
ReFrame: A regression framework for checking the health of
large HPC systems
CUG 2017 conference, Redmond, WA, USA
V. Karakasis, V. H. Rusu, A. Jocksch, J.-G. Piccinali, G. Peretti-Pezzi
May 11, 2017

Outline
◾ Regression testing in HPC

◾ What is ReFrame?

◾ Writing a test in ReFrame

◾ CSCS use case

CUG 2017, Redmond, WA, USA ∣ 2

Regression testing of HPC systems
Why is it so important?

◾ Ensures quality of service

◾ Reduces downtime

◾ Early detection of problems

CUG 2017, Redmond, WA, USA ∣ 3

Regression testing of HPC systems
But it’s a painful story

◾ In-house custom solutions per center
◾ Non portable monolithic regression tests

– Tightly coupled to the system configuration and programming env.

◾ Large maintenance overhead
– Replicated code of the system interaction details
– Test’s logic is lost in unrelated lower level details

No one wants to implement a new regression test!

CUG 2017, Redmond, WA, USA ∣ 4

Regression testing of HPC systems
But it’s a painful story

◾ In-house custom solutions per center
◾ Non portable monolithic regression tests

– Tightly coupled to the system configuration and programming env.

◾ Large maintenance overhead
– Replicated code of the system interaction details
– Test’s logic is lost in unrelated lower level details

No one wants to implement a new regression test!

CUG 2017, Redmond, WA, USA ∣ 4

What is ReFrame?

A new regression framework that

◾ allows writing portable HPC regression tests in Python,
◾ abstracts away the system interaction details,
◾ lets users focus solely on the logic of their test.

https://github.com/eth-cscs/reframe

CUG 2017, Redmond, WA, USA ∣ 5

https://github.com/eth-cscs/reframe

Design goals

– Productivity

– Portability

– Ease of use

– Robustness

CUG 2017, Redmond, WA, USA ∣ 6

ReFrame’s architecture

Regression test API

Job schedulers
Shell script

generators

System abstractions

Job launchers

Environment abstractions

Operating System

Environment

loaders

Pluggable

backends

CUG 2017, Redmond, WA, USA ∣ 7

The regression test pipeline

A series of well defined phases that each regression test goes through

Pick next test

Supports system?

NO

Supports

environment?

YES

NO

Setup test Compile test Run test

Check sanity

Check performance
Cleanup test

resources

YES

CUG 2017, Redmond, WA, USA ∣ 8

Writing regression tests in ReFrame
A “Hello, World!” example

import os
from reframe.core.pipeline import RegressionTest

class HelloWorldTest(RegressionTest):
def __init__(self, **kwargs):

super().__init__('hello_world', os.path.dirname(__file__), **kwargs)
self.descr = 'Hello World C Test'
self.sourcepath = 'hello.c'
self.valid_systems = ['daint:gpu', 'daint:mc', 'daint:login']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu']
self.sanity_patterns = { '-': {'Hello, World\!': []} }

def _get_checks(**kwargs):
return [HelloWorldTest(**kwargs)]

CUG 2017, Redmond, WA, USA ∣ 9

Writing regression tests in ReFrame
A “Hello, World!” example

A regression test needs not to care about

◾ how access to system partitions is gained,
◾ how programming environments are switched,
◾ how its environment is set up,
◾ how a sanity/performance pattern is looked up in its output,
◾ how a job script is generated and submitted and if it’s needed at all.

CUG 2017, Redmond, WA, USA ∣ 10

Writing regression tests in ReFrame
Specifying the test’s environment

def __init__(self, **kwargs):
...
self.modules = ['cudatoolkit', 'cray-libsci_acc']
self.variables = {

'CRAY_CUDA_MPS' : '1',
'OMP_NUM_THREADS' : '16'

}

◾ Modules will be loaded and environment variables will be set during
the test’s setup phase
◾ Corresponding instructions will be emitted in the generated run script

– Possible module conflicts are handled automatically

CUG 2017, Redmond, WA, USA ∣ 11

Writing regression tests in ReFrame
Differentiating per system

– Different configurations to be tested, workarounds etc.

def __init__(self, **kwargs):
...
if self.current_system.name == 'dom':

self.num_tasks = 72
workaround for Dom due to bug #XXX
self.modules += ['foo']

else:
self.num_tasks = 192

Differentiation per system partition must be done inside the setup() method

CUG 2017, Redmond, WA, USA ∣ 12

Writing regression tests in ReFrame
Differentiating per system

– Different configurations to be tested, workarounds etc.

def __init__(self, **kwargs):
...
if self.current_system.name == 'dom':

self.num_tasks = 72
workaround for Dom due to bug #XXX
self.modules += ['foo']

else:
self.num_tasks = 192

Differentiation per system partition must be done inside the setup() method

CUG 2017, Redmond, WA, USA ∣ 12

Writing regression tests in ReFrame
Customizing compilation – Example: OpenMP compilation flags

def __init__(self, **kwargs):
...
user-defined member variable
self.prgenv_flags = {

