In the following example, we restrict the run of the OSULatencyTest to
the daint:gpu partition. This is problematic, since its dependencies cannot run on this partition and, particularly,
the OSUDownloadTest. As aresult, its immediate dependency OSUBuildTest will be skipped, which will eventually
cause all combinations of the OSULatencyTest to be skipped.

./bin/reframe -c tutorials/deps/osu_benchmarks.py --system=daint:gpu -n OSULatencyTest -1

[ReFrame Setup]

version: 4.0.0-dev.2

command : './bin/reframe -c tutorials/deps/osu_benchmarks.py -n.
—,0SULatencyTest --system=daint:gpu -1'

launched by: user@host

working directory: '/home/user/Devel/reframe’

settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’

check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'

stage directory: ' /home/user/Devel /reframe/stage’

output directory: '/home/user/Devel/reframe/output’

log files: '/tmp/rfm-12gjxnvc.log’

WARNING: could not resolve dependency: ('OSUBuildTest', 'daint:gpu', 'gnu') ->
— '0SUDownloadTest'
WARNING: could not resolve dependency: ('OSUBuildTest', 'daint:gpu', 'intel') ->
— '0SUDownloadTest"'
WARNING: could not resolve dependency: ('OSUBuildTest', 'daint:gpu', 'nvidia') ->
— '0SUDownloadTest'
WARNING: skipping all dependent test cases
- ('OSUBuildTest', 'daint:gpu', 'intel')
- ('OSUBandwidthTest', 'daint:gpu', 'intel')
- ('OSUBuildTest', 'daint:gpu', 'nvidia')
- ('OSULatencyTest', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_3', 'daint:gpu', 'nvidia')
- ('OSUBuildTest', 'daint:gpu', 'gnu')
- ('OSUAllreduceTest_1', 'daint:gpu', 'nvidia')
- ('OSUAllreduceTest_0', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_2', 'daint:gpu', 'nvidia')
- ('OSUBandwidthTest', 'daint:gpu', 'gnu')
- ('OSULatencyTest', 'daint:gpu', 'gnu')

(continues on next page)

80 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

- ('OSUAllreduceTest_2', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_3', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_1', 'daint:gpu', 'intel')
- ('OSUAllreduceTest_0', 'daint:gpu', 'nvidia')
- ('OSUBandwidthTest', 'daint:gpu', 'nvidia')

- ('OSULatencyTest', 'daint:gpu', 'nvidia')

- ('OSUAllreduceTest_2', 'daint:gpu', 'gnu')

- ('OSUAllreduceTest_1', 'daint:gpu', 'gnu')

- ('OSUAllreduceTest_3', 'daint:gpu', 'gnu')

- ('OSUAllreduceTest_0', 'daint:gpu', 'gnu')

[List of matched checks]
Found O check(s)

Log file(s) saved in '/tmp/rfm-12gjxnvc.log'

Listing Dependencies

As shown in the listing of OSULatencyTest before, the full dependency chain of the test is listed along with the test.
Each target dependency is printed in a new line prefixed by the # character and indented proportionally to its level. If
a target dependency appears in multiple paths, it will only be listed once.

The default test listing will list the dependencies at the test level or the conceptual dependencies. ReFrame generates
multiple test cases from each test depending on the target system configuration. We have seen in the Turorial 1: Getting
Started with ReFrame already how the STREAM benchmark generated many more test cases when it was run in a HPC
system with multiple partitions and programming environments. These are the actual depedencies and form the actual
test case graph that will be executed by the runtime. The mapping of a test to its concrete test cases that will be
executed on a system is called fest concretization. You can view the exact concretization of the selected tests with
--list=concretized or simply -1C. Here is how the OSU benchmarks of this tutorial are concretized on the system
daint:

./bin/reframe -c tutorials/deps/osu_benchmarks.py -1C

[ReFrame Setup]

version: 4.0.0-dev.2

command : './bin/reframe -c tutorials/deps/osu_benchmarks.py -1C'

launched by: user@host

working directory: '/home/user/Devel/reframe’

settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’
check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'

stage directory: ' /home/user/Devel /reframe/stage’

output directory: '/home/user/Devel/reframe/output’

log files: ' /tmp/rfm-fremrbwf.log'

[List of matched checks]
- OSUAllreduceTest %mpi_tasks=16 /7£033d39 @daint:gpu+gnu
AOSUBuildTest /19b4fb56 @daint:gpu+gnu
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=16 /7f033d39 @daint:gpu+intel
AQOSUBuildTest /19b4fb56 @daint:gpu+intel
AOSUDownloadTest /7de668df @daint:login+builtin

(continues on next page)

2.3. ReFrame Tutorials 81

ReFrame Documentation, Release 4.1.0

(continued from previous page)

- OSUAllreduceTest %mpi_tasks=16 /7f033d39 @daint:gpu+nvidia
AOSUBuildTest /19b4fb56 @daint:gpu+nvidia
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=8 /005fcal9 @daint:gpu+gnu
AQOSUBuildTest /19b4fb56 @daint:gpu+gnu
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=8 /005fcal9 @daint:gpu+intel
AOSUBuildTest /19b4fb56 @daint:gpu+intel
AQOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=8 /005fcal9 @daint:gpu+nvidia
AQOSUBuildTest /19b4fb56 @daint:gpu+nvidia
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+gnu
AOSUBuildTest /19b4fb56 @daint:gpu+gnu
AQOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+intel
AQOSUBuildTest /19b4fb56 @daint:gpu+intel
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=4 /84b85d90 @daint:gpu+nvidia
AOSUBuildTest /19b4£fb56 @daint:gpu+nvidia
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+gnu
AOSUBuildTest /19b4fb56 @daint:gpu+gnu
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+intel
AQOSUBuildTest /19b4fb56 @daint:gpu+intel
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUAllreduceTest %mpi_tasks=2 /9d550c4f @daint:gpu+nvidia
AOSUBuildTest /19b4fb56 @daint:gpu+nvidia
AQOSUDownloadTest /7de668df @daint:login+builtin
- OSUBandwidthTest /764cdb®b @daint:gpu+gnu
AQOSUBuildTest /19b4fb56 @daint:gpu+gnu
AOSUDownloadTest /7de668df @daint:login+builtin
- OSUBandwidthTest /764cdb®b @daint:gpu+intel
AOSUBuildTest /19b4fb56 @daint:gpu+intel
AQOSUDownloadTest /7de668df @daint:login+builtin
- OSUBandwidthTest /764cdb®b @daint:gpu+nvidia
AQOSUBuildTest /19b4fb56 @daint:gpu+nvidia
AOSUDownloadTest /7de668df @daint:login+builtin
- OSULatencyTest /14f35a43 @daint:gpu+gnu
AOSUBuildTest /19b4£fb56 @daint:gpu+gnu
AOSUDownloadTest /7de668df @daint:login+builtin
- OSULatencyTest /14f35a43 @daint:gpu+intel
AQOSUBuildTest /19b4fb56 @daint:gpu+intel
AOSUDownloadTest /7de668df @daint:login+builtin
- OSULatencyTest /14f35a43 @daint:gpu+nvidia
AQSUBuildTest /19b4fb56 @daint:gpu+nvidia
AOSUDownloadTest /7de668df @daint:login+builtin
Concretized 22 test case(s)

Log file(s) saved in '/tmp/rfm-fremrbwf.log'

Notice how the various test cases of the run benchmarks depend on the corresponding test cases of the build tests.

82 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

The concretization of test cases changes if a specifc partition or programming environment is passed from the command
line or, of course, if the test is run on a different system. If we scope our programming environments to gnuand builtin
only, ReFrame will generate 8 test cases only instead of 22:

Note: If we do not select the builtin environment, we will end up with a dangling dependency as in the example
above and ReFrame will skip all the dependent test cases.

./bin/reframe -c tutorials/deps/osu_benchmarks.py -n OSULatencyTest -L -p builtin -p gnu

[ReFrame Setup]

version: 4.0.0-dev.2

command : './bin/reframe -c tutorials/deps/osu_benchmarks.py -n.
—0SULatencyTest -L -p builtin -p gnu'

launched by: user@host

working directory: '/home/user/Devel/reframe’

settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’

check search path: '/home/user/Devel/reframe/tutorials/deps/osu_benchmarks.py'

stage directory: ' /home/user/Devel /reframe/stage’

output directory: '/home/user/Devel/reframe/output'’

log files: ' /tmp/rfm-7hnco47r.log’

[List of matched checks]
- OSULatencyTest /14f35a43 [variant: 0, file: '/home/user/Devel/reframe/tutorials/deps/
—»osu_benchmarks.py']

AQSUBuildTest /19b4fb56 [variant: O, file: '/home/user/Devel/reframe/tutorials/deps/
—osu_benchmarks.py']

AQSUDownloadTest /7de668df [variant: O, file: '/home/user/Devel/reframe/tutorials/

—deps/osu_benchmarks.py"']
Found 3 check(s)

Log file(s) saved in '/tmp/rfm-7hnco47r.log'

To gain a deeper understanding on how test dependencies work in Reframe, please refer to How Test Dependencies
Work In ReFrame.

Depending on Parameterized Tests

As shown earlier in this section, tests define their dependencies by referencing the target tests by their unique name. This
is straightforward when referring to regular tests, where their name matches the class name, but it becomes cumbersome
trying to refer to a parameterized tests, since no safe assumption should be made as of the variant number of the test or
how the parameters are encoded in the name. In order to safely and reliably refer to a parameterized test, you should
use the get_variant_nums () and variant_name () class methods as shown in the following example:

Copyright 2016-2022 Swiss National Supercomputing Centre (CSCS/ETH Zurich)
ReFrame Project Developers. See the top-level LICENSE file for details.

#

SPDX-License-Identifier: BSD-3-Clause

import reframe as rfm
import reframe.utility.sanity as sn

(continues on next page)

2.3. ReFrame Tutorials 83

ReFrame Documentation, Release 4.1.0

(continued from previous page)

@rfm.simple_test

class TestA(rfm.RunOnlyRegressionTest):
z = parameter (range(10))
executable = 'echo'
valid_systems = ['*']
valid_prog_environs = ['*']

@run_after('init')
def set_exec_opts(self):
self.executable_opts = [str(self.z)]

@sanity_function
def validate(self):
return sn.assert_eq(
sn.extractsingle(r'\d+', self.stdout, 0, int), self.z

)

@rfm.simple_test

class TestB(rfm.RunOnlyRegressionTest):
executable = 'echo'
valid_systems = ['*']
valid_prog_environs = ['*']
sanity_patterns = sn.assert_true(l)

@run_after('init")
def setdeps(self):
variants = TestA.get_variant_nums(z=lambda x: x > 5)
for v in variants:
self.depends_on(TestA.variant_name(v))

In this example, TestB depends only on selected variants of TestA. The get_variant_nums() method accepts a
set of key-value pairs representing the target test parameters and selector functions and returns the list of the variant
numbers that correspond to these variants. Using the variant_name () subsequently, we can get the actual name of
the variant.

./bin/reframe -c tutorials/deps/parameterized.py -1

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7a6

command : './bin/reframe -c tutorials/deps/parameterized.py -1'

launched by: user@host

working directory: '/home/user/Repositories/reframe’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/deps/parameterized.py’

stage directory: ' /home/user/Repositories/reframe/stage’

output directory: '/home/user/Repositories/reframe/output’

log files: '/var/folders/h7/k7cgrdl13r996m4dmsv;jq7v80000gp/T/rfm-u9ryq5d3.1log’

[List of matched checks]

(continues on next page)

84 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

- TestB /cc291487
ATestA %z=9 /034f091a
ATestA %z=8 /a093d19f
ATestA %z=7 /77b4b8eb
ATestA %z=6 /40ced759

- TestA %z=5 /aalOcffc9

- TestA %z=4 /83cd5dec

- TestA %z=3 /1c51609b

- TestA %z=2 /707b752c

- TestA %z=1 /c65657d5

- TestA %z=0 /1b9f44df

Found 11 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996mddmsvjq7v80000gp/T/rim-u9ryq5d3.log’

2.3.4 Tutorial 4: Using Test Fixtures

New in version 3.9.0.

A fixture in ReFrame is a test that manages a resource of another test. Fixtures can be chained to create essentially a
graph of dependencies. Similarly to test dependencies, the test that uses the fixture will not execute until its fixture has
executed. In this tutorial, we will rewrite the OSU benchmarks example presented in Tutorial 3: Using Dependencies
in ReFrame Tests using fixtures. We will cover only the basic concepts of fixtures that will allow you to start using them
in your tests. For the full documentation of the test fixtures, you should refer to the Test API Reference documentation.

The full example of the OSU benchmarks using test fixtures is shown below with the relevant parts highlighted:

import reframe as rfm
import reframe.utility.sanity as sn

class fetch_osu_benchmarks (rfm.RunOnlyRegressionTest):

descr = 'Fetch OSU benchmarks'

version = variable(str, value='5.6.2")

executable = 'wget'

executable_opts = [

f'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-

—{version}.tar.gz' # noga: E501

]

local = True

@sanity_function
def validate_download(self):
return sn.assert_eq(self.job.exitcode, 0)

class build_osu_benchmarks (rfm.CompileOnlyRegressionTest):
descr = 'Build OSU benchmarks'
build_system = 'Autotools'
build_prefix = variable(str)
osu_benchmarks = fixture(fetch_osu_benchmarks, scope='session')

(continues on next page)

2.3. ReFrame Tutorials 85

ReFrame Documentation, Release 4.1.0

(continued from previous page)

@run_before('compile')

def prepare_build(self):
tarball = f'osu-micro-benchmarks-{self.osu_benchmarks.version/.tar.gz'
self.build_prefix = tarball[:-7] # remove .tar.gz extension

fullpath = os.path.join(self.osu_benchmarks.stagedir, tarball)
self.prebuild_cmds = [

f'cp {fullpath} {self.stagedir}"',

f'tar xzf {tarball}',

f'cd {self.build_prefix}'
]

self.build_system.max_concurrency = 8

@sanity_function

def validate_build(self):
If compilation fails, the test would fail in any case, so nothing to
further validate here.
return True

class OSUBenchmarkTestBase(rfm.RunOnlyRegressionTest):
"Base class of OSU benchmarks runtime tests'

valid_systems = ['daint:gpu']

valid_prog_environs = ['gnu', 'nvidia', 'intel']

num_tasks = 2

num_tasks_per_node = 1

osu_binaries = fixture(build_osu_benchmarks, scope='environment')

@sanity_function
def validate_test(self):
return sn.assert_found(r'28', self.stdout)

@rfm.simple_test
class osu_latency_test(0SUBenchmarkTestBase):
descr = 'OSU latency test'

@run_before('run')
def prepare_run(self):
self.executable = os.path. join(
self.osu_binaries.stagedir,
self.osu_binaries.build_prefix,
'mpi', 'pt2pt', 'osu_latency'
)
self.executable_opts = ['-x", "100', '-i', "1000']

@performance_function('us')
def latency(self):
return sn.extractsingle(r'A8\s+(\S+)', self.stdout, 1, float)

(continues on next page)

86 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

@rfm.simple_test
class osu_bandwidth_test (0SUBenchmarkTestBase):
descr = '0OSU bandwidth test'

@run_before('run')
def prepare_run(self):
self.executable = os.path.join(
self.osu_binaries.stagedir,
self.osu_binaries.build_prefix,
'mpi', 'pt2pt', 'osu_bw'
)
self.executable_opts = ['-x', '"100', '-i', '1000']

@performance_function('MB/s")
def bandwidth(self):
return sn.extractsingle(r'24194304\s+(\S+)"',
self.stdout, 1, float)

@rfm.simple_test

class osu_allreduce_test(0SUBenchmarkTestBase):
mpi_tasks = parameter(l << i for i in range(l, 5))
descr = '0OSU Allreduce test'

@run_before('run')
def set_executable(self):
self.num_tasks = self.mpi_tasks
self.executable = os.path.join(
self.osu_binaries.stagedir,
self.osu_binaries.build_prefix,

mpi', 'collective', 'osu_allreduce'

)
self.executable_opts = ['-m', '8', '-x', "1000', '-i', '20000']

@performance_function('us')
def latency(self):
return sn.extractsingle(r'28\s+(\S+)', self.stdout, 1, float)

Let’s start from the Ileaf tests, i.e. the tests that execute the benchmarks (osu_latency_test,
osu_bandwidth_test and osu_allreduce_test). As in the dependencies example, all these tests derive
from the OSUBenchmarkTestBase, where we define a fixture that will take care of generating the binaries of the tests:

osu_binaries = fixture(build_osu_benchmarks, scope='environment')

A test defines a fixture using the fixture() builtin and assigns it a name by assigning the return value of the builtin
to a test variable, here osu_binaries. This name will be used later to access the resource managed by the fixture.

As stated previously, a fixture is another full-fledged ReFrame test, here the build_osu_benchmarks which will take
care of building the OSU benchmarks. Each fixture is associated with a scope. This practically indicates at which
level a fixture is shared with other tests. There are four fixture scopes, which are listed below in decreasing order of
generality:

* session: A fixture with this scope will be executed once per ReFrame run session and will be shared across the
whole run.

2.3. ReFrame Tutorials 87

ReFrame Documentation, Release 4.1.0

e partition: A fixture with this scope will be executed once per partition and will be shared across all tests that
run in that partition.

* environment: A fixture with this scope will be executed once per partition and environment combination and
will be shared across all tests that run with this partition and environment combination.

* test: A fixture with this scope is private to the test and will be executed for each test case.

In this example, we need to build once the OSU benchmarks for each partition and environment combination, so we
use the environment scope.

Accessing the fixture is very straightforward. The fixture’s result is accessible after the serup pipeline stage through
the corresponding variable in the test that is defining it. Since a fixture is a standard ReFrame test, you can access any
information of the test. The individual benchmarks do exactly that:

@run_before('run')
def prepare_run(self):
self.executable = os.path.join(
self.osu_binaries.stagedir,
self.osu_binaries.build_prefix,
'mpi', 'pt2pt', 'osu_latency'
)
self.executable_opts = ['-x', '"100', '-i', '1000']

Here we construct the final executable path by accessing the standard stagedir attribute of the test as well as the
custom-defined build_prefix variable of the build_osu_benchmarks fixture.

Let’s inspect now the build_osu_benchmarks fixture:

class build_osu_benchmarks (rfm.CompileOnlyRegressionTest):
descr = 'Build OSU benchmarks'
build_system = 'Autotools'
build_prefix = variable(str)
osu_benchmarks = fixture(fetch_osu_benchmarks, scope='session')

@run_before('compile')

def prepare_build(self):
tarball = f'osu-micro-benchmarks-{self.osu_benchmarks.version}.tar.gz'
self.build_prefix = tarball[:-7] # remove .tar.gz extension

fullpath = os.path.join(self.osu_benchmarks.stagedir, tarball)
self.prebuild_cmds = [

f'cp {fullpath} {self.stagedir}',

f'tar xzf {tarball}',

f'cd {self.build_prefix}'
]

self.build_system.max_concurrency = 8

@sanity_function

def validate_build(self):
If compilation fails, the test would fail in any case, so nothing to
further validate here.
return True

It is obvious that it is a normal ReFrame test except that it does not need to be decorated with the @simple_test
decorator. This means that the test will only be executed if it is a fixture of another test. If it was decorated, it would
be executed both as a standalone test and as a fixture of another test. Another detail is that this test does not define the

88 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

valid_systems and valid_prog_environs variables. Fixtures inherit those variables from the test that owns them
depending on the scope.

Similarly to OSUBenchmarkTestBase, this test uses a fixture that fetches the OSU benchmarks sources. We could
fetch the OSU benchmarks in this test, but we choose to separate the two primarily for demonstration purposes, but it
would also make sense in cases that the data fetch is too slow.

The osu_benchmarks fixture is defined at session scope, since we only need to download the benchmarks once for the
whole session:

osu_benchmarks = fixture(fetch_osu_benchmarks, scope='session')

The rest of the test is very straightforward.

Let’s inspect the last fixture, the fetch_osu_benchmarks:

class fetch_osu_benchmarks(rfm.RunOnlyRegressionTest):

descr = 'Fetch OSU benchmarks'

version = variable(str, value='5.6.2")

executable = 'wget'

executable_opts = [

f'http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-

—{version}.tar.gz' # noga: E501

]

local = True

@sanity_function
def validate_download(self):
return sn.assert_eq(self.job.exitcode, 0)

There is nothing special to this test — it is just an ordinary test — except that we force it to execute locally by setting
its Iocal variable. The reason for that is that a fixture at session scope can execute with any partition/environment
combination, so ReFrame could have to spawn a job in case it has chosen a remote partition to launch this fixture on.
For this reason, we simply force it to execute locally regardless of the chosen partition.

It is now time to run the new tests, but let us first list them:

reframe -c tutorials/fixtures/osu_benchmarks.py -1

[ReFrame Setup]

version: 4.0.0-dev.2

command : './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -1'
launched by: user@host

working directory: '/home/user/Devel/reframe’

settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’
check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'
stage directory: ' /home/user/Devel /reframe/stage’

output directory: '/home/user/Devel/reframe/output'’

log files: '/tmp/rfm-to7wad4gh.log’

[List of matched checks]
- osu_allreduce_test %mpi_tasks=16 /1fe48834
Abuild_osu_benchmarks ~daint:gpu+gnu /£3269d42
Arfetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+intel /4d450880

(continues on next page)

2.3. ReFrame Tutorials 89

ReFrame Documentation, Release 4.1.0

(continued from previous page)

Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+nvidia /e9b8d152
Afetch_osu_benchmarks ~daint /79cd6023
- osu_allreduce_test %mpi_tasks=8 /ae®lcl37
Abuild_osu_benchmarks ~daint:gpu+gnu /£3269d42
Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+intel /4d450880
Arfetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+nvidia /e9b8d152
Afetch_osu_benchmarks ~daint /79cd6023
- osu_allreduce_test %mpi_tasks=4 /2129dc34
Abuild_osu_benchmarks ~daint:gpu+gnu /£3269d42
rfetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+intel /4d450880
Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+nvidia /e9b8d152
Afetch_osu_benchmarks ~daint /79cd6023
- osu_allreduce_test %mpi_tasks=2 /9£f29c081
Abuild_osu_benchmarks ~daint:gpu+gnu /£3269d42
Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+intel /4d450880
Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+nvidia /e9b8d152
rfetch_osu_benchmarks ~daint /79cd6023
- osu_bandwidth_test /026711al
Abuild_osu_benchmarks ~daint:gpu+gnu /£3269d42
Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+intel /4d450880
Arfetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+nvidia /e9b8d152
Afetch_osu_benchmarks ~daint /79cd6023
- osu_latency_test /d2c978ad
Abuild_osu_benchmarks ~daint:gpu+gnu /£3269d42
Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+intel /4d450880
Afetch_osu_benchmarks ~daint /79cd6023
Abuild_osu_benchmarks ~daint:gpu+nvidia /e9b8d152
Afetch_osu_benchmarks ~daint /79cd6023
Found 6 check(s)

Log file(s) saved in '/tmp/rfm-to7wa4gh.log’

Notice how the build_osu_benchmarks fixture is populated three times, once for each partition and environment
combination, and the fetch_osu_benchmarks is generated only once. The following figure shows visually the con-
ceptual dependencies of the osu_bandwidth_test

Fig- I: Expanded fixtures and dependencies for the OSU benchmarks example.

A scope part is added to the base name of the fixture, which in this figure is indicated with red color.

Under the hood, fixtures use the test dependency mechanism which is described in How Test Dependencies Work In
ReFrame. The dependencies listed by default and shown in the previous figure are conceptual. Depending on the

90 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

available partitions and environments, tests and fixtures can be concretized differently. Fixtures in particular are also
more flexible in the way they can be concretized depending on their scope. The following listing and figure show the
concretization of the osu_bandwidth_test:

reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_bandwidth_test -1C

[ReFrame Setup]

version: 4.0.0-dev.2

command : './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_
—bandwidth_test -1C'

launched by: user@host

working directory: '/home/user/Devel/reframe’

settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’

check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'

stage directory: ' /home/user/Devel /reframe/stage’

output directory: '/home/user/Devel/reframe/output'’

log files: '/tmp/rfm-mlw2t4eh.log’

[List of matched checks]
- osu_bandwidth_test /026711lal @daint:gpu+gnu
Abuild_osu_benchmarks ~daint:gpu+gnu /£3269d42 @daint:gpu+gnu
Afetch_osu_benchmarks ~daint /79cd6023 @daint:gpu+gnu
- osu_bandwidth_test /02671lal @daint:gpu+intel
Abuild_osu_benchmarks ~daint:gpu+intel /4d450880 @daint:gpu+intel
Afetch_osu_benchmarks ~daint /79cd6023 @daint:gpu+gnu
- osu_bandwidth_test /02671lal @daint:gpu+nvidia
Abuild_osu_benchmarks ~daint:gpu+nvidia /e9b8d152 @daint:gpu+nvidia
Afetch_osu_benchmarks ~daint /79cd6023 @daint:gpu+gnu
Concretized 7 test case(s)

Log file(s) saved in '/tmp/rfm-mlw2t4eh.log'

Fig- 2: The actual dependencies for the OSU benchmarks example using fixtures.