'PrgEnv-cray' : '-homp',
'PrgEnv-gnu' : '-fopenmp',
'PrgEnv-intel' : '-openmp',
'PrgEnv-pgi' : '-mp'

}

def compile(self):
flag = self.prgenv_flags[self.current_environ.name]
self.current_environ.cflags = flag
super().compile()

– Also support for running pre- and post-compilation commands

CUG 2017, Redmond, WA, USA ∣ 13

Writing regression tests in ReFrame
Sanity and performance checking

◾ Regex pattern matching
◾ Associate callback actions to patterns matched
◾ Automatic reference value resolution for performance tests
◾ Stateful parsing support

– Support for common aggregate operations (min, max, sum, average)

◾ Search for patterns in multiple files

CUG 2017, Redmond, WA, USA ∣ 14

Writing regression tests in ReFrame
Sanity and performance checking

– Simple grep-like matching:

def __init__(self, **kwargs):
...
self.sanity_patterns = { '-': {'Hello, World\!': []} }

– Pattern matching with associated action callbacks:

def __init__(self, **kwargs):
...
self.sanity_patterns = {

'-' : {
'final result:\s+(?P<res>\d+\.?\d*)': [

('res', float, lambda value, **kwargs: \
standard_threshold(value, (1., -1e-5, 1e-5)))

],
}

}

CUG 2017, Redmond, WA, USA ∣ 15

Writing regression tests in ReFrame
Sanity and performance checking

– Simple grep-like matching:

def __init__(self, **kwargs):
...
self.sanity_patterns = { '-': {'Hello, World\!': []} }

– Pattern matching with associated action callbacks:

def __init__(self, **kwargs):
...
self.sanity_patterns = {

'-' : {
'final result:\s+(?P<res>\d+\.?\d*)': [

('res', float, lambda value, **kwargs: \
standard_threshold(value, (1., -1e-5, 1e-5)))

],
}

}

CUG 2017, Redmond, WA, USA ∣ 15

Writing regression tests in ReFrame
Sanity and performance checking

def __init__(self, **kwargs):
...
self.perf_patterns = {

'-' : {
'long_pattern (?P<days_ns>\S+) days/ns' : [

('days_ns', float, standard_threshold)
]

}
}
self.reference = {

'daint:gpu' : { 'days_ns' : (0.71, None, 0.10) },
'daint:mc' : { 'days_ns' : (0.90, None, 0.10) } }

For each matched tag standard_threshold(float(val), ref) will be called.

◾ val is the value of the matched tag
◾ ref is looked up in self.reference

CUG 2017, Redmond, WA, USA ∣ 16

Writing regression tests in ReFrame
Sanity and performance checking

def __init__(self, **kwargs):
...
self.perf_patterns = {

'-' : {
'long_pattern (?P<days_ns>\S+) days/ns' : [

('days_ns', float, standard_threshold)
]

}
}
self.reference = {

'daint:gpu' : { 'days_ns' : (0.71, None, 0.10) },
'daint:mc' : { 'days_ns' : (0.90, None, 0.10) } }

For each matched tag standard_threshold(float(val), ref) will be called.

◾ val is the value of the matched tag
◾ ref is looked up in self.reference

CUG 2017, Redmond, WA, USA ∣ 16

Writing regression tests in ReFrame
Sanity and performance checking – Stateful parsing

“The average performance of the first 100 steps must be within 10% of the
reference value for this system.”

◾ ReFrame’s action callbacks come in very handy in such situations
– Create an object holding the desired state and update it with every match

◾ ReFrame supports also eof callback actions, allowing to take a
decision after processing the whole output

◾ Use ReFrame’s provided parsers that cover the most common cases

CUG 2017, Redmond, WA, USA ∣ 17

Writing regression tests in ReFrame
Sanity and performance checking – Stateful parsing

“The average performance of the first 100 steps must be within 10% of the
reference value for this system.”

◾ ReFrame’s action callbacks come in very handy in such situations
– Create an object holding the desired state and update it with every match

◾ ReFrame supports also eof callback actions, allowing to take a
decision after processing the whole output

◾ Use ReFrame’s provided parsers that cover the most common cases

CUG 2017, Redmond, WA, USA ∣ 17

Writing regression tests in ReFrame
Sanity and performance checking – Stateful parsing

“The average performance of the first 100 steps must be within 10% of the
reference value for this system.”