The first thing to notice here is how the individual test cases of osu_bandwidth_test depend only the specific
fixtures for their scope: when osu_bandwidth_test runs on the daint:gpu partition using the gnu compiler it
will only depend on the build_osu_benchmarks~daint:gpu+gnu fixture. The second thing to notice is where the
fetch_osu_benchmarks~daint fixture will run. Since this is a session fixture, ReFrame has arbitrarily chosen to
run it on daint: gpu using the gnu environment. A session fixture can run on any combination of valid partitions and
environments. The following listing and figure show how the test dependency DAG is concretized when we scope the
valid programming environments from the command line using -p nvidia.

reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_bandwidth_test -1C -p nvidia

[ReFrame Setup]

version: 3.10.0-dev.3+605af31a

command : './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -n osu_
—bandwidth_test -1C -p nvidia'

launched by: user@host

working directory: '/home/user/Devel/reframe’

settings file: ' /home/user/Devel /reframe/tutorials/config/settings.py'

check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'

(continues on next page)

2.3. ReFrame Tutorials 91

ReFrame Documentation, Release 4.1.0

(continued from previous page)

stage directory: ' /home/user/Devel /reframe/stage’
output directory: '/home/user/Devel/reframe/output'’

[List of matched checks]
- osu_bandwidth_test @daint:gpu+nvidia
Abuild_osu_benchmarks ~daint:gpu+nvidia @daint:gpu+nvidia
Afetch_osu_benchmarks ~daint @daint:gpu+nvidia
Concretized 3 test case(s)

Log file(s) saved in '/tmp/rfm-dnfdagj8.log'

F ig- 3 The dependency graph concretized for the ‘nvidia’ environment only.

Notice how the fetch_osu_benchmarks~daint fixture is selected to run in the only valid partition/environment
combination. This is an important difference compared to the same example written using raw dependencies in How
Test Dependencies Work In ReFrame, in which case in order not to have unresolved dependencies, we would need to
specify the valid programming environment of the test that fetches the sources. Fixtures do not need that, since you
can impose less strict constraints by setting their scope accordingly.

Finally, let’s run all the benchmarks at once:

[ReFrame Setup]

version: 4.0.0-dev.2
command : './bin/reframe -c tutorials/fixtures/osu_benchmarks.py -r'
launched by: user@host
working directory: '/home/user/Devel/reframe’
settings files: '<builtin>', '/home/user/Devel/reframe/tutorials/config/daint.py’
check search path: '/home/user/Devel/reframe/tutorials/fixtures/osu_benchmarks.py'
stage directory: ' /home/user/Devel /reframe/stage’
output directory: '/home/user/Devel/reframe/output’
log files: '/tmp/rfm-631lwmv4b.log’
[==========] Running 10 check(s)
[==========] Started on Tue Nov 15 18:27:17 2022
[---—=-----] start processing checks
[RUN] fetch_osu_benchmarks ~daint /79cd6023 @daint:gpu+gnu
[OK] (1/22) fetch_osu_benchmarks ~daint /79cd6023 @daint:gpu+gnu
[RUN] build_osu_benchmarks ~daint:gpu+gnu /£3269d42 @daint:gpu+gnu
[RUN] build_osu_benchmarks ~daint:gpu+intel /4d450880 @daint:gpu+intel
[RUN] build_osu_benchmarks ~daint:gpu+nvidia /e9b8d152 @daint:gpu+nvidia
[OK] (2/22) build_osu_benchmarks ~daint:gpu+gnu /£3269d42 @daint:gpu+gnu
[RUN] osu_allreduce_test %mpi_tasks=16 /1fe48834 @daint:gpu+gnu
[RUN] osu_allreduce_test %mpi_tasks=8 /ae®lcl37 @daint:gpu+gnu
[RUN] osu_allreduce_test %mpi_tasks=4 /2129dc34 @daint:gpu+gnu
[RUN] osu_allreduce_test %mpi_tasks=2 /9£29c081 @daint:gpu+gnu
[RUN] osu_bandwidth_test /026711lal @daint:gpu+gnu
[RUN] osu_latency_test /d2c978ad @daint:gpu+gnu
[OK] (3/22) build_osu_benchmarks ~daint:gpu+intel /4d450880 @daint:gpu+intel
[OK] (4/22) build_osu_benchmarks ~daint:gpu+nvidia /e9b8d152 @daint:gpu+nvidia
[RUN] osu_allreduce_test %mpi_tasks=16 /1fe48834 @daint:gpu+intel

(continues on next page)

92 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

OK

9r—"9r—vr—"9m 99— 9Id9—m" I I, I "IV I, Y9 "IV I9Um Y9 "YU/

L I e |

latency:
latency:
latency:
latency:
latency:
latency:
latency:
latency:
latency:
latency:
latency:
latency:
latency:
latency:

latency:

osu_allreduce_test
osu_allreduce_test
osu_allreduce_test
osu_allreduce_test
osu_allreduce_test
osu_allreduce_test
osu_allreduce_test
osu_bandwidth_test
osu_bandwidth_test

[N Ty S N TN N S SN)

%mpi_tasks=16 /1fe48834 @daint:gpu+nvidia

%mpi_tasks=8 /ae®lcl37 @daint
%mpi_tasks=8 /ae®lcl37 @daint
%mpi_tasks=4 /2129dc34 @daint
%mpi_tasks=4 /2129dc34 @daint
%mpi_tasks=2 /9£29c081 @daint
%mpi_tasks=2 /9£29c081 @daint
/026711al @daint:gpu+intel
/026711al @daint:gpu+nvidia

osu_latency_test /d2c978ad @daint:gpu+intel
osu_latency_test /d2c978ad @daint:gpu+nvidia

:gpu+intel
:gpu+nvidia
:gpu+intel
:gpu+nvidia
:gpu+intel
:gpu+nvidia

] (5/22) osu_allreduce_test %mpi_tasks=2 /9f29c081 @daint:gpu+gnu
2.76 us (r:0, 1:None, u:None)
] (6/22) osu_allreduce_test %mpi_tasks=2 /9f29c081 @daint:gpu+intel
1.68 us (r:0, 1l:None, u:None)
1 (7/22) osu_allreduce_test %mpi_tasks=4 /2129dc34 @daint:gpu+intel
4.89 us (r:0, 1l:None, u:None)
1 (8/22) osu_latency_test /d2c978ad @daint:gpu+intel
1.54 us (r:0, 1:None, u:None)

1 (9/22) osu_latency_test /d2c978ad @daint:gpu+gnu

1.17 us (r:0, 1l:None, u:None)
] (10/22) osu_allreduce_test %mpi_tasks=4 /2129dc34 @daint:gpu+gnu
3.22 us (r:0, l:None, u:None)
] (11/22) osu_allreduce_test %mpi_tasks=16 /1fe48834 @daint:gpu+gnu
13.84 us (r:0, 1l:None, u:None)
1 (12/22) osu_allreduce_test %mpi_tasks=16 /1fe48834 @daint:gpu+nvidia
30.77 us (r:0, 1l:None, u:None)
1 (13/22) osu_allreduce_test %mpi_tasks=4 /2129dc34 @daint:gpu+nvidia
5.74 us (r:0, 1l:None, u:None)
] (14/22) osu_allreduce_test %mpi_tasks=16 /1fe48834 @daint:gpu+intel
14.77 us (r:9, 1:None, u:None)
1 (15/22) osu_allreduce_test %mpi_tasks=2 /9f29c081 @daint:gpu+nvidia
4.5 us (r:0, 1:None, u:None)
] (16/22) osu_allreduce_test %mpi_tasks=8 /ae0®lcl137 @daint:gpu+nvidia
33.93 us (r:0, 1l:None, u:None)
1 (17/22) osu_allreduce_test %mpi_tasks=8 /ae0®lcl37 @daint:gpu+intel
20.9 us (r:0, 1l:None, u:None)
] (18/22) osu_latency_test /d2c978ad @daint:gpu+nvidia
1.18 us (r:0, 1:None, u:None)
] (19/22) osu_allreduce_test %mpi_tasks=8 /ae0®lc137 @daint:gpu+gnu
10.14 us (r:0, 1l:None, u:None)
1 (20/22) osu_bandwidth_test /02671lal @daint:gpu+gnu

] all spawned checks

bandwidth: 9785.43 MB/s (r:0, 1:None, u:None)
OK] (21/22) osu_bandwidth_test /026711al @daint:gpu+intel
bandwidth: 9841.26 MB/s (r:®, 1:None, u:None)
OK] (22/22) osu_bandwidth_test /026711lal @daint:gpu+nvidia
bandwidth: 9824.01 MB/s (r:0, 1l:None, u:None)

have finished

] Finished on Tue Nov 15 18:30:34 2022
Run report saved in '/home/user/.reframe/reports/run-report-4.json'

PASSED] Ran 22/22 test case(s) from 10 check(s) (0 failure(s), 0 skipped)

(continues on next page)

2.3. ReFrame Tutorials

93

ReFrame Documentation, Release 4.1.0

(continued from previous page)

Log file(s) saved in '/tmp/rfm-631wmv4b.log'

Tip: A reasonable question is how to choose between fixtures and dependencies?

The rule of thumb is use fixtures if your test needs to use any resource of the target test and use dependencies if you
simply want to impose an order of execution for your tests.

2.3.5 Tutorial 5: Using Build Automation Tools As a Build System

In this tutorial we will present how to use Easybuild and Spack as a build system for a ReFrame test. The example
uses the configuration file presented in Tutorial 1: Getting Started with ReFrame, which you can find in tutorials/
config/settings.py. We also assume that the reader is already familiar with the concepts presented in the basic
tutorial and has a working knowledge of EasyBuild and Spack.

Using EasyBuild to Build the Test Code

New in version 3.5.0.

Let’s consider a simple ReFrame test that installs bzip2-1.0. 6 given the easyconfig bzip2-1.0.6.eb and checks that the
installed version is correct. The following code block shows the check, highlighting the lines specific to this tutorial:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class BZip2EBCheck(rfm.RegressionTest):
descr = 'Demo test using EasyBuild to build the test code’
valid_systems = ['*']
valid_prog_environs = ['builtin']
executable = 'bzip2'
executable_opts = ['--help']
build_system = 'EasyBuild'

@run_before('compile')

def setup_build_system(self):
self.build_system.easyconfigs = ['bzip2-1.0.6.eb"]
self.build_system.options = ['-f']

@run_before('run')
def prepare_run(self):
self.modules = self.build_system.generated_modules

@sanity_function
def assert_version(self):
return sn.assert_found(r'Version 1.0.6', self.stderr)

The test looks pretty standard except for the highlighted blocks. Let’s have a look first to the block in the BZip2Check
class.

94 Chapter 2. Webinars

https://easybuild.io/
https://spack.io/
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/b/bzip2/bzip2-1.0.6.eb

ReFrame Documentation, Release 4.1.0

The first thing is to specify that the EasyBuild build system will be used. This is done by setting build_system to
'EasyBuild'. Then, the software to be installed is passed as a list to easyconfigs. Here only one easyconfig is
given, but more than one can be passed. Finally, through options, command line options can be passed to the eb
executable. In this test we pass -f to make sure that bzip2 will be built even if the module already exists externally.

For this test, ReFrame generates the following command to build and install the easyconfig:

export EASYBUILD_BUILDPATH={stagedir}/easybuild/build
export EASYBUILD_INSTALLPATH={stagedir}/easybuild
export EASYBUILD_PREFIX={stagedir}/easybuild

export EASYBUILD_SOURCEPATH={stagedir}/easybuild

eb bzip2-1.0.6.eb -f

ReFrame will keep all the files generated by EasyBuild (sources, temporary files, installed software and the correspond-
ing modules) under the test’s stage directory. For this reason it sets the relevant EasyBuild environment variables.

Tip: Users may set the EasyBuild prefix to a different location by setting the prefix attribute of the build system.
This allows you to have the built software installed upon successful completion of the build phase, but if the test fails
in a later stage (sanity, performance), the installed software will not be cleaned up automatically.

Note: ReFrame assumes that the eb executable is available on the system where the compilation is run (typically the
local host where ReFrame is executed).

Now that we know everything related to building and installing the code, we can move to the part dealing with running
it. To run the code, the generated modules need to be loaded in order to make the software available. The modules can
be accessed through generated_modules, however, they are available only after EasyBuild completes the installation.
This means that modules can be set only after the build phase finishes. For that, we can set modules in a class method
wrapped by the run_before () built-in, specifying the run phase. This test will then run the following commands:

module load bzip/1.0.6
bzip2 --help

Packaging the installation

The EasyBuild build system offers a way of packaging the installation via EasyBuild’s packaging support. To use this
feature, the FPM package manager must be available. By setting the dictionary package_opts in the test, ReFrame
will pass --package-{key}={val} to the EasyBuild invocation. For instance, the following can be set to package
the installations as an rpm file:

self.keep_files = ['easybuild/packages']
self.build_system.package_opts = {

"type': 'rpm',
}

The packages are generated by EasyBuild in the stage directory. To retain them after the test succeeds, keep_files
needs to be set.

2.3. ReFrame Tutorials 95

https://fpm.readthedocs.io/en/latest/

ReFrame Documentation, Release 4.1.0

Using Spack to Build the Test Code

New in version 3.6.1.

This example is the equivalent to the previous one, except that it uses Spack to build bzip2. Here is the test’s code:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class BZip2SpackCheck(rfm.RegressionTest):
descr = 'Demo test using Spack to build the test code'
valid_systems = ['*']
valid_prog_environs = ['builtin']
executable = 'bzip2'
executable_opts = ['--help']
build_system = 'Spack'

@run_before('compile')
def setup_build_system(self):
self.build_system.specs = ['bzip2@1.0.6"]

@sanity_function
def assert_version(self):
return sn.assert_found(r'Version 1.0.6', self.stderr)

When build_system is set to 'Spack', ReFrame will leverage Spack environments in order to build the test code.
By default, ReFrame will create a new Spack environment in the test’s stage directory and add the requested specs to
it.

Note: Optional spec attributes, such as target and os, should be specified in specs and not as install options in
install_opts.

Users may also specify an existing Spack environment by setting the environment attribute. In this case, ReFrame
treats the environment as a fest resource so it expects to find it under the test’s sourcesdir, which defaults to 'src"'.

As with every other test, ReFrame will copy the test’s resources to its stage directory before building it. ReFrame will
then activate the generated environment (either the one provided by the user or the one generated by ReFrame), add
the given specs using the spack add command and, finally, install the packages in the environment. Here is what
ReFrame generates as a build script for this example:

spack env create -d rfm_spack_env

spack -e rfm_spack_env config add "config:install_tree:root:opt/spack”
spack -e rfm_spack_env add bzip2@1.0.6

spack -e rfm_spack_env install

As you might have noticed ReFrame expects that Spack is already installed on the system. The packages specified
in the environment and the tests will be installed in the test’s stage directory, where the environment is copied before
building. Here is the stage directory structure:

stage/generic/default/builtin/BZip2SpackCheck/
rfm_spack_env

— spack

(continues on next page)

96 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

L— opt
L— spack
bin
darwin-catalina-skylake
spack.lock
spack.yaml

—— rfm_BZip2SpackCheck_build.err
—— rfm_BZip2SpackCheck_build.out
—— rfm_BZip2SpackCheck_build.sh
—— rfm_BZip2SpackCheck_job.err
—— rfm_BZip2SpackCheck_job.out
\— rfm_BZip2SpackCheck_job.sh

Finally, here is the generated run script that ReFrame uses to run the test, once its build has succeeded:

#!/bin/bash

spack env create -d rfm_spack_env

eval “spack -e rfm_spack_env load --sh bzip2@1.0.6°
bzip2 --help

From this point on, sanity and performance checking are exactly identical to any other ReFrame test.

Tip: While developing a test using Spack or EasyBuild as a build system, it can be useful to run ReFrame with the
--keep-stage-files and --dont-restage options to prevent ReFrame from removing the test’s stage directory
upon successful completion of the test. For this particular type of test, these options will avoid having to rebuild the
required package dependencies every time the test is retried.

2.3.6 Tutorial 6: Tips and Tricks

New in version 3.4.

This tutorial focuses on some less known aspects of ReFrame’s command line interface that can be helpful.

Debugging

ReFrame tests are Python classes inside Python source files, so the usual debugging techniques for Python apply, but
the ReFrame frontend will filter some errors and stack traces by default in order to keep the output clean. Generally,
ReFrame will not print the full stack trace for user programming errors and will not block the test loading process.
If a test has errors and cannot be loaded, an error message will be printed and the loading of the remaining tests will
continue. In the following, we have inserted a small typo in the hello2. py tutorial example:

./bin/reframe -c tutorials/basics/hello -R -1

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7a6

command : './bin/reframe -c tutorials/basics/hello -R -1'

launched by: user@host

working directory: '/home/user/Repositories/reframe'’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/

(continues on next page)

2.3. ReFrame Tutorials 97

ReFrame Documentation, Release 4.1.0

(continued from previous page)

—tresa.py'
check search path: (R) '/home/user/Repositories/reframe/tutorials/basics/hello’
stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsv;jq7v80000gp/T/rfm-1do5um3v.log'

WARNING: skipping test file '/home/user/Repositories/reframe/tutorials/basics/hello/
—hello2.py': name error: tutorials/basics/hello/hello2.py:13: name 'paramter' is not.
—defined
lang = paramter(['c', 'cpp'l)

(rerun with '-v' for more information)

[List of matched checks]
- HelloTest /2b3e4546
Found 1 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-1do5um3v.log’

Notice how ReFrame prints also the source code line that caused the error. This is not always the case, however.
ReFrame cannot always track a user error back to its source and this is particularly true for the ReFrame-specific
syntactic elements, such as the class builtins. In such cases, ReFrame will just print the error message but not the
source code context. In the following example, we introduce a typo in the argument of the @run_before decorator:

./bin/reframe: skipping test file '/Users/user/Repositories/reframe/tutorials/basics/
—hello/hello2.py': reframe syntax error: invalid pipeline stage specified: 'compil'.

— (rerun with '-v' for more information)

[List of matched checks]

- HelloTest (found in '/Users/user/Repositories/reframe/tutorials/basics/hello/hellol.py
-

Found 1 check(s)

As suggested by the warning message, passing -v will give you the stack trace for each of the failing tests, as well as
some more information about what is going on during the loading.

./bin/reframe -c tutorials/basics/hello -R -1 -v

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7a6

command : './bin/reframe -c tutorials/basics/hello -R -1 -v'

launched by: user@host

working directory: '/home/user/Repositories/reframe'’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: (R) '/home/user/Repositories/reframe/tutorials/basics/hello’

stage directory: ' /home/user/Repositories/reframe/stage’

output directory: '/home/user/Repositories/reframe/output’

log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-xs316jud.log’

WARNING: skipping test file '/home/user/Repositories/reframe/tutorials/basics/hello/
—hello2.py': name error: tutorials/basics/hello/hello2.py:13: name 'paramter' is not.
—defined
lang = paramter(['c', 'cpp'l)
(rerun with '-v' for more information)

(continues on next page)

98 Chapter 2. Webinars

regression_test_api.html#builtins

ReFrame Documentation, Release 4.1.0

(continued from previous page)

Traceback (most recent call last):
File "/home/user/Repositories/reframe/reframe/frontend/loader.py", line 205, in load_
~from_file
util.import_module_from_file(filename, force)
File "/home/user/Repositories/reframe/reframe/utility/__init__.py", line 109, in.
—import_module_from_file
return importlib.import_module(module_name)
File "/usr/local/Cellar/python@3.10/3.10.7/Frameworks/Python. framework/Versions/3.10/
—1ib/python3.10/importlib/__init__.py", line 126, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "<frozen importlib._bootstrap>", line 1050, in _gcd_import
File "<frozen importlib._bootstrap>", line 1027, in _find_and_load
File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 688, in _load_unlocked
File "<frozen importlib._bootstrap_external>", line 883, in exec_module
File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed
File "/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py", line 12, in
—<module>
class HelloMultilLangTest(rfm.RegressionTest):
File "/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py", line 13, in.
—HelloMultiLangTest
lang = paramter(['c', 'cpp'l)
NameError: name 'paramter' is not defined

Loaded 1 test(s)

Generated 2 test case(s)

Filtering test cases(s) by name: 2 remaining

Filtering test cases(s) by tags: 2 remaining

Filtering test cases(s) by other attributes: 2 remaining
Final number of test cases: 2

[List of matched checks]

- HelloTest /2b3e4546

Found 1 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-xs316jud.log’

Tip: The -v option can be given multiple times to increase the verbosity level further.

Debugging deferred expressions

Although deferred expressions that are used in sanity and performance functions behave similarly to normal Python
expressions, you need to understand their implicit evaluation rules. One of the rules is that str() triggers the implicit
evaluation, so trying to use the standard print () function with a deferred expression, you might get unexpected results
if that expression is not yet to be evaluated. For this reason, ReFrame offers a sanity function counterpart of print (),
which allows you to safely print deferred expressions.

Let’s see that in practice, by printing the filename of the standard output for HelloMultiLangTest test. The stdout
is a deferred expression and it will get its value later on while the test executes. Trying to use the standard print here
print () function here would be of little help, since it would simply give us None, which is the value of stdout when
the test is created.

2.3. ReFrame Tutorials 99

deferrable_functions_reference.html#implicit-evaluation-of-deferrable-functions
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/constants.html#None

ReFrame Documentation, Release 4.1.0

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class HelloMultilangTest(rfm.RegressionTest):
lang = parameter(['c', 'cpp'])
valid_systems = ['*']
valid_prog_environs = ['*']
@run_after('compile')
def set_sourcepath(self):
self.sourcepath = f'hello.{self.lang}'

@sanity_function
def validate_output(self):
return sn.assert_found(r'Hello, World\!', sn.print(self.stdout))

If we run the test, we can see that the correct standard output filename will be printed after sanity:

./bin/reframe -C tutorials/config/settings.py -c tutorials/basics/hello/hello2.py -r

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab
command : './bin/reframe -C tutorials/config/tresa.py -c tutorials/basics/
—hello/hello2.py -r'
launched by: user@host
working directory: '/home/user/Repositories/reframe'’
settings files: '<builtin>', 'tutorials/config/tresa.py’
check search path: '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py’
stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-b22mnhb®.log’
[==========] Running 2 check(s)
[==========] Started on Sat Nov 12 19:00:58 2022
[-———=-----] start processing checks
[RUN] HelloMultilangTest %lang=cpp /71bf65a3 @tresa:default+gnu
[RUN] HelloMultilangTest %lang=cpp /71bf65a3 @tresa:default+clang
[RUN] HelloMultilLangTest %lang=c /7cfa870e @tresa:default+gnu
[RUN] HelloMultilLangTest %lang=c /7cfa870e @tresa:default+clang

rfm_job.out

rfm_job.out

[OK] (1/4) HelloMultilLangTest %lang=c /7cfa870e @tresa:default+gnu
rfm_job.out

rfm_job.out

[OK] (2/4) HelloMultiLangTest %lang=c /7cfa870e @tresa:default+clang
rfm_job.out

rfm_job.out

[OK] (3/4) HelloMultilLangTest %lang=cpp /71bf65a3 @tresa:default+gnu
rfm_job.out

rfm_job.out

(continues on next page)

100 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

[OK] (4/4) HelloMultiLangTest %lang=cpp /71bf65a3 @tresa:default+clang
[---——————-] all spawned checks have finished

[PASSED] Ran 4/4 test case(s) from 2 check(s) (0 failure(s), O skipped)

[==========] Finished on Sat Nov 12 19:01:00 2022

Run report saved in '/home/user/.reframe/reports/run-report-325.json’

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996mddmsvjq7v80000gp/T/rfm-b22mnhb0.log’

Debugging sanity and performance patterns

When creating a new test that requires a complex output parsing for either the sanity or performance pipeline stages,
tuning the functions decorated by @sanity_function or @performance_function may involve some trial and error
to debug the complex regular expressions required. For lightweight tests which execute in a few seconds, this trial and
error may not be an issue at all. However, when dealing with tests which take longer to run, this method can quickly
become tedious and inefficient.

Tip: When dealing with make-based projects which take a long time to compile, you can use the command line option
--dont-restage in order to speed up the compile stage in subsequent runs.

When a test fails, ReFrame will keep the test output in the stage directory after its execution, which means that one can
load this output into a Python shell or another helper script without having to rerun the expensive test again. If the test
is not failing but the user still wants to experiment or modify the existing sanity or performance functions, the command
line option --keep-stage-files can be used when running ReFrame to avoid deleting the stage directory. With the
executable’s output available in the stage directory, one can simply use the re module to debug regular expressions as
shown below.

>>> import re

>>> # Read the test's output
>>> with open(the_output_file, 'r') as f:
test_output = ''.join(f.readlines())

>>> # Evaluate the regular expression
>>> re.find(the_regex_pattern, test_output)

Alternatively to using the re module, one could use all the sani ty utility provided by ReFrame directly from the Python
shell. In order to do so, if ReFrame was installed manually using the bootstrap. sh script, one will have to make all
the Python modules from the external directory accessible to the Python shell as shown below.