◾ ReFrame’s action callbacks come in very handy in such situations
– Create an object holding the desired state and update it with every match

◾ ReFrame supports also eof callback actions, allowing to take a
decision after processing the whole output

◾ Use ReFrame’s provided parsers that cover the most common cases

CUG 2017, Redmond, WA, USA ∣ 17

Writing regression tests in ReFrame
Organizing the regression tests

mychecks/
compile/

helloworld/
helloworld.py
src/ # <- source files are resolved relative to this directory

hello.c
runonly/

app/
src/ # <- test resources files can be put simply here

input.txt
apptest.py

◾ Default check path in <reframe-install-prefix>/checks/
◾ Resources directory can also be customized per test

CUG 2017, Redmond, WA, USA ∣ 18

ReFrame’s front-end
Configuring for a new site

◾ Systems
– Hostname identification patterns
– ReFrame’s stage and output directories

◾ System logical partitions
– Job scheduler
– Environment to always load on that partition
– Scheduler options enabling access to that partition
– List of programming environments to test

◾ Programming environments
– Modules
– Environment variables
– Compilers and default flags

CUG 2017, Redmond, WA, USA ∣ 19

ReFrame’s front-end
Configuring for a new site – Piz Daint example

'systems' : {
'daint' : {

'hostnames' : ['daint', 'daint\d+'],
'partitions' : {

'login' : {
'scheduler' : 'local',
'environs' : ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr' : 'Login nodes'

},
'gpu' : {

'scheduler' : 'nativeslurm',
'modules' : ['daint-gpu'],
'access' : ['--constraint=gpu'],
'environs' : ['PrgEnv-cray', 'PrgEnv-gnu',

'PrgEnv-intel', 'PrgEnv-pgi'],
'descr' : 'Hybrid nodes (Haswell/P100)',

}
}}}

CUG 2017, Redmond, WA, USA ∣ 20

ReFrame’s front-end
Configuring for a new site – Piz Daint example (cont’d)

'environments' : {
'*' : {

'PrgEnv-gnu' : {
'type' : 'ProgEnvironment',
'modules' : ['PrgEnv-gnu'],

},
...

}
'kesch' : { # PrgEnv-gnu redefinition for Piz Kesch

'PrgEnv-gnu' : {
'type' : 'ProgEnvironment',
'modules' : ['PrgEnv-gnu'],
'cc' : 'mpicc',
'cxx' : 'mpicxx',
'ftn' : 'mpif90',

}
}

}

CUG 2017, Redmond, WA, USA ∣ 21

ReFrame’s front-end
Command-line interface

ReFrame goes through three phases when invoked:
◾ Discovery and loading of regression tests
◾ Selection/filtering of the loaded tests

– By name, programming environment, tags

◾ Action on the final set of tests
– Listing or execution

In case of a test failure, test’s files are left intact in its stage directory:
◾ User can inspect and try to manually reproduce the error

CUG 2017, Redmond, WA, USA ∣ 22

ReFrame’s front-end
Command-line interface

ReFrame goes through three phases when invoked:
◾ Discovery and loading of regression tests
◾ Selection/filtering of the loaded tests

– By name, programming environment, tags

◾ Action on the final set of tests
– Listing or execution

In case of a test failure, test’s files are left intact in its stage directory:
◾ User can inspect and try to manually reproduce the error

CUG 2017, Redmond, WA, USA ∣ 22

The CSCS use case

Sanity and performance checking of Piz Daint

◾ Production test suite
– Wide variety of tests running daily overnight
– Testing hybrid and multicore system partitions as well as login nodes
– 157 tests run, 437 test cases in total

◾ Maintenance test suite
– Run before and after each maintenance session
– Slurm functionality, I/O of core filesystems, performance of critical apps
– ≤ 30min

CUG 2017, Redmond, WA, USA ∣ 23

The CSCS use case
Comparison with our old shell script based solution

Component Old framework ReFrame
Core N/A 3660 loc
Front-end 1038 loc 958 loc
Regression tests 14635 loc 2985 loc

Avg. regression file size 179 loc 93 loc
Avg. regression test size 179 loc 25 loc

Almost 5× reduction of the total amount of regression test code!

CUG 2017, Redmond, WA, USA ∣ 24

The CSCS use case
Comparison with our old shell script based solution

Component Old framework ReFrame
Core N/A 3660 loc
Front-end 1038 loc 958 loc
Regression tests 14635 loc 2985 loc
Avg. regression file size 179 loc 93 loc
Avg. regression test size 179 loc 25 loc

Almost 5× reduction of the total amount of regression test code!

CUG 2017, Redmond, WA, USA ∣ 24

Conclusions and future directions
ReFrame makes writing regression tests for HPC systems an easy task!
◾ Actively developed
◾ More teams inside CSCS have started to adopt it in their projects
◾ Publicly available at https://github.com/eth-cscs/reframe

High-priority items from our backlog
◾ Proper logging
◾ Backend for the PBS scheduler
◾ Asynchronous execution of regression tests

Try it out, give us some feedback!

CUG 2017, Redmond, WA, USA ∣ 25

https://github.com/eth-cscs/reframe

Conclusions and future directions
ReFrame makes writing regression tests for HPC systems an easy task!
◾ Actively developed
◾ More teams inside CSCS have started to adopt it in their projects
◾ Publicly available at https://github.com/eth-cscs/reframe

High-priority items from our backlog
◾ Proper logging
◾ Backend for the PBS scheduler
◾ Asynchronous execution of regression tests

Try it out, give us some feedback!

CUG 2017, Redmond, WA, USA ∣ 25

https://github.com/eth-cscs/reframe

Thank you for your attention

	Regression testing in HPC
	What is ReFrame?
	Writing a test in ReFrame
	CSCS use case