>>> import sys
>>> import os

>>> # Make the external modules available
>>> sys.path = [os.path.abspath('external')] + sys.path

>>> # Import ReFrame-provided sanity functions
>>> import reframe.utility.sanity as sn

>>> # Evaluate the regular expression
>>> assert sn.evaluate(sn.assert_found(the_regex_pattern, the_output_file))

2.3. ReFrame Tutorials 101

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

ReFrame Documentation, Release 4.1.0

Debugging test loading

If you are new to ReFrame, you might wonder sometimes why your tests are not loading or why your tests are not
running on the partition they were supposed to run. This can be due to ReFrame picking the wrong configuration entry
or that your test is not written properly (not decorated, no valid_systems etc.). If you try to load a test file and list
its tests by increasing twice the verbosity level, you will get enough output to help you debug such issues. Let’s try
loading the tutorials/basics/hello/hello2.py file:

./bin/reframe -C tutorials/config/settings.py -c tutorials/basics/hello/hello2.py -1 -vv

Loading user configuration

Loading the generic configuration

Loading configuration file: ('tutorials/config/tresa.py',)

Detecting system using method: 'hostname'

Using standard hostname. ..

Retrieved hostname: 'host'

Looking for a matching configuration entry

Configuration found: picking system 'tresa'

Initializing runtime

Initializing system partition 'default'

Initializing system 'tresa'

Initializing modules system 'nomod'

detecting topology info for tresa:default

> found topology file '/home/user/.reframe/topology/tresa-default/processor.json';.

—loading...

> device auto-detection is not supported

[ReFrame Environment]
RFM_AUTODETECT_FQDN=<not set>
RFM_AUTODETECT_METHOD=<not set>
RFM_AUTODETECT_XTHOSTNAME=<not set>
RFM_CHECK_SEARCH_PATH=<not set>
RFM_CHECK_SEARCH_RECURSIVE=<not set>
RFM_CLEAN_STAGEDIR=<not set>
RFM_COLORIZE=n
RFM_COMPRESS_REPORT=<not set>
RFM_CONFIG_FILES=/home/user/Repositories/reframe/tutorials/config/tresa.py
RFM_CONFIG_PATH=<not set>
RFM_DUMP_PIPELINE_PROGRESS=<not set>
RFM_GIT_TIMEOUT=<not set>
RFM_HTTPJSON_URL=<not set>
RFM_IGNORE_CHECK_CONFLICTS=<not set>
RFM_IGNORE_REQNODENOTAVAIL=<not set>
RFM_INSTALL_PREFIX=/home/user/Repositories/reframe
RFM_KEEP_STAGE_FILES=<not set>
RFM_MODULE_MAPPINGS=<not set>
RFM_MODULE_MAP_FILE=<not set>
RFM_NON_DEFAULT_CRAYPE=<not set>
RFM_OUTPUT_DIR=<not set>
RFM_PERFLOG_DIR=<not set>
RFM_PIPELINE_TIMEOUT=<not set>
RFM_PREFIX=<not set>
RFM_PURGE_ENVIRONMENT=<not set>
RFM_REMOTE_DETECT=<not set>

(continues on next page)

102 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

RFM_REMOTE_WORKDIR=<not set>
RFM_REPORT_FILE=<not set>
RFM_REPORT_JUNIT=<not set>
RFM_RESOLVE_MODULE_CONFLICTS=<not set>
RFM_SAVE_LOG_FILES=<not set>
RFM_STAGE_DIR=<not set>
RFM_SYSLOG_ADDRESS=<not set>
RFM_SYSTEM=<not set>
RFM_TIMESTAMP_DIRS=<not set>
RFM_TRAP_JOB_ERRORS=<not set>
RFM_UNLOAD_MODULES=<not set>
RFM_USER_MODULES=<not set>
RFM_USE_LOGIN_SHELL=<not set>
RFM_VERBOSE=<not set>
[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7a6

command : './bin/reframe -C tutorials/config/tresa.py -c tutorials/basics/
—hello/hello2.py -1 -vv'

launched by: user@host

working directory: '/home/user/Repositories/reframe’

settings files: '<builtin>', 'tutorials/config/tresa.py'

check search path: '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py’

stage directory: ' /home/user/Repositories/reframe/stage’

output directory: '/home/user/Repositories/reframe/output’

log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-3gcehyof.log’

Looking for tests in '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py’

Validating '/home/user/Repositories/reframe/tutorials/basics/hello/hello2.py': OK
> Loaded 2 test(s)

Loaded 2 test(s)

Generated 4 test case(s)

Filtering test cases(s) by name: 4 remaining

Filtering test cases(s) by tags: 4 remaining

Filtering test cases(s) by other attributes: 4 remaining

Building and validating the full test DAG

Full test DAG:
('HelloMultiLangTest_1', 'tresa:default', 'gnu') -> []
('HelloMultiLangTest_1', 'tresa:default', 'clang') -> []
('HelloMultilLangTest_0', 'tresa:default', 'gnu') -> []
('HelloMultiLangTest_0', 'tresa:default', 'clang') -> []

Final number of test cases: 4

[List of matched checks]

- HelloMultilLangTest %lang=cpp /71bf65a3

- HelloMultilLangTest %lang=c /7cfa870e

Found 2 check(s)

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rim-3gcehyof.log’
>>> profiler report [start] <<<
main: 0.053832 s
test processing: 0.012268 s
RegressionCheckLoader.load_all: 0.008720 s
TestRegistry.instantiate_all: 0.003012 s

(continues on next page)

2.3. ReFrame Tutorials 103

ReFrame Documentation, Release 4.1.0

(continued from previous page)

generate_testcases: 0.000049 s
main.<locals>._sort_testcases: 0.000012 s
build_deps: 0.000072 s
validate_deps: 0.000061 s
toposort: 0.000091 s
list_checks: 0.001080 s

>>> profiler report [end] <<<

You can see all the different phases ReFrame’s frontend goes through when loading a test. After loading the config-
uration, ReFrame will print out its relevant environment variables and will start examining the given files in order to
find and load ReFrame tests. Before attempting to load a file, it will validate it and check if it looks like a ReFrame
test. If it does, it will load that file by importing it. This is where any ReFrame tests are instantiated and initialized (see
Loaded 2 test(s)), as well as the actual test cases (combination of tests, system partitions and environments) are
generated. Then the test cases are filtered based on the various filtering command line options as well as the program-
ming environments that are defined for the currently selected system. Finally, the test case dependency graph is built
and everything is ready for running (or listing).

Try passing a specific system or partition with the --system option or modify the test (e.g., removing the decorator
that registers it) and see how the logs change.

Execution modes

ReFrame allows you to create pre-defined ways of running it, which you can invoke from the command line. These
are called execution modes and are essentially named groups of command line options that will be passed to ReFrame
whenever you request them. These are defined in the configuration file and can be requested with the --mode command-
line option. The following configuration defines an execution mode named maintenance and sets up ReFrame in a
certain way (selects tests to run, sets up stage and output paths etc.)

'modes': [
{
'name’': 'maintenance',
'options': [
'--unload-module=reframe',
'--exec-policy=async',
'-S strict_check=1",
'--output=/path/to/$USER/regression/maintenance’,
'--perflogdir=/path/to/$USER/regression/maintenance/logs’,
'--stage=$SCRATCH/regression/maintenance/stage’,
'--report-file=/path/to/$USER/regression/maintenance/reports/maint_report_
. .json',
'-Jreservation=maintenance’,
'--save-log-files"',
'--tag=maintenance',
'--timestamp=%F_%H-%M-%S"'

1,

The execution modes come handy in situations that you have a standardized way of running ReFrame and you don’t
want to create and maintain shell scripts around it. In this example, you can simply run ReFrame with

./bin/reframe --mode=maintenance -r

104 Chapter 2. Webinars

manpage.html#test-filtering

ReFrame Documentation, Release 4.1.0

and it will be equivalent to passing explicitly all the above options. You can still pass any additional command line
option and it will supersede or be combined (depending on the behaviour of the option) with those defined in the
execution mode. In this particular example, we could change just the reservation name by running

./bin/reframe --mode-maintenance -] reservation=maint -r

There are two options that you can’t use inside execution modes and these are the -C and --system. The reason is
that these option select the configuration file and the configuration entry to load.

Manipulating ReFrame’s environment

ReFrame runs the selected tests in the same environment as the one that it executes. It does not unload any environment
modules nor sets or unsets any environment variable. Nonetheless, it gives you the opportunity to modify the environ-
ment that the tests execute. You can either purge completely all environment modules by passing the --purge-env
option or ask ReFrame to load or unload some environment modules before starting running any tests by using the -m
and -u options respectively. Of course you could manage the environment manually, but it’s more convenient if you do
that directly through ReFrame’s command-line. If you used an environment module to load ReFrame, e.g., reframe,
you can use the -u to have ReFrame unload it before running any tests, so that the tests start in a clean environment:

./bin/reframe -u reframe [...]

Environment Modules Mappings

ReFrame allows you to replace environment modules used in tests with other modules on the fly. This is quite useful
if you want to test a new version of a module or another combination of modules. Assume you have a test that loads a
gromacs module:

class GromacsTest(rfm.RunOnlyRegressionTest):

modules = ['gromacs']

This test would use the default version of the module in the system, but you might want to test another version, before
making that new one the default. You can ask ReFrame to temporarily replace the gromacs module with another one
as follows:

./bin/reframe -n GromacsTest -M 'gromacs:gromacs/2020.5"' -r

Every time ReFrame tries to load the gromacs module, it will replace it with gromacs/2020.5. You can specify
multiple mappings at once or provide a file with mappings using the --module-mappings option. You can also
replace a single module with multiple modules.

A very convenient feature of ReFrame in dealing with modules is that you do not have to care about module conflicts
at all, regardless of the modules system backend. ReFrame will take care of unloading any conflicting modules, if the
underlying modules system cannot do that automatically. In case of module mappings, it will also respect the module
order of the replacement modules and will produce the correct series of “load” and “unload” commands needed by the
modules system backend used.

2.3. ReFrame Tutorials 105

ReFrame Documentation, Release 4.1.0

Retrying and Rerunning Tests

If you are running ReFrame regularly as part of a continuous testing procedure you might not want it to generate alerts
for transient failures. If a ReFrame test fails, you might want to retry a couple of times before marking it as a failure.
You can achieve this with the --max-retries. ReFrame will then retry the failing test cases a maximum number
of times before reporting them as actual failures. The failed test cases will not be retried immediately after they have
failed, but rather at the end of the run session. This is done to give more chances of success in case the failures have
been transient.

Another interesting feature introduced in ReFrame 3.4 is the ability to restore a previous test session. Whenever it runs,
ReFrame stores a detailed JSON report of the last run under $HOME/ . reframe (see --report-file). Using that file,
ReFrame can restore a previous run session using the --restore-session. This option is useful when you combine
it with the various test filtering options. For example, you might want to rerun only the failed tests or just a specific test
in a dependency chain. Let’s see an artificial example that uses the following test dependency graph.

Fig R Complex test dependency graph. Nodes in red are set to fail.

Tests T2 and T8 are set to fail. Let’s run the whole test DAG:

./bin/reframe -c unittests/resources/checks_unlisted/deps_complex.py -r

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7a6

command : './bin/reframe -c unittests/resources/checks_unlisted/deps_complex.
—py -r'

launched by: user@host

working directory: '/home/user/Repositories/reframe’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: '/home/user/Repositories/reframe/unittests/resources/checks_
—unlisted/deps_complex.py'

stage directory: ' /home /user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-_008n_el.log'

[==========] Running 10 check(s)

[z=========] Started on Sat Nov 12 19:01:00 2022

[---—=------] start processing checks

[RUN] TO® /c9c2be9f @tresa:default+gnu

[RUN] TO® /c9c2be9f @tresa:default+clang

[OK] (1/20) TO® /c9c2be9f @tresa:default+gnu

[OK] (2/20) T® /c9c2be9f @tresa:default+clang

[RUN] T4 /llee5e9a @tresa:default+gnu

[RUN] T4 /llee5e9a @tresa:default+clang

[OK] (3/20) T4 /lleeS5e9a @tresa:default+gnu

[OK] (4/20) T4 /1llee5e9a @tresa:default+clang

[RUN] T5 /020d01e5 @tresa:default+gnu

[RUN] T5 /020d01le5 @tresa:default+clang

[OK] (5/20) T5 /020d0le5 @tresa:default+gnu

[OK] (6/20) T5 /020d0le5 @tresa:default+clang

[RUN] T1 /1£93603d @tresa:default+gnu

[RUN] T1 /1£93603d @tresa:default+clang

(continues on next page)

106 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

OK] (7/20) T1 /1£93603d @tresa:default+gnu

OK] (8/20) T1 /1£93603d @tresa:default+clang
RUN] T8 /605fcld6 @tresa:default+gnu

FAIL 1 (9/20) T8 /605fcld6 @tresa:default+gnu

==> test failed during 'setup': test staged in '/home/user/Repositories/reframe/stage/
—tresa/default/gnu/T8'
[RUN] T8 /605fc1d6 @tresa:default+clang
[FAIL] (10/20) T8 /605fcld6 @tresa:default+clang
==> test failed during 'setup': test staged in '/home/user/Repositories/reframe/stage/
—tresa/default/clang/T8'

L
L
L
L

[FAIL] (11/20) T9 /78a78a4e @tresa:default+gnu
==> test failed during 'startup': test staged in None
[FAIL] (12/20) T9 /78a78ade G@tresa:default+clang
==> test failed during 'startup': test staged in None
[RUN] T6 /6dbdaf93 @tresa:default+gnu

[RUN] T6 /6dbdaf93 @tresa:default+clang

[OK] (13/20) T6 /6dbdaf93 @tresa:default+gnu

[OK] (14/20) T6 /6dbdaf93 @tresa:default+clang
[RUN] T2 /0£617ba9 @tresa:default+gnu

[RUN] T2 /0£617ba9 @tresa:default+clang

[RUN] T3 /5dd67£f7f @tresa:default+gnu

[RUN] T3 /5dd67£f7f @tresa:default+clang

[

FAIL] (15/20) T2 /0f617ba9 @tresa:default+gnu

==> test failed during 'sanity': test staged in '/home/user/Repositories/reframe/stage/
—tresa/default/gnu/T2"'

[FAIL] (16/20) T2 /0f617ba9 @tresa:default+clang

==> test failed during 'sanity': test staged in '/home/user/Repositories/reframe/stage/
—tresa/default/clang/T2"'

[FAIL] (17/20) T7 /f005e93d @tresa:default+gnu
==> test failed during 'startup': test staged in None
[FAIL] (18/20) T7 /£f005e93d @tresa:default+clang
==> test failed during 'startup': test staged in None
[OK] (19/20) T3 /5dd67f7f @tresa:default+gnu

[OK] (20/20) T3 /5dd67f7f @tresa:default+clang
[--=-==———--] all spawned checks have finished

[FAILED] Ran 20/20 test case(s) from 10 check(s) (8 failure(s), O skipped)
[==========] Finished on Sat Nov 12 19:01:03 2022

FAILURE INFO for T8
* Expanded name: T8
Description:
* System partition: tresa:default
* Environment: gnu
Stage directory: /home/user/Repositories/reframe/stage/tresa/default/gnu/T8
* Node list:
Job type: local (id=None)
* Dependencies (conceptual): ['T1']
Dependencies (actual): [('T1', 'tresa:default', 'gnu')]

A

(continues on next page)

2.3. ReFrame Tutorials 107

ReFrame Documentation, Release 4.1.0

(continued from previous page)

* Maintainers: []
* Failing phase: setup
* Rerun with '-n /605fcld6 -p gnu --system tresa:default -r'
* Reason: exception
Traceback (most recent call last):
File "/home/user/Repositories/reframe/reframe/frontend/executors/__init__.py", line,
—303, in _safe_call
return fn(*args, **kwargs)
File "/home/user/Repositories/reframe/reframe/core/hooks.py", line 101, in _fn
getattr(obj, h.__name__)(Q)
File "/home/user/Repositories/reframe/reframe/core/hooks.py", line 32, in _fn
func(*args, **kwargs)
File "/home/user/Repositories/reframe/unittests/resources/checks_unlisted/deps_complex.
—py", line 180, in fail
raise Exception
Exception

FAILURE INFO for T8
* Expanded name: T8
Description:
System partition: tresa:default
Environment: clang
* Stage directory: /home/user/Repositories/reframe/stage/tresa/default/clang/T8
“ Node list:
* Job type: local (id=None)
Dependencies (conceptual): ['T1']
Dependencies (actual): [('T1', 'tresa:default', 'clang')]
* Maintainers: []
* Failing phase: setup
* Rerun with '-n /605fcld6 -p clang --system tresa:default -r'
* Reason: exception
Traceback (most recent call last):
File "/home/user/Repositories/reframe/reframe/frontend/executors/__init__.py", line,
303, in _safe_call
return fn(*args, **kwargs)
File "/home/user/Repositories/reframe/reframe/core/hooks.py", line 101, in _fn
getattr(obj, h.__name__)(Q)
File "/home/user/Repositories/reframe/reframe/core/hooks.py", line 32, in _fn
func(*args, **kwargs)
File "/home/user/Repositories/reframe/unittests/resources/checks_unlisted/deps_complex.
—py", line 180, in fail
raise Exception
Exception

*
*

*

FAILURE INFO for T9
* Expanded name: T9

* Description:

* System partition: tresa:default

* Environment: gnu

* Stage directory: None

(continues on next page)

108 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

Node list:
Job type: local (id=None)

* Dependencies (conceptual): ['T8']

Dependencies (actual): [('T8', 'tresa:default', 'gnu')]
Maintainers: []

Failing phase: startup

Rerun with '-n /78a78a4e -p gnu --system tresa:default -r'

* Reason: task dependency error: dependencies failed

FAILURE INFO for T9

*

*

Expanded name: T9
Description:

* System partition: tresa:default
“* Environment: clang

Stage directory: None

Node list:

Job type: local (id=None)
Dependencies (conceptual): ['T8']

* Dependencies (actual): [('T8', 'tresa:default', 'clang')]

Maintainers: []

Failing phase: startup

Rerun with '-n /78a78a4e -p clang --system tresa:default -r'
Reason: task dependency error: dependencies failed

FAILURE INFO for T2

*
*

*

Expanded name: T2
Description:
System partition: tresa:default

* Environment: gnu
* Stage directory: /home/user/Repositories/reframe/stage/tresa/default/gnu/T2

Node list: hostNone

Job type: local (id=59611)

Dependencies (conceptual): ['T6']

Dependencies (actual): [('T6', 'tresa:default', 'gnu')]

“* Maintainers: []

Failing phase: sanity
Rerun with '-n /0f617ba9 -p gnu --system tresa:default -r'
Reason: sanity error: 31 != 30

FAILURE INFO for T2

Expanded name: T2

Description:

System partition: tresa:default
Environment: clang

* Stage directory: /home/user/Repositories/reframe/stage/tresa/default/clang/T2
* Node list: hostNone

Job type: local (id=59612)

Dependencies (conceptual): ['T6']

Dependencies (actual): [('T6', 'tresa:default', 'clang')]
Maintainers: []

* Failing phase: sanity

Rerun with '-n /0£f617ba9 -p clang --system tresa:default -r'

(continues on next page)

23.

ReFrame Tutorials 109

ReFrame Documentation, Release 4.1.0

(continued from previous page)

* Reason: sanity error: 31 != 30
FAILURE INFO for T7
* Expanded name: T7
Description:
System partition: tresa:default
Environment: gnu
* Stage directory: None
* Node list:
Job type: local (id=None)
Dependencies (conceptual): ['T2']
Dependencies (actual): [('T2', 'tresa:default', 'gnu')]
* Maintainers: []
* Failing phase: startup
Rerun with '-n /£005e93d -p gnu --system tresa:default -r'
Reason: task dependency error: dependencies failed
FAILURE INFO for T7

* Expanded name: T7

* Description:
System partition: tresa:default
Environment: clang
Stage directory: None
“ Node list:
* Job type: local (id=None)
Dependencies (conceptual): ['T2']
Dependencies (actual): [('T2', 'tresa:default', 'clang')]
Maintainers: []
* Failing phase: startup
* Rerun with '-n /£005e93d -p clang --system tresa:default -r'
Reason: task dependency error: dependencies failed
Run report saved in '/home/user/.reframe/reports/run-report-326.json’
Log file(s) saved in '/var/folders/h7/k7cgrdl13r996mddmsvjq7v80000gp/T/rfm-_008n_el.log'

You can restore the run session and run only the failed test cases as follows:

./bin/reframe --restore-session --failed -r

Of course, as expected, the run will fail again, since these tests were designed to fail.

Instead of running the failed test cases of a previous run, you might simply want to rerun a specific test. This has little
meaning if you don’t use dependencies, because it would be equivalent to running it separately using the -n option.
However, if a test was part of a dependency chain, using --restore-session will not rerun its dependencies, but it
will rather restore them. This is useful in cases where the test that we want to rerun depends on time-consuming tests.
There is a little tweak, though, for this to work: you need to have run with --keep-stage-files in order to keep the
stage directory even for tests that have passed. This is due to two reasons: (a) if a test needs resources from its parents,
it will look into their stage directories and (b) ReFrame stores the state of a finished test case inside its stage directory
and it will need that state information in order to restore a test case.

Let’s try to rerun the T6 test from the previous test dependency chain:

./bin/reframe -c unittests/resources/checks_unlisted/deps_complex.py --keep-stage-files -
-

110 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

./bin/reframe --restore-session --keep-stage-files -n T6 -r

Notice how only the T6 test was rerun and none of its dependencies, since they were simply restored:

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab

command : './bin/reframe --restore-session --keep-stage-files -n T6 -r'

launched by: user@host

working directory: '/home/user/Repositories/reframe'’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
~tresa.py'

check search path: '/home/user/Repositories/reframe/unittests/resources/checks_
—unlisted/deps_complex.py'

stage directory: ' /home/user/Repositories/reframe/stage’
output directory: '/home/user/Repositories/reframe/output’
log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-vtnoklih.log'

[==========] Running 1 check(s)

[==========] Started on Sat Nov 12 19:01:06 2022

[--—==———--] start processing checks

[RUN] T6 /6dbdaf93 @tresa:default+gnu

[RUN] T6 /6dbdaf93 @tresa:default+clang

[OK] (1/2) T6 /6dbdaf93 @tresa:default+gnu

[OK] (2/2) T6 /6dbdaf93 @tresa:default+clang

[--——=—--—-] all spawned checks have finished

[PASSED] Ran 2/2 test case(s) from 1 check(s) (0 failure(s), O skipped)

[==========] Finished on Sat Nov 12 19:01:07 2022

Run report saved in '/home/user/.reframe/reports/run-report-328.json'

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996md4dmsvjq7v80000gp/T/rfm-vtnoklih.log'

If we tried to run T6 without restoring the session, we would have to rerun also the whole dependency chain, i.e., also
T5, T1, T4 and TO.

./bin/reframe -c unittests/resources/checks_unlisted/deps_complex.py -n T6 -r

[ReFrame Setup]

version: 4.0.0-dev.2+5eabb7ab

command : './bin/reframe -c unittests/resources/checks_unlisted/deps_complex.
~py -n T6 -r'

launched by: user@host

working directory: '/home/user/Repositories/reframe'’

settings files: '<builtin>', '/home/user/Repositories/reframe/tutorials/config/
—tresa.py'

check search path: '/home/user/Repositories/reframe/unittests/resources/checks_
—unlisted/deps_complex.py'

stage directory: ' /home/user/Repositories/reframe/stage’

output directory: '/home/user/Repositories/reframe/output’

log files: '/var/folders/h7/k7cgrdl13r996m4dmsvjq7v80000gp/T/rfm-8n8uvclh.log’

[==========] Running 5 check(s)
[==========] Started on Sat Nov 12 19:01:07 2022

(continues on next page)

2.3. ReFrame Tutorials 111

ReFrame Documentation, Release 4.1.0

(continued from previous page)

[---——————-] start processing checks

[RUN] TO® /c9c2be9f @tresa:default+gnu

[RUN 1 TO® /c9c2be9f @tresa:default+clang

[OK] (1/18) T® /c9c2be9f @tresa:default+gnu

[OK] (2/10) T® /c9c2be9f @tresa:default+clang
[RUN] T4 /1lee5e9a @tresa:default+gnu

[RUN] T4 /1llee5e9a @tresa:default+clang

[OK] (3/10) T4 /1lleeS5e9a @tresa:default+gnu

[OK] (4/10) T4 /1lleeS5e9a @tresa:default+clang
[RUN] TS5 /020d01e5 @tresa:default+gnu

[RUN] T5 /020d01e5 @tresa:default+clang

[OK] (5/18) T5 /020d0le5 @tresa:default+gnu

[OK] (6/10) T5 /020d0le5 @tresa:default+clang
[RUN] T1 /1£93603d @tresa:default+gnu

[RUN] T1 /1£93603d @tresa:default+clang

[OK] (7/18) T1 /1£93603d @tresa:default+gnu

[OK] (8/10) T1 /1£93603d @tresa:default+clang
[RUN] T6 /6dbdaf93 @tresa:default+gnu

[RUN] T6 /6dbdaf93 @tresa:default+clang

[OK] (9/10) T6 /6dbdaf93 @tresa:default+gnu

[OK] (10/10) T6 /6dbdaf93 @tresa:default+clang
[--—==———--] all spawned checks have finished

[PASSED] Ran 10/10 test case(s) from 5 check(s) (0 failure(s), 0 skipped)
[==========] Finished on Sat Nov 12 19:01:08 2022

Run report saved in '/home/user/.reframe/reports/run-report-329.json’

Log file(s) saved in '/var/folders/h7/k7cgrdl13r996mddmsvjq7v80000gp/T/rfm-8n8uvclh.log’

Implementing test workarounds efficiently

New in version 3.2.

Sometimes you may need to add a quick workaround in a test, because something in a system or an environment broken.
The best way to implement this is through hooks, because you can easily disable any hook from the command-line and
you don’t need to update the test every time you want to check if the system is fixed and the workaround is not needed
anymore.

Let’s use one example from the previous tutorial and let’s assume that there is something wrong with one of the envi-
ronments and a special macro needs to be defined in order for the compilation to succeed. Instead of adding another
flagin the set_compilation_flags() hook, itis better to add another hook containing just the workaround as shown
below:

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test

class HelloThreadedExtended2Test(rfm.RegressionTest):
valid_systems = ['*']
valid_prog_environs = ['*']
sourcepath = 'hello_threads.cpp

(continues on next page)

112 Chapter 2. Webinars

tutorial_basics.html

ReFrame Documentation, Release 4.1.0

(continued from previous page)

build_system = 'SingleSource'
executable_opts = ['16']

@run_before('compile')
def set_compilation_flags(self):
self.build_system.cppflags = ['-DSYNC_MESSAGES']

self.build_system.cxxflags = ['-std=c++11', '-Wall']
environ = self.current_environ.name
if environ in {'clang', 'gnu'}:

self.build_system.cxxflags += ['-pthread']

@sanity_function
def assert_num_messages(self):
num_messages = sn.len(sn.findall(r'\[\s?\d+\] Hello, World\!",
self.stdout))
return sn.assert_eq(num_messages, 16)

@run_before('compile')
def fooenv_workaround(self):
ce = self.current_environ.name
if ce == '"foo"':
self.build_system.cppflags += [
'-D__GCC_ATOMIC_TEST_AND_SET_TRUEVAL'
]

This way the test will start passing again allowing us to catch any new issues while waiting for the original issue to be
fixed. Then we can run the test anytime using --disable-hook=fooenv_workaround to check if the workaround is
not needed anymore.

Integrating into a CI pipeline

New in version 3.4.1.

Instead of running your tests, you can ask ReFrame to generate a child pipeline specification for the Gitlab CI. This will
spawn a CI job for each ReFrame test respecting test dependencies. You could run your tests in a single job of your
Gitlab pipeline, but you would not take advantage of the parallelism across different CI jobs. Having a separate CI job
per test makes it also easier to spot the failing tests.

As soon as you have set up a runner for your repository, it is fairly straightforward to use ReFrame to automatically
generate the necessary CI steps. The following is an example of .gitlab-ci.yml file that does exactly that:

stages:
- generate
- test

generate-pipeline:
stage: generate
script:
- reframe --ci-generate=${CI_PROJECT_DIR}/pipeline.yml -c ${CI_PROJECT_DIR}/path/to/
—tests
artifacts:
paths:

(continues on next page)

2.3. ReFrame Tutorials 113

https://docs.gitlab.com/ee/ci/parent_child_pipelines.html
https://docs.gitlab.com/ee/ci/quick_start/

ReFrame Documentation, Release 4.1.0

(continued from previous page)

- ${CI_PROJECT_DIR}/pipeline.yml

test-jobs:
stage: test
trigger:
include:
- artifact: pipeline.yml
job: generate-pipeline
strategy: depend

It defines two stages. The first one, called generate, will call ReFrame to generate the pipeline specification for the
desired tests. All the usual test selection options can be used to select specific tests. ReFrame will process them as
usual, but instead of running the selected tests, it will generate the correct steps for running each test individually as a
Gitlab job in a child pipeline. The generated ReFrame command that will run each individual test reuses the -C, -R,
-v and --mode options passed to the initial invocation of ReFrame that was used to generate the pipeline. Users can
define CI-specific execution modes in their configuration in order to pass arbitrary options to the ReFrame invocation
in the child pipeline.

Finally, we pass the generated CI pipeline file to second phase as an artifact and we are done! If image keyword is
defined in .gitlab-ci.yml, the emitted pipeline will use the same image as the one defined in the parent pipeline.
Besides, each job in the generated pipeline will output a separate junit report which can be used to create GitLab badges.

The following figure shows one part of the automatically generated pipeline for the test graph depicted above.

Jobs 2 Tests 0

Rfm-stage-3 Rfm-stage-4 Rfm-stage-5 Rfm-stage-6
®m ls] @) 6 o Okt s Okt s
@ o @ c

©
2
Q

Flg S Snapshot of a Gitlab pipeline generated automatically by ReFrame.

Note: The ReFrame executable must be available in the Gitlab runner that will run the CI jobs.

114 Chapter 2. Webinars

manpage.html#test-filtering

ReFrame Documentation, Release 4.1.0

2.3.7 Tutorial 7: The Flux Framework Scheduler

This is a tutorial that will show how to use refame with Flux Framework. First, build the container here from the root
of reframe.

$ docker build -f tutorials/flux/Dockerfile -t flux-reframe .

Then shell inside, optionally binding the present working directory if you want to develop.

$ docker run -it -v $PWD:/code flux-reframe
$ docker run -it flux-reframe

Note that if you build the local repository, you’ll need to bootstrap and install again, as we have over-written the bin!

./bootstrap.sh

And then reframe will again be in the local bin directory:

which reframe
/code/bin/reframe

Then we can run ReFrame with the custom config config.py for flux.

What tests are under tutorials/flux?
$ cd tutorials/flux
$ reframe -c . -C settings.py -1

[ReFrame Setup]

version: 4.0.0-dev.1

command : '/code/bin/reframe -c tutorials/flux -C tutorials/flux/settings.py -
1!

launched by: root@1£6650222bc

working directory: '/code'

settings file: "tutorials/flux/settings.py'

check search path: '/code/tutorials/flux'

stage directory: '/code/stage’

output directory: '/code/output'
[List of matched checks]
- EchoRandTest /66b93401
Found 1 check(s)

Log file(s) saved in '/tmp/rfm-ilqg7fqg.log’

This also works

$ reframe -c tutorials/flux -C tutorials/flux/settings.py -1

And then to run tests, just replace -1 (for list) with -r or --run (for run):

$ reframe -c tutorials/flux -C tutorials/flux/settings.py --run

root@b1£6650222bc: /code# reframe -c tutorials/flux -C tutorials/flux/settings.py --run
[ReFrame Setup]

(continues on next page)

2.3. ReFrame Tutorials 115

https://github.com/flux-framework/
config.py

ReFrame Documentation, Release 4.1.0

(continued from previous page)

version: 4.0.0-dev.1

command : '/code/bin/reframe -c tutorials/flux -C tutorials/flux/settings.py -
—-run'

launched by: root@1£6650222bc

working directory: '/code'

settings file: "tutorials/flux/settings.py'

check search path: '/code/tutorials/flux'

stage directory: '/code/stage’

output directory: '/code/output'

[==========] Running 1 check(s)

[==========] Started on Fri Sep 16 20:47:15 2022

[---—=------] start processing checks

[RUN] EchoRandTest /66b93401 @generic:default+builtin

[OK] (1/1) EchoRandTest /66b93401 @generic:default+builtin
[---—=-----] all spawned checks have finished

[PASSED] Ran 1/1 test case(s) from 1 check(s) (0 failure(s), O skipped)
[==========] Finished on Fri Sep 16 20:47:15 2022

Run report saved in '/root/.reframe/reports/run-report.json'’

Log file(s) saved in '/tmp/rfm-0avso9nb.log'

For advanced users or developers, here is how to run tests within the container:

Testing

./test_reframe.py --rfm-user-config=tutorials/flux/settings.py unittests/test_schedulers.
~py -XS

2.3.8 Online Tutorials

* Tutorial at 6th EasyBuild User Meeting 2021 [YouTube]

2.4 Configuring ReFrame for Your Site

ReFrame comes pre-configured with a minimal generic configuration that will allow you to run ReFrame on any system.
This will allow you to run simple local tests using the default compiler of the system. Of course, ReFrame is much
more powerful than that. This section will guide you through configuring ReFrame for your site.

ReFrame’s configuration can be either in JSON or in Python format and can be split into multiple files. The Python
format is useful in cases that you want to generate configuration parameters on-the-fly, since ReFrame will import that
Python file and the load the resulting configuration. In the following we will use a single Python-based configuration
file also for historical reasons, since it was the only way to configure ReFrame in versions prior to 3.0.

Changed in version 4.0.0: The configuration can now be split into multiple files.

116 Chapter 2. Webinars

https://youtube.com/playlist?list=PLhnGtSmEGEQjySVEPTUSLpewpOWwX5mjb

ReFrame Documentation, Release 4.1.0

2.4.1 Loading the configuration

ReFrame builds its final configuration gradually by combining multiple configuration files. Each one can have different
parts of the configuration, for example different systems, different environments, different general options or different
logging handlers. This technique allows users to avoid having a single huge configuration file.

The first configuration file loaded in this chain is always the generic builtin configuration located under
${RFM_INSTALL_PREFIX}/reframe/core/settings.py. This contains everything that ReFrame needs to run on
a generic system, as well as basic settings for logging, so subsequent configuration files may skip defining some con-
figuration sections altogether, if they are not relevant.

ReFrame continues on looking for configuration files in the directories defined in RFM_CONFIG_PATH. For each di-
rectory, will look within it for a settings.py or settings. json file (in that order), and if it finds one, it will load
it.

Finally, ReFrame processes the --config-£file option or the RFM_CONFIG_FILES environment variable to load any
specific configuration files passed from the command line.

2.4.2 Anatomy of the Configuration File

The whole configuration of ReFrame is a single JSON object whose properties are responsible for configuring the basic
aspects of the framework. We’ll refer to these top-level properties as sections. These sections contain other objects
which further define in detail the framework’s behavior. If you are using a Python file to configure ReFrame, this big
JSON configuration object is stored in a special variable called site_configuration.

We will explore the basic configuration of ReFrame by looking into the configuration file of the tutorials, which permits
ReFrame to run on the Piz Daint supercomputer and a local computer. For the complete listing and description of all
configuration options, you should refer to the Configuration Reference.

site_configuration = {
'systems': [

{
'name': 'daint',
'descr': 'Piz Daint Supercomputer',
'hostnames': ['daint'],
'modules_system': 'tmod32',
'partitions': [
{
'name': 'login',
'descr': 'Login nodes',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin', 'gnu', 'intel', 'nvidia', 'cray'l],
1,
{
'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'nvidia', 'cray'],
'max_jobs': 100,
1,
{

(continues on next page)

2.4. Configuring ReFrame for Your Site 117

ReFrame Documentation, Release 4.1.0

(continued from previous page)

'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],
'environs': ['gnu', 'intel', 'nvidia', 'cray'l],
'max_jobs': 100,
'resources': [
{
'name': 'memory',
'options': ['--mem={size}']
}
]
}
1
}
1,
'environments': [
{
'name': 'gnu',
'modules': ['PrgEnv-gnu'],
'cc': 'cc',
'exx': 'CC',
'ftn': '"ftn',
'target_systems': ['daint']
1
{
'name': 'cray',
'modules': ['PrgEnv-cray'],
'cc': 'cc',
'exx': 'CC',
"ftn': '"ftn',
'target_systems': ['daint']
1,
{
'name': 'intel',
'modules': ['PrgEnv-intel'],
'cc': 'cc',
'exx': 'CC',
'ftn': '"ftn',
'target_systems': ['daint']
1
{
'name': 'nvidia',
'modules': ['PrgEnv-nvidia'],
'cc': 'cc',
'exx': 'CC',
"ftn': '"ftn',
'target_systems': ['daint']
1,
{
'name': 'builtin',
(continues on next page)
118 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

cc': 'cc',
'exx': 'CC',
'ftn': '"ftn',

'target_systems': ['daint']
}

] # end of environments

There are three required sections that the final ReFrame configuration must have: systems, environments and
logging, but in most cases you will define only the first two, as ReFrame’s builtin configuration already defines a
reasonable logging configuration. We will first cover these sections and then move on to the optional ones.

Tip: These configuration sections may not all be defined in the same configuration file, but can reside in any configu-
ration file that is being loaded. This is the case of the example configuration shown above, where the 1logging section
is “missing” as it’s defined in ReFrame’s builtin configuration.

Systems Configuration

ReFrame allows you to configure multiple systems in the same configuration file. Each system is a different object
inside the systems section. In our example we define only Piz Daint:

'systems': [

{
'name': 'daint',
'descr': 'Piz Daint Supercomputer',
'hostnames': ['daint'],
'modules_system': 'tmod32',
'partitions': [
{
'name': 'login',
'descr': 'Login nodes',
'scheduler': 'local',
'launcher': 'local',
'environs': ['builtin', 'gnu', 'intel', 'nvidia', 'cray'l],
1,
{
'name': 'gpu',
'descr': 'Hybrid nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C gpu', '-A csstaff'],
'environs': ['gnu', 'intel', 'nvidia', 'cray'l],
'max_jobs': 100,
1,
{
'name': 'mc',
'descr': 'Multicore nodes',
'scheduler': 'slurm',
'launcher': 'srun',
'access': ['-C mc', '-A csstaff'],

(continues on next page)

2.4. Configuring ReFrame for Your Site 119

ReFrame Documentation, Release 4.1.0

(continued from previous page)

'environs': ['gnu', 'intel', 'nvidia', 'cray'l],
'max_jobs': 100,
'resources': [
{
'name': 'memory',
'options': ['--mem= |

1,

Each system is associated with a set of properties, which in this case are the following:

e name: The name of the system. This should be an alphanumeric string (dashes - are allowed) and it will be used
to refer to this system in other contexts.

* descr: A detailed description of the system.

* hostnames: This is a list of hostname patterns following the Python Regular Expression Syntax, which will be
used by ReFrame when it tries to automatically select a configuration entry for the current system.

* modules_system: This refers to the modules management backend which should be used for loading environ-
ment modules on this system. Multiple backends are supported, as well as the special nomod backend which
implements the different modules system operations as no-ops. For the complete list of the supported modules
systems, see here.

e partitions: The list of partitions that are defined for this system. Each partition is defined as a separate object.
We devote the rest of this section in system partitions, since they are an essential part of ReFrame’s configuration.

A system partition in ReFrame is not bound to a real scheduler partition. It is a virtual partition or separation of the
system. In the example shown here, we define three partitions that none of them corresponds to a scheduler partition.
The login partition refers to the login nodes of the system, whereas the gpu and mc partitions refer to two different
set of nodes in the same cluster that are effectively separated using Slurm constraints. Let’s pick the gpu partition and
look into it in more detail:

'name': 'gpu',

'descr': 'Hybrid nodes',

'scheduler': 'slurm',

'launcher': 'srun',

'access': ['-C gpu', '-A csstaff'],

'environs': ['gnu', 'intel', 'nvidia', 'cray'l],

'max_jobs': 100,

The basic properties of a partition are the following:

* name: The name of the partition. This should be an alphanumeric string (dashes - are allowed) and it will be
used to refer to this partition in other contexts.

e descr: A detailed description of the system partition.

e scheduler: The workload manager (job scheduler) used in this partition for launching parallel jobs. In this
particular example, the Slurm scheduler is used. For a complete list of the supported job schedulers, see here.

* launcher: The parallel job launcher used in this partition. In this case, the srun command will be used. For a
complete list of the supported parallel job launchers, see here.

120 Chapter 2. Webinars

https://docs.python.org/3/library/re.html#regular-expression-syntax
config_reference.html#.systems{[}{]}.modules_system
https://slurm.schedmd.com/
config_reference.html#.systems{[}{]}.partitions{[}{]}.scheduler
config_reference.html#.systems{[}{]}.partitions{[}{]}.launcher

ReFrame Documentation, Release 4.1.0

* access: A list of scheduler options that will be passed to the generated job script for gaining access to that
logical partition. Notice how in this case, the nodes are selected through a constraint and not an actual scheduler
partition.

e environs: The list of environments that ReFrame will use to run regression tests on this partition. These are
just symbolic names that refer to environments defined in the environments section described below.

* max_jobs: The maximum number of concurrent regression tests that may be active (i.e., not completed) on this
partition. This option is relevant only when ReFrame executes with the asynchronous execution policy.

For more partition configuration options, have a look here.

Environments Configuration

We have seen already environments to be referred to by the environs property of a partition. An environment in
ReFrame is simply a collection of environment modules, environment variables and compiler and compiler flags defi-
nitions. None of these attributes is required. An environment can simply by empty, in which case it refers to the actual
environment that ReFrame runs in. In fact, this is what the generic fallback configuration of ReFrame does.

Environments in ReFrame are configured under the environments section of the documentation. For each envi-
ronment referenced inside a partition, a definition of it must be present in this section. In our example, we define
environments for all the basic compilers as well as a default built-in one, which is used with the generic system config-
uration. In certain contexts, it is useful to see a ReFrame environment as a wrapper of a programming toolchain (MPI
+ compiler combination):

'environments': [

{
'name': 'gnu',
'modules': ['PrgEnv-gnu'],
'cc': 'cc',
'exx': 'CC',
'ftn': "ftn',
'target_systems': ['daint']
1,
{
'name': 'cray',
'modules': ['PrgEnv-cray'],
'cc': 'cc',
'exx': 'CC',
'ftn': '"ftn',
'target_systems': ['daint']
1
{
'name': 'intel',
'modules': ['PrgEnv-intel'],
'cc': 'cc',
'exx': 'CC',
"ftn': '"ftn',
'target_systems': ['daint']
1,
{
'name': 'nvidia',
'modules': ['PrgEnv-nvidia'],
'cc': 'cc',
'exx': 'CC',

(continues on next page)

2.4. Configuring ReFrame for Your Site 121

pipeline.html#execution-policies
config_reference.html#system-partition-configuration

ReFrame Documentation, Release 4.1.0

(continued from previous page)

'ftn': '"ftn',

'target_systems': ['daint']
1,
{

'name': 'builtin',

'cc': 'cc',

'exx': 'CC',

'ftn': '"ftn',

'target_systems': ['daint']
}

] # end of environments

Each environment is associated with a name. This name will be used to reference this environment in different con-
texts, as for example in the environs property of the system partitions. A programming environment in ReFrame is
essentially a collection of environment modules, environment variables and compiler definitions.

An important feature in ReFrame’s configuration, is that you can define section objects differently for different systems
or system partitions by using the target_systems property. Notice, for example, how the gnu environment is defined
differently for the system daint compared to the generic definition. The target_systems property is a list of systems
or system/partition combinations where this definition of the environment is in effect. This means that gnu will be
defined this way only for regression tests running on daint. For all the other systems, it will be defined using the first
definition.

Logging configuration

ReFrame has a powerful logging mechanism that gives fine grained control over what information is being logged,
where it is being logged and how this information is formatted. Additionally, it allows for logging performance data
from performance tests into different channels. Let’s see how logging is defined in the builtin configuration:

'logging': [
{
'handlers$': [
{
'type': 'stream',
'name': 'stdout',
'level': 'info',
'format': ' !
1,
1,
'handlers': [
{
"type': 'file',
'level': 'debug2',
"format': '[] : : ',

. # noga: E501
'append': False

1,
'handlers_perflog': [
{
'type': 'filelog',
'prefix': ' / .

(continues on next page)

122 Chapter 2. Webinars

ReFrame Documentation, Release 4.1.0

(continued from previous page)

'level': 'info',
'format': (

T T
1 v
T 1

),

'format_perfvars': (

1 v
T v

)
"append': True

]

}
] # end of logging

Logging is configured under the 1logging section of the configuration, which is a list of logger objects. Unless you want
to configure logging differently for different systems, a single logger object is enough. Each logger object is associated
with a logging level stored in the 1evel property and has a set of logging handlers that are actually responsible for
handling the actual logging records. ReFrame’s output is performed through its logging mechanism and that’s why
there is the special handlers$ property. The handler defined in this property, in the builtin configuration shown here,
defines how exactly the output of ReFrame will be printed. You will not have to override this in your configuration
files, unless you really need to change how ReFrame’s output look like.

As a user you might need to override the handlers property to define different sinks for ReFrame logs and/or output
using different verbosity levels. Note that you can use multiple handlers at the same time. All handler objects share a
set of common properties. These are the following:

 type: This is the type of the handler, which determines its functionality. Depending on the handler type, handler-
specific properties may be allowed or required. For a complete list of available log handler types, see here.

e level: The cut-off level for messages reaching this handler. Any message with a lower level number will be
filtered out.

e format: A format string for formatting the emitted log record. ReFrame uses the format specifiers from Python
Logging, but also defines its owns specifiers.

e datefmt: A time format string for formatting timestamps. There are two log record fields that are considered
timestamps: (a) asctime and (b) check_job_completion_time. ReFrame follows the time formatting syntax
of Python’s time.strftime() with a small tweak allowing full RFC3339 compliance when formatting time zone
differences.

We will not go into the details of the individual handlers here. In this particular example we use three handlers of two
distinct types:

1. A file handler to print debug messages in the reframe.log file using a more extensive message format that
contains a timestamp, the level name etc.

2. A stream handler to print any informational messages (and warnings and errors) from ReFrame to the standard
output. This handles essentially the actual output of ReFrame.

3. A file handler to print the framework’s output in the reframe. out file.

It might initially seem confusing the fact that there are two level properties: one at the logger level and one at the
handler level. Logging in ReFrame works hierarchically. When a message is logged, a log record is created, which
contains metadata about the message being logged (log level, timestamp, ReFrame runtime information etc.). This

2.4. Configuring ReFrame for Your Site 123

config_reference.html#.logging{[}{]}.level
config_reference.html#.logging{[}{]}.handlers{[}{]}.type
https://docs.python.org/3/library/logging.html?highlight=logging#logrecord-attributes
https://docs.python.org/3/library/logging.html?highlight=logging#logrecord-attributes
https://docs.python.org/3/library/time.html#time.strftime

ReFrame Documentation, Release 4.1.0

log record first goes into ReFrame’s internal logger, where the record’s level is checked against the logger’s level (here
debug). If the log record’s level exceeds the log level threshold from the logger, it is forwarded to the logger’s handlers.
Then each handler filters the log record differently and takes care of formatting the log record’s message appropriately.
You can view logger’s log level as a general cut off. For example, if we have set it to warning, no debug or informational
messages would ever be printed.

Finally, there is a special set of handlers for handling performance log messages. Performance log messages are gen-
erated only for performance tests, i.e., tests defining the perf_variables or the perf_patterns attributes. The
performance log handlers are stored in the handlers_perflog property. The filelog handler used in this exam-
ple will create a file per test and per system/partition combination (./<system>/<partition>/<testname>.log)
and will append to it the obtained performance data every time a performance test is run. Notice how the message to
be logged is structured in the format and format_perfvars properties, such that it can be easily parsed from post
processing tools. Apart from file logging, ReFrame offers more advanced performance logging capabilities through
Syslog, Graylog and HTTP.

For a complete reference of logging configuration parameters, please refer to the Configuration Reference.

General configuration options

General configuration options of the framework go under the general section of the configuration file. This section is
optional and, in fact, we do not define it for our tutorial configuration file. However, there are several options that can
go into this section, but the reader is referred to the Configuration Reference for the complete list.

Other configuration options

There is finally one additional optional configuration section that is not discussed here:

The modes section defines different execution modes for the framework. Execution modes are discussed in the How
ReFrame Executes Tests page.

2.4.3 Building the Final Configuration

New in version 4.0.0.

As mentioned above ReFrame can build its final configuration incrementally from a series of user-specified configura-
tion files starting from the basic builtin configuration. We discussed briefly at the beginning of this page how ReFrame
locates and loads these configuration files and the documentation of the -C option provides more detailed information.
But how are these configuration files actually combined? This is what we will discuss in this section.

Configuration objects in the top-level configuration sections can be split in two categories: named and unnamed.
Named objects are the systems, the environments and the modes and the rest are unnamed. The named object have a
name property. When ReFrame builds its final configuration, named objects from newer configuration files are either
appended or prepended in their respective sections, but unnamed objects are merged based on their target_systems.
More specifically, new systems are prepended in the list of the already defined, whereas environments and modes are
appended. The reason for that is that systems are tried from the beginning of the list until a match is found. See Picking
the Right System Configuration for more information on how ReFrame picks the right system. If a system is redefined,
ReFrame will warn about it, but it will still use the new definition. This is done for backward compatibility with the old
configuration mechanism, where users had to redefine also the builtin systems and environments in their configuration.
Similarly, if an environment or a mode is redefined, ReFrame will issue a warning, but only if the redefinition is at the
same scope as the conflicting one. Again this is done for backward compatibility.

Given the Piz Daint configuration shown in this section and the ReFrame’s builtin configuration, ReFrame will build
internally the following configurati